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ABSTRACT

Background. Biofilm formation in dental unit waterlines (DUWL) may lead to
health risks for dental staff and patients. Therefore, dental unit waterlines need to be
disinfected, for instance by using chemical disinfectants. However, the application of
chemical disinfectants may lead to the selection of specific microorganisms. Therefore,
the aim of our study was to assess the microbial composition of water-derived biofilms,
after a continuous exposure to maintenance doses of commercially available chemical
disinfectants, in vitro.

Methods. The AAA-model was used to grow water derived biofilms. The biofilms were
subjected to the maintenance dose of each disinfectant. To determine the microbial
composition, the V4 hypervariable region of the 16S rRNA gene was sequenced. The
sequences were clustered in operational taxonomic units (OTUs).

Results. The bacterial composition of biofilms in all treatment groups differed
significantly (PERMANOVA F = 4.441, p = 0.001). Pairwise comparisons revealed
Anoxyl treated biofilms were significantly different from all groups (p = 0.0001). In the
Anoxyl-treated biofilms, the relative abundance of Comamonadaceae and Sphingopyxis
was high compared to the Dentosept, Green and Clean and Oxygenal groups.
Conclusion. We concluded that exposure to low doses of the chlorine-based chemical
disinfectant Anoxyl led to a substantially different composition of water derived
biofilms compared to biofilms exposed to H,O,-based chemical disinfectants.

Subjects Microbiology, Dentistry, Public Health
Keywords Biofilm, Dental unit waterlines, Disinfection, Microbiome, Sequencing, Water quality

INTRODUCTION

Dental unit waterlines (DUWL) consist of narrow lumen tubing (Coleman et al., 2007)
where low flow velocity favors microbial adhesion and biofilm formation (Walker ¢» Marsh,
2007). Parts of the biofilm will detach and microorganisms can end up in the patient’s
oral cavity, the surfaces surrounding the dental unit and in the air of the treatment room
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through aerosols (Coleman et al., 2007). High microbial load of effluent water, possibly
containing pathogenic bacteria, poses a potential risk of infection for patients and dental
staft (Coleman et al., 2007; Spagnolo et al., 2019). Besides pathogenic bacteria, also toxic
bacterial products, such as endotoxins, have been found to be increased in aerosols from
DULW with substantial biofilm growth, which may possess a risk for inflammation of the
airways (Pankhurst et al., 2005; Szymariska & Sitkowska, 2013).

The microorganisms in the DUWL biofilms primarily originate from water, in most
situations tap water. The water lines also can become contaminated by oral bacteria,
from backflow when using high speed air-rotors. To prevent infection of patients and
dental healthcare workers (DHCW)), it is generally considered that the number of bacteria
in DUWL-effluent water must meet the standard of drinking water, which is regulated
nationally, and is 100 Colony forming units/mL for the Netherlands (KNMT, 2016).

Chemical disinfectants can be added to the dental unit water to reduce proliferation
of biofilm microorganisms, the microbial load in effluent water and thus the risk of
infection transmission. However, DUWL effluent water can still contain microbial loads
above the safe water limit, as stated for the drinking water standard. This may be due
to non-compliance with disinfection protocols (Volgenant ¢ Persoon, 2018; Baudet et
al., 2019; Ji et al., 2019), but also due to tolerance of the remaining biofilm to the used
disinfectants. Biofilm growth is a way for microorganisms to protect themselves from
antimicrobial agents, by the structure of the biofilm itself and by changing is phenotype.

So far known based on the available chemicals in the market, mainly hydrogen peroxide,
silver-based chemicals or chlorine containing compounds have been used to control the
microbial load in DUWLs (Abdallah ¢ Khalil, 2011; Barbot et al., 2014 Ditommaso et al.,
2016). In most studies, the disinfection effect on effluent water or planktonic bacteria
was studied. It was found that low concentrations of H,O,, the most used disinfectant
agent, was able to reduce the microbial concentration of planktonic cells (Orrii et al.,
2010; Abdallah ¢ Khalil, 2011; Barbot et al., 2014; Ditommaso et al., 2016). However, little
is known on the effect of disinfectants on the biofilms.

The latter may result in a shift in microbial composition, depending on sensitivity or
resistance to the active component of the disinfectant. Until now, only the effect of some
chemical disinfectants for DUWL on specific biofilm pathogens was studied (Costa et al.,
2016; Yoon ¢ Lee, 2019). Continuous exposure of biofilms to antimicrobial agents usually
results in ecological shifts in these biofilms, and just this continuous exposure during
patient treatment is advised in most protocols to assure that patients and DHCW are not
exposed to dangerous numbers of microorganisms. Therefore, the aim of this study was to
assess the microbial composition of water-derived biofilms, after a continuous exposure to
maintenance doses of commercially available chemical disinfectants, in vitro.

