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ABSTRACT
Background: Land use change significantly alters soil organic carbon content and the
microbial community. Therefore, in the present study, the effect of changing
cropland to grassland on structural and functional soil microbial diversity was
evaluated. The specific aims were (i) to identify the most prominent members of the
fungal communities and their relevant ecological guild groups; (ii) to assess changes
in the diversity of ammonia-oxidizing archaea; (iii) to determine the relationships
between microbial diversity and selected physical and chemical properties.
Methods: We investigated microbial diversity and activity indicators, bulk density
and the water-holding capacity of sandy soil under both cropland and 25-year-old
grassland (formerly cropland) in Trzebieszów, in the Podlasie Region, Poland.
Microbial diversity was assessed by: the relative abundance of ammonia-oxidizing
archaea, fungal community composition and functional diversity. Microbial activity
was assessed by soil enzyme (dehydrogenase, β-glucosidase) and respiration tests.
Results: It was shown that compared to cropland, grassland has a higher soil organic
carbon content, microbial biomass, basal respiration, rate of enzyme activity, richness
and diversity of the microbial community, water holding capacity and the structure
of the fungal and ammonia-oxidizing archaea communities was also altered.
The implications of these results for soil quality and soil health are also discussed.
The results suggest that grassland can have a significant phytosanitary capacity with
regard to ecosystem services, due to the prominent presence of beneficial and
antagonistic microbes. Moreover, the results also suggest that grassland use may
improve the status of soil organic carbon and nitrogen dynamics, thereby increasing
the relative abundance of fungi and ammonia-oxidizing archaea.
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INTRODUCTION
Soil is the fundamental resource of an agricultural ecosystem (Wang et al., 2016).
Different land uses significantly alter the soil organic carbon stock and structure, which in
turn influences soil properties, functions and the composition of the soil microbiome
(Delelegn et al., 2017; Szoboszlay et al., 2017). Land use and changes in the use of
agricultural land are largely influenced by market prices, technology and policy
that makes one type of land use more cost-effective compared to another
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(Claassen, Carriazo & Ueda, 2010). During the last few decades, the conversion of
grassland and pasture to cultivated croplands has occurred in many regions of the world
(Claassen, Carriazo & Ueda, 2010; Wright & Wimberly, 2013). This process has been
enhanced by the increased availability of more productive crop varieties (Claassen,
Carriazo & Ueda, 2010), and the move from conventional to no-till production using fewer
field machinery operations and more recently due to crop-based biofuel feedstock
production (Lal, 2005; Wright & Wimberly, 2013; Qin et al., 2016).

This shift has been widely observed on highly productive fine textured soils (Claassen,
Carriazo & Ueda, 2010). From the soil quality point of view an important concern
associated with land use change is the change in soil organic carbon (SOC) (Vaccari et al.,
2012). Many studies have shown that converting land from less intensive grasslands to
more intensive croplands has resulted in a decrease in soil carbon stocks (Claassen,
Carriazo & Ueda, 2010; Deng et al., 2016). A recent literature review of Qin et al. (2016)
revealed that regardless of soil depth and study duration, the conversion from grassland to
corn production has caused a substantial decline in carbon stocks of between 9% and 35%.
This conversion may lead to a further increase in the intensity of soil erosion, nutrient
runoff and leaching and thereby cause environmental damage (Claassen, Carriazo & Ueda,
2010; Bakker et al., 2005).

With regard to low productivity coarse textured soils, the conversion of grassland to
croplands is much less common than for finely textured soils (Claassen, Carriazo & Ueda,
2010; Qin et al., 2016; Gosling, Van der Gast & Bending, 2017). However, the conversion
of croplands to grasslands using such soil is considered to be an opportunity to increase
its carbon sequestration potential and increase initially low SOC. It has been shown that
changing croplands to grassland may lead to the sequestration of 0.3–1.7 t C ha−1 each year
(Qin et al., 2016) and enhance the contribution of aromatic compounds to SOC (Gosling,
Van der Gast & Bending, 2017). However, it has been established that a relatively
long period of time is required to reach a new SOC equilibrium.