MATERIALS & METHODS

Biofilms and disinfection protocol
Biofilms were grown in the Amsterdam Active Attachment-model containing 24-wells
plates with polyurethane discs (10 mm discs, surface area of 157 mm? (both sides);
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ODV Rubber en Kunststoffen, Zaandam, The Netherlands) as substratum (Exterkate,
Crielaard ¢ Ten Cate, 2010). This model uses a purpose build stainless steel lid on which
24 clamps have been fixed, that hold the polyurethane discs. The clamp is placed on a 24
wells plate and inoculated with a bacterial suspension. We used an inoculation medium,
generated from 20L tap water (Amsterdam, chlorine free water with less than 100 CFU/ml
heterotrophic bacteria and filtered using a 0.2 wm pore-size filter system), which was stored
at —80 °C in aliquots from 10° heterotrophic aerobic cells until further use. The actual
number of heterotrophic aerobic bacteria per well, as counted on R2A agar, was 1.6 log;
CFU/ml, which is similar to a normal input of a DUWL. Biofilms were grown in 10% of
R2A-broth at 30 °C for 72 h. The chemical disinfectants Anoxyl (SKW Biosystems BV,
end concentration 0.005% chlorine), Citrisil (Sterisil, end concentration 0.00007% silver),
Dentosept (Sinrona, end concentration 0.01% H,0,), Green and Clean (GAC, Metasys,
end concentration 0.02% H,0O;), Oxygenal (KaVo, end concentration 0.02% H,0,) and
ICX (A-dec, end concentration 0.001% H,0, and 0.00006% silver), all commercially
available in The Netherlands, were diluted in 10% R2A containing 1.6 log;o CFU/ml from
stock, added to mimic the clinical situation, where non-sterile tap water runs into the
DUWL. The chemical disinfectants were applied to the biofilms in the maintenance dose
as recommended by the manufacturer and refreshed weekly for four consecutive weeks.
These refreshments were made from the same bacterial stock, containing 1.6 log;o CFU/ml,
thereby mimicking the normal use of a dental chair as close as possible.

Biofilm sampling, DNA extraction, sequencing

Three discs were removed from the model every week and the biofilms on these discs were
dispersed in 1mL sterile water by sonicating the discs for 1 min, pelleted for 15 min at
4500 rpm and stored at —80 °C for sequencing. The DNA of all samples was extracted and
purified according to Cieplik et al. (Cieplik et al., 2019). In brief, the samples were added
to wells of a 96-deep-well plate containing Tris-saturated phenol, 0.1 mm zirconium beads
and lysis buffer and were mechanically lysed by bead-beating at 1,200 rpm for 2 min. DNA
was isolated with the Mag MiniKit (LGC Genomics, Berlin, Germany).

Quantitative PCR was used to determine the bacterial DNA concentration in the biofilm
samples, using universal primers specific to the bacterial 16S rRNA gene (Ciric et al.,
2010). The V4 hypervariable region of the 16S rRNA gene was amplified using 1 ng DNA
with 1 pM of each primer and 30 amplification cycles (Caporaso et al., 2011). Paired-end
sequencing of the DNA was conducted on the MiSeq platform (Illumina, San Diego, CA,
USA) with a MiSeq Reagent kit v3 and 2x251 nt at the VUmc Cancer Center Amsterdam
(Amsterdam, the Netherlands). The sequence and meta data are available in the NCBI
BioProject database under accession number PRJNA614901.

Statistical analysis and data processing

The sequences of 16S rRNA gene amplicons were clustered in operational taxonomic units
(OTUs) at 97% similarity as described previously (Cieplik et al., 2019). All microbiome
analyses were conducted using PAST software version 3.16 (Hammer, Harper ¢ Ryan,
2001). Statistical differences in microbial composition within the procedure was tested
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Figure 1 Average relative abundance of OTUs in biofilms. The average relative abundance of the ten
most abundant OTUs in the biofilms, untreated (control) or challenged with different chemical disinfec-
tants, by age of the biofilms (weeks).

Full-size Gl DOI: 10.7717/peer;j.9503/fig-1

using Permutational Multivariate Analysis of Variance (PERMANOVA) and Principal
Component Analysis (PCA). Pairwise comparisons were reported using Bonferroni
corrected p-values. Analysis of similarity percentages (SIMPER) between samples was
conducted to identify the main species that typified the microbiome. OTUs were reported
at genus level. A p-value <0.05 was considered statistically significant.

RESULTS

Microbial composition of untreated biofilms

The control biofilms after 72 h of growth consisted on average of 20 OTUs (range 16-27),
mainly Cupriavidus (OTU_79, 27%), Comamonadaceae (OTU_3, 26%), and Sphingobium
(OTU_6, 14%). After four weeks, the biofilms consisted mostly of Sphingomonadales
(OTU_5, 36%), Mycobacterium (OTU_1, 19%) and Comamonadaceae (OTU_3, 6%). A
full description of the relative microbiome compositions is reported in the File S1. The
relative abundance of the most prominent OTU’s is presented in Fig. 1.