Most research concerning land use change has focused on soil chemical composition
and soil organic carbon stocks (Qin et al., 2016; Claassen, Carriazo & Ueda, 2010) as well as
microbial biomass carbon (Maková et al., 2011; Gosling, Van der Gast & Bending,
2017) and the structure of the bacterial community (Kaiser et al., 2016; Millard & Singh,
2010). However, to date there has been a lack of research in the areas of functional
diversity, the fungal microbiome and biochemistry even though they affect many soil
processes and functions. Soil biodiversity represents a complex underground world
involving a wide range of organisms, from archaea to fungi, that interact with each other
and affect the functioning of the soil ecosystem (Schmidt et al., 2013).

Soil nitrification, as a step in nitrogen cycling, plays an important role in the loss of
ammonium connected with atmospheric and water pollution by nitrous oxide and nitrate,
respectively (Prosser & Nicol, 2012). The nitrate, which impacts directly on plant growth
rates, can be produced in heterotrophic or autotrophic pathways. Ammonia-oxidizing
archaea (AOA) are the key autotrophic contributors to ammonia oxidation, and their
comparative input into this process is one of the most relevant with reference to the
nitrogen cycle in soil (Leininger et al., 2006). They predominate among the ammonia-oxidizing
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prokaryotes in soils (Leininger et al., 2006) including those under grasslands (Clark et al., 2020)
and are favoured by low soil pH (Prosser et al., 2020). In addition, the AOA group of
microbes show a high ammonia affinity and play an important role in nitrification
(Beeckman, Motte & Beeckman, 2018; Prosser & Nicol, 2012). However, heterotrophic
nitrification, in which fungi converts organic N to nitrate may also be substantial
(Wardle et al., 2004; Cookson et al., 2006). Broad changes in the structure of the soil
fungal community and AOA diversity, may directly influence soil properties and have a
direct impact on ecosystem productivity. Moreover, one of the main factors that
determines the rates of nitrification in agricultural soils includes the populations of
nitrifiers and competitors (Norton & Ouyang, 2019). In general ammonia oxidizing
archaea predominate acidic soils, while soils with ~7.0 and higher pH values are
associated with ammonia oxidizing bacteria (AOB) rather than AOA (Che et al., 2015).
Therefore, we focused on the diversity of the AOA group of microbes and also on the less
well known fungal communities that could be co-competitive microorganisms for
nitrifiers in sandy acidic soils. Moreover, the determination of fungal biodiversity and
structure is very useful in the assessment of its functionality and role in soil health
and quality, this process is effective due to the use of high throughput sequencing
approaches (Frąc et al., 2018). Therefore, in the research presented, we examined the
effect of land use change from croplands to grassland, 25 years after conversion, with
regard to the relative abundance of AOA and the structure of the fungal community
using modern molecular methods in correlation with other conventional soil quality
indicators of low fertility sandy soil. A better understanding of fungal composition, its
relevant ecological guild groups, AOA diversity and relationships with other soil
properties in grassland and cropland provides a wide range of knowledge concerning
microbial community changes important in the management of land use, which should
be highlighted as a particularly noteworthy novelty of this research. The effect of
changing cropland to grassland on structural and functional soil microbial diversity was
evaluated in this study. The specific aims were: (i) to identify the most prominent
members of the fungal communities and their relevant ecological guild groups; (ii) to
assess changes in the diversity of ammonia-oxidizing archaea; (iii) to determine the
relationships between microbial diversity and selected physical and chemical properties
of the soil.

MATERIALS AND METHODS
Site description and soil sampling
The experimental site was located in Trzebieszów in the Podlasie Region of Poland (51�59′
09.8″N, 22�33′57.5″E) and included sandy acidic soil under cropland and 25-years-old
grassland (converted cropland). The area of each neighbouring cropland and grasslands field
was 0.5 ha. The crop rotation regime of the cropland included potato–oats–barley–triticale.
The grassland was composed mainly of the meadow fescue (Festuca pratensis Huds.).
The access authorization to the fields were given verbally by farmer Marek Lasocki, owner
of the agricultural farm and these fields. The soil is Podzol (WRB IUSS Working Group,
2015) formed from a sandy material of glacial origin and considered to have a low
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productivity value. It contains 86% sand, 12% silt, 2% clay and it is acidic. The area has a
continental climate with a mean annual temperature of 7.3 �C and annual precipitation of
565 mm. The altitude of the study site is approximately 150 m a.s.l.

The soil quality indicators were evaluated with reference to the two above-mentioned
land uses: cropland (CL) and grassland (GL) from three plots (I–III) established in
each field as three biological replicates. The moisture contents of the plots ranged from
8.45% to 24.06%. Soil samples (0–10 cm depth) were collected in 2016 in separate
triplicates for each land use type. In order to obtain a representative sample for each land
use type, from each of the three plots soil samples were collected from 21 individual
points, pooled together in plastic bags, placed on ice and transported to the laboratory.
Each soil sample was mixed to homogenize it, and then passed through a 2-mm sieve and
analysed.

Microbiological analyses
To determine the basal respiration rate (BR), 10 g soil samples were incubated at 20 �C in
120 cm3 glass vials, tightly sealed with rubber stoppers and aluminum caps. Headspace
CO2 concentration was measured after 4 h of incubation by collecting a 200 µl gas sample
and analysing it using gas chromatography. The BR was calculated based on the amount of
CO2 released by soil, and expressed in mg CO2–C per kilogram dry mass soil per hour.
The soil microbial biomass C content (MBC) was assayed using the substrate induced
respiration (SIR) method based on the initial respiratory response of the microbial
population (CO2 release) to amendment with an excess of glucose as an easily available
carbon and energy source (Anderson, 2003). Soil samples (10 g dry mass) were transferred
into 60 cm3 glass vials and amended with five ml of 1% glucose solution (corresponding
to an amendment of five mg glucose per gram of dry soil). Soil slurries were incubated
while being shaken at 25 �C using a water bath. After 4 h of incubation, the CO2 evolved
was determined using gas chromatography. The microbial biomass was calculated using
the formula: MBC (mg C g−1) = 50.4 × (cm3 CO2 g

−1 h−1) (Šimek & Kalčik, 1998).
The concentrations of CO2 in the headspace were measured with a GC-14A gas
chromatograph (Shimadzu, Kyoto, Japan) equipped with a thermal conductivity detector,
TCD (Lipiec et al., 2015). All of the measurements were performed in triplicate.
The metabolic potential of the soil bacterial community was evaluated using Biolog
EcoPlatesTM (Biolog Inc., Hayward, CA, USA) with 31 carbon sources (Insam, 1997),
according to the procedure described by Oszust et al. (2014). On the basis of data obtained
as the mean value from 216 incubation hours, the Richness (R) index was calculated
following the procedure of Garland & Mills (1991) by determining the number of oxidized
carbon substrates using an OD ≥ 0.25 as the threshold for a positive response.

Dehydrogenase activity (DA) was determined using the Thalmann method (Thalmann,
1968), modified by Alef (1995) with 2,3,5-triphenyl-tetrazolium chloride (TTC) as a
substrate. β-glucosidase activity (BA) was determined according to the Eivazi & Tabatabai
method (Eivazi & Tabatabai, 1988) after soil incubation with a substrate: p-nitrophenyl-β-
D-glucoside (PNG). Enzyme assays were performed in biological triplicates.
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Total genomic DNA was extracted from all soil samples using a FastDNA�SPIN Kit for
Faeces (MP Biomedicals, Irvine, CA, USA) according to the manufacturer’s protocol.
The amount of DNA was determined spectrophotometrically using NanoDrop (Thermo
Scientific, Waltham, MA, USA) at a wavelength of 260 nm.

The relative abundance of ammonia-oxidizing archaea (AOA) under both types of land
use was characterized by terminal restriction fragment length polymorphism (t-RFLP)
analysis of the amoA gene. PCR products of the ammonia monooxygenase a-subunit
(amoA) gene were obtained with the use of the following primer pairs: CrenamoA23f:
6-carboxyfluorescein-FAM 5′-ATGGTCTGGCTWAGACG-3′ (Tourna et al., 2008) and
amo643R: 5′-TCCCACTTWGACCARGCGGCCATCCA-3′ (Treusch et al., 2005). Then
the amplicons were digested using the AluI restriction enzyme. A detailed description
of the applied procedure has been published by Oszust et al. (2014). The results of
particular samples were collected in blue channel of 3130 xl ABI capillary sequencer,
because the forward primers were labelled with FAM dye, while orange channel detected
peaks of the standard of DNA fragment size (GS-600LIZ, ABI). Therefore, the results from
blue channel, including size, height and area of the peaks, were exported for the next
calculations. Then obtained restriction fragments were sorted according to fragment size,
results with the size lower than 50 bp were removed, the absolute values of the difference
in length of adjacent fragments were calculated, if the difference in the lengths of the
relevant fragments was less than one bp the peaks were pooled within one sample. Finally,
the sum of all peaks area within one sample and then the percentage of peak area for
particular samples were calculated. Because some of peaks can represent a noise of the
sequencer, it is recommended to establish a threshold to remove these artefacts, usually
for peaks constituting less than 1–5% of the peaks area sum. In this study the threshold
was established for peaks that accounted for less 1%. The relative quantification of
individual terminal restriction fragments within the PCR products reflects changes in
community structure or the relative abundance of AOA. Based on in silico analysis the
terminal restriction fragments (t-RFs) were assigned to the amoA_AOA Feifei-Liu
reference database from the FunGene functional gene pipeline and repository (Fish et al.,
2013) and using TRiFLe software (Junier, Junier & Witzel, 2008).