Microbial abundance in biofilms exposed to chemical disinfectants
The bacterial composition of biofilms in all treatment groups differed significantly
(PERMANOVA F = 4.441, p=0.001). Pairwise comparisons revealed that Dentosept,
GAC, and Oxygenal differed significantly from the control biofilm (p = 0.003; p = 0.009;
p=0.007). Anoxyl treated biofilms were significantly different from all groups (p = 0.0001).
PCA analyses revealed that the samples from Anoxyl clustered separately from the rest,
indicating that the bacterial community in the Anoxyl group had changed by the treatment
(Fig. 2).
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Figure 2 PCA plot of biofilms exposed to maintenance doses of the chemical disinfectants or left un-
treated (control). Each datapoint represents unique sample.
Full-size & DOI: 10.7717/peerj.9503/fig-2

The microbial composition of biofilms treated by Anoxyl differed 61.9% from the
control biofilm (SIMPER). Other biofilms differed between 45% and 51.7% from the
control group.

PC1 explained 23% of the variance. PC1 had positive loadings for Sphingopyxis (OTU_4)
and Sphingomonadales (OTU_9), while PC1 had negative loadings for Mycobacterium
(OTU_1) and Sphingomonadales (OTU_5). In the Anoxyl-treated biofilms, the relative
abundance of Comamonadaceae (OTU_3) and Sphingopyxis (OTU_4) was high compared
to the Dentosept, GAC and Oxygenal groups. The proportion of Mycobacterium (OTU_1)
increased in the Dentosept, GAC and Oxygenal groups over time, while it was absent in
the Anoxyl-treated biofilms (Fig. 1). The same trend for Mycobacterium (OTU_1), though
less pronounced, was observed in the control biofilms.

Anoxyl-challenged biofilms were dominated by Comamonadaceae and Sphingopyxis and
lacked genus Mycobacterium. H,O,-challenged biofilms were most similar to the control
biofilms, where Mycobacterium and Sphingomonadales species were more abundant.

DISCUSSION

The presented study showed the microbial composition of the treated and untreated water
derived biofilm over 4-week time period. The biofilms were dominated by Mycobacterium,
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Sphingomonadales, Sphingopyxis, and Comamonadaceae. The microbial composition
between the untreated biofilms and those exposed to biocides containing H,O, did
not differ. The latter might also be due to the small sample number. Exposure to chlorine-
based biocide (Anoxyl) led to a substantially different composition of the biofilm compared
other treatment groups. Untreated biofilms and those exposed to H,O, were dominated
by Mycobacterium and Sphingomonadales. Biofilms exposed to chlorine consisted mainly of
Comamonadaceae and Sphingopyxis. The presented results show that the relative abundance
of Mycobacterium increased weekly in the H,O,-group. This time factor showed that
continuous exposure to biocides may change biofilm composition and it can be questioned
what will happen when these biofilms are treated with H,O, for many years. Mycobacterium
was found to be resistant in water treatment to H,O, (Yang et al., 2017). If Mycobacterium
was exposed to chlorine treatment, the genus was fully absent in all taken samples which is
in line with treatment results in waste water studies (Norton ¢ LeChevallier, 2000; Oriani,
Sierra & Baldini, 2018). Furthermore, a chlorine-based DUWL disinfectant proved to be
successful in reducing the number of aerobic bacterial counts in effluent water (O’Donnell
et al., 2009). Mycobacterium has been previously isolated from DUWL and can be retrieved
from aerosol samples (O’Donnell et al., 2011; Walker et al., 2004; Castellano Realpe et al.,
2020). The presence of this species is of a public health interest since it can cause infections
in immunocompromised patients (Koh, 2017).

The absence of sample clustering in the PCA-plot might be due to a low diversity of
the baseline biofilms which could be a result of the low number of microorganisms in
the inoculum. Biofilms are unique ecosystems which microbial composition depends on
the inoculum size, inoculum composition and inoculum diversity in combination to the
exposure to biocides. Differences in microbial composition endorse the argument that
biofilms in a particular DUWL, even when treated with the same disinfectant agent, are
unique and may differ from other similar units in the same clinic (Abdallah & Khalil,
2011). A high relative abundance of a single species decreases the diversity which might
lead to a resistant biofilm. One study on microbial shifts in waste water treatment suggests
that a combination of different biocides may be the most powerful strategy for treatment
efficiency (Yang et al., 2017).

CONCLUSIONS

The study of changes in biofilm microbiome composition is important for improved
infection risk assessment and infection control strategies targeting the DUWL. Prolonged
application of the same chemical disinfectant to DUWL may lead to tolerance and selection
of the bacteria in the remaining biofilm. This may result in thicker biofilms and a potential
risk for patients and staff. Moreover, thick biofilms tend to be more resistant against
biocides, which also may affect the biofilm composition (Bridier et al., 2011). Biofilms with
a dominance of a single species might be aerosolized through dental instruments and cause
pulmonary infections as in case of Mycobacterium
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