An analysis of the fungal community structure was performed on the basis of the
ITS1 region using a primer set ITS1FI2/5.8S (5′-GAACCWGCGGARGGATCA-3′;
5′-CGCTGCGTTCTTCATCG-3′) (Schmidt et al., 2013; Vilgalys Mycology Lab, 1992)
using next generation sequencing (NGS) within the Illumina MiSeq Platform in Genomed
S.A. (Warsaw, Poland). PCR amplification was carried out in a Q5 Hot Start High-Fidelity
2X Master Mix according to the manufacturers’ protocol. The DNA library was sequenced
using the platform of Illumina MiSeq and pair-end technology, 2 × 250 bp with the v2
Illumina kit.

Physical and chemical analyses
The soil water content and bulk density were determined gravimetrically using 100 cm3

cores and the water holding capacity was assumed to be the water content at matric
potential 158 hPa (pF 2.2). Soil pH was measured potentiometrically. Soil organic carbon

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 5/24

http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/


(SOC) was assessed using the modified Tiurin method (Oleszczuk, 2008). The above
measurements were performed in three biological replicates-plots of fields (I–III) in four
technical replicates for each plot.

Data analysis
In order to determine if the correlations between the individual soil variables differ as a
function of land use types, we analysed different scenarios of correlations, including an
analysis of samples only from cropland, only from grassland and all samples from both
land use types. Differences in the tested soil properties were determined under scenarios in
which both tested soil types were used and by using samples only from cropland or only
from grassland, they were explored further using the Principal Component Analysis
(PCA). On the basis of cluster analysis from the normalized data of soil properties, a
dendrogram was prepared with scaled similarity (%) on the axis (Ward’s method and the
Unweighted Pair Group Method with Arithmetic Mean—UPGMA) and the boundary
marked according to Sneath’s criteria. A heat map, which shows the relationship between
cropland and grassland soils was generated based on the normalized data of the soil
properties by the automatic formula including: standardized value = (raw value of variable—
mean of variable)/standard deviation of variable. An analysis of variance (ANOVA)
with a post-hoc Tukey’s (HSD) test was used to determine the differences between the
tested types of land uses (cropland and grassland). The analyses were performed using
Statistica v.13.1 software.

MiSeq Reporter (MSR) v2.6. software was used to elaborate the data on a preliminary
basis and the Quantitative Insights into Microbial Ecology (QIIME) tool was used to
process the raw sequence reads (Caporaso et al., 2010). The taxonomical classification of
OTUs was performed using a Basic Local Alignment Search (BLAST) against the UNITE
database. The Illumina sequencing data were uploaded in the NCBI Sequence Read
Archive database with the accession number SRP131723. The results of this classification
were subsequently analysed and visualized using KRONA software (Ondov, Bergman &
Phillippy, 2011). The FUNGuild online application was used to assign functional
information to OTUs in high-throughput sequencing datasets by its assignment to an
ecological guild (Nguyen et al., 2016).

RESULTS
Individual soil variable correlations
The correlation plots between soil variables indicated that the use of samples from different
origins within the experiment may be influential (Fig. 1). The general trend was that for
the scenarios using all samples and only those from grassland, the correlations were
positive and relatively close. However, for the cropland samples, we observed both positive
and negative close correlations. In particular, in all of the scenarios tested, close positive
correlations were found between soil variables MBC, DA and WHC and between these
and SOC (Figs. 1A–1C). BD was not correlated with any variables in testing scenarios
involving all of the samples. However, the use of samples from both grassland and
cropland produced negative and moderately close correlations between BD with BR in GL
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(Fig. 1B) and BD with BA and pH in CL (Fig. 1C), respectively. The pH was positively
correlated with BA across all sampling origin testing scenarios (Fig. 1A), with MBC, DA,
BA, WHC and SOC in the samples collected from grassland (Fig. 1B) and with BA in
cropland (Fig. 1C). Moreover, it is noteworthy that within BR the correlations were
substantial and positive between almost all soil variables in the testing scenario using all
soil samples (Fig. 1A). All variables were correlated with BR in grassland (Fig. 1B) and
no correlations with BR were observed in cropland (Fig. 1C). The SOC was closely related
to almost all soil variables across all of the different testing scenarios (Figs. 1A–1C).

A principal component analysis (PCA) based on soil variables was performed to
determine the general differences between land use type (grassland and cropland). A PCA
analysis generated two components. All of the variables for all of the tested scenarios are
presented graphically in Fig. 2. The first and second principal components (PCA1 and
PCA2) explained 88.78%, 97.79% and 89.00% of the total variability of the data set for both
land use types, grassland and cropland, respectively. Across all testing scenarios the overall
trend was the grouping of selected variables, as follows: BA, DA, MBC, WHC, BR,
SOC in all tested samples, MBC, WHC, DA, BA, pH, SOC in grassland and MBC and DA
in cropland (Figs. 2A–2C). This general pattern was mainly driven by MBC and DA, which
had the highest values in the testing scenario concerning all samples. It was found that
lower BR values occurred in cropland (Fig. 2C) compared to grassland (Fig. 2B). However,
when all of the samples from grassland and cropland were considered (Fig. 2A) BR was
found to have higher values than those found in cropland.

Figure 3 shows the results of a cluster analysis of the experimental objects based on the
tested soil properties. The results indicated that they can be divided into two groups
according to the activity and values of the tested parameters. The first group includes all
cropland samples and two samples from grassland. Furthermore, inside the first cluster,
we observed two separate groups with cropland (Cluster IB) and grassland samples
plus one cropland sample (Cluster IA). Cluster IA consisted of samples with moderate

Figure 1 Correlation plot of soil properties within the tested plots of cropland and grassland. (A) All samples within the tested plots of grassland
and cropland; (B) only samples originating from grassland; (C) only samples originating from cropland. Explanations: BR, Basal respiration; MBC,
Microbial biomass; DA, Dehydrogenase activity; BA, β-glucosidase activity; BD, Bulk density; WHC, Water holding capacity; SOC, Soil organic
carbon. Full-size DOI: 10.7717/peerj.9501/fig-1
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values of the tested properties, while cluster IB had the lowest values for the parameters
tested (Fig. 3). The second cluster had only one sample from grassland, with the highest
values of all tested microbiological and physical properties (Fig. 3). Results presented
on heat map concerning the groups of soil samples were normalized in StatisticaTM

software, to obtain standardized values of soil properties in grassland and cropland.
The results indicated that all of the tested parameters had higher values in grassland than
in cropland soil samples. In addition, the highest values were noted for SOC in grassland.
On the basis of the heat map presented, three cropland samples are grouped together
as were the soil samples from grassland, but separated from cropland (Fig. 3). It is
noteworthy, that GL III was characterized by the highest values of all of the parameters
tested, this may be connected with the hydrological conditions of the soil (samples from
this plot were characterized by the highest water content ~24%).

Basal respiration, microbial biomass content and the richness index
Basal respiration and microbial biomass content were substantially influenced by
agricultural land use type (Figs. 4A and 4B), indicating that CO2 release significantly
increased in grassland compared to cropland soil. The highest BR values were noted in plot
III of the grassland soil. The mean CO2 concentrations were stable in all plots of cropland
soil and significantly lower than those of the grassland soil (Fig. 4A). The same trend
was observed for microbial biomass content (Fig. 4B). In general, the substrate richness
index (R) was significantly higher in grassland compared to cropland, with the exception of
plot III, where no significant differences were observed (Fig. 4C).

Enzymatic activity
The results revealed significant differences in enzymatic activity (DA, BG) between the
tested grassland and cropland soils (Figs. 4D and 4E). In general, both tested enzymes
(dehydrogenase and β-glucosidase) had significantly higher activities in grassland soils

Figure 2 Principal Components Analysis (PCA) of soil properties within the tested land use types: cropland and grassland. (A) PCA by using
all samples within grassland and cropland; (B) PCA by using samples originating from grassland; (C) PCA by using samples originating from
cropland. Full-size DOI: 10.7717/peerj.9501/fig-2
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collected from all plots (I–III) than in cropland soils. The highest activity of the tested
enzymes was noted in grassland soils collected from plot III. The lowest values were
observed in cropland soils from plot I for DA (Fig. 4D) and plot II for BA (Fig. 4E).

Physical properties of soils
Bulk density and water holding capacity differed significantly (P < 0.05) between the types
of agricultural use of the soil (Figs. 4F and 4G). Comparing plot I of cropland and
grassland, the bulk density was higher (1.22 Mg m−3) in the cropland than in the grassland
(1.37 Mg m−3). In the other plots (II and III) significant differences were not observed
(Fig. 4F). The water holding capacity was significantly higher in all plots of grassland as
opposed to cropland soils (Fig. 4G).

Ammonia-oxidizing archaea community
The t-RFLP analysis showed moderate changes in the microbial community of
ammonia-oxidizing archaea between cropland and grassland soils (Fig. 5). The diversity of
the archaeal ammonia oxidizers based on the amoA gene revealed 14 different terminal
restriction fragments detected in both tested soil type uses (cropland and grassland).
The peaks ranged from 54 to 480 bp and were obtained after restriction with AluI enzyme.
The distribution in relative abundance of the various fragment sizes suggests that there are
different t-RFLP diversity patterns between the tested cropland and grassland soils.
The most intensive t-RFs fragments present in both types of soil were the following: 74, 76,

Figure 3 Dendrogram and heat map showing the distribution of plots associated with soil quality
indicators of cropland and grassland. Grouping was conducted according to the stringent Sneath
criterion (33%) and the less restrictive criterion (66%), respectively. GL, Grassland, CL, Cropland, I–III,
Numbers of plots, BR, Basal respiration; MBC, Microbial biomass; DA, Dehydrogenase activity; BA,
β-glucosidase activity; BD, Bulk density; WHC, Water holding capacity; SOC, Soil organic carbon.

Full-size DOI: 10.7717/peerj.9501/fig-3
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104 and 162 bp. A higher intensity of fragments with lower sizes: 74, 76, 79 and 99 bp were
found in cropland rather than in grassland soils, while larger fragment sizes with 104,
162 and 250 bp were more intensive in grassland compared to cropland soils (Fig. 5).
In silico analysis using the amoA_AOA Feifei-Liu reference database of FunGene
(Fish et al., 2013) revealed that themost common restriction fragment t-RF 162 was assigned
to different uncultured ammonia-oxidizing archaeon members of Thaumarchaeota,
which may include Candidatus Nitrososphaera viennensis, Candidatus Nitrososphaera
evergladensis and Candidatus Nitrosoarchaeum limnia. Moreover, based on in silico
analysis using TRiFLe software (Junier, Junier &Witzel, 2008), the higher t-RFs obtained
could be assigned to the Nitrosopumilus genus including N. cobalaminigenes, N. oxyclinae,
N. ureiphilus and Candidatus Nitrosotenuis, while lower fragments could be associated
with Candidatus Nitrosotalea.

Figure 4 Microbiological, enzymatic and physical properties in the soils of two different land use types: cropland and grassland. (A) Basal
respiration, (B) microbial biomass, (C) richness index, (D) dehydrogenase activity, (E) β-glucosidase activity, (F) bulk density, (G) water holding
capacity. Vertical bars denote 0.95 confidence intervals. Different letters indicate significant differences between the tested land use types
(P < 0.05). Full-size DOI: 10.7717/peerj.9501/fig-4
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Fungal community structure of soils
In total, 45,125 high-quality sequences from both tested soil types were obtained.
The sequences were classified into fungal sequences by UNITE databases. In precise terms,
we obtained 23,901 and 21,224 sequences for cropland and grassland soils, respectively
(Table 1).

For both of the tested soil types (cropland and grassland) we found only two phyla:
Ascomycota and Basidiomycota with relative abundances ranging from 74% to 11% for
cropland and 61–12% for grassland, respectively. In addition, in cropland Incertae sedis or
other unclassified fungal sequences were at the level of 8% and 7%, respectively.
In grassland, 22% and 4% of the total number of sequences were Incertae sedis and other
sequences unassigned to any fungal phyla, respectively (Figs. 6A and 6B; Figs. S1 and S2).

Figure 5 Relative abundance (%) of ammonia-oxidizing archaea (AOA) amoA gene sequences
fragments (T-RFs) after AluI digestion in cropland (CL) and grassland (GL) soils. T_RFs, Restric-
tion fragments with different size. Fragments size is expressed as base pairs (bp) from 54 to 480 bp.

Full-size DOI: 10.7717/peerj.9501/fig-5

Table 1 Mean values of microbiological and physical indicators of cropland (CL) and grassland (GL)
soils.

Soil indicator Cropland (CL) Grassland (GL)

BR (mg CO2–C kg−1 h−1) 3.85 ± 0.44 7.31 ± 3.38

MBC (mg C g−1) 0.36 ± 0.14 1.12 ± 0.69

DA (mg TPF kg−1 d−1) 13.46 ± 5.03 49.56 ± 37.46

BA (mg PNP kg−1 h−1) 197.54 ± 72.94 371.37 ± 267.03

pH 5.49 ± 0.53 5.22 ± 0.43

BD (Mg m−3) 1.24 ± 0.03 1.28 ± 0.07

WHC (m3 m−3) 0.18 ± 0.03 0.27 ± 0.07

SOC (%) 1.06 ± 0.29 1.76 ± 0.32

Total number of reads 23,901 21,224

Richness (OD490 > 0.25) 15.44 ± 6.63 17.81 ± 3.96

Note:
BR, Basal respiration; MBC, Microbial biomass; DA, Dehydrogenase activity; BA, β-glucosidase activity; BD, Bulk
density; WHC, Water holding capacity; SOC, Soil organic carbon.
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Figure 6 Sunburst plot showing the taxonomic relative abundance of sequences to phylum, class and
genus level of fungi for cropland (CL) and grassland (GL) soils. (A) Taxonomic relative abundance at
the phylum level in cropland, (B) taxonomic relative abundance at the phylum level in grassland,
(C) taxonomic relative abundance at the class level in cropland, (D) taxonomic relative abundance at the
class level in grassland, (E) taxonomic relative abundance at the genus level in cropland, (F) taxonomic
relative abundance at the genus level in grassland. Full-size DOI: 10.7717/peerj.9501/fig-6
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The results indicated evident differences between cropland and grassland at the class
level of taxonomic classification (Figs. 6C and 6D; Figs. S1 and S2). On the basis of the total
high-quality sequences, Sordariomycetes and Eurotiomycetes were the two dominant
classes in cropland, accounting for 34% of Fungi and 46% of Ascomycota and 24% of
Fungi and 33% of Ascomycota, respectively. Furthermore, two other classes of fungi:
Leotiomycetes and Dothiomycetes, which accounted for an average of 9% and 4% of the
total sequences, respectively were detected in the present study in cropland. These classes
(Leotiomycetes and Dothiomycetes) in cropland were at the level of 12% and 5% of the
Ascomycota phylum, respectively. In grassland, Leotiomycetes and Mortierella were the
two dominant classes accounting for 41% of Fungi and 67% of Ascomycota, and 22% of
Fungi and 99% of Incertae sedis, respectively. Sordariomycetes and Eurotiomycetes
constituted only 9% of Fungi and 14% of Ascomycota and 8% of Fungi and 14% of
Ascomycota, respectively.

Further taxonomical classification at the genus level revealed that the fungal community
in cropland was dominated by Penicillium, Fusarium, Metarhizium and Mortierella
(Figs. 6E and 6F; Fig. S1) which account for 19%, 11%, 9% and 8% of the total sequences,
respectively. The most dominant fungal genera in grassland were the following: Helotiales
(33%), Mortierella (22%), Tremellales (10%) and Trichoderma (6%). However, in cropland,
representatives of the Trichoderma genus were at a lower level—about 1% of the total counts
of Fungi.

To further illustrate the differences in the composition of the fungal community, it is
worth mentioning that the most frequently detected species in cropland was Metarhizium
anisopliae (9% of Fungi, 12% of Ascomycota) (Fig. S1) while in grassland it was Mortierella
globulifera (7% of Fungi, 33% of Mortierella) (Fig. S2).

Taking into account the ecological guilds in the fungal community we observed that
OUT richness varied between both of the tested treatments of cropland and grassland
(Fig. 7). It was found that unassigned groups dominated both cropland and grassland soils,
constituting 58% and 44% of the total, respectively (Figs. S3 and S4). When unassigned

Figure 7 Guild assignments for cropland (CL) and grassland (GL) soils based on OTU richness assigned to fungal trophic guilds.
Full-size DOI: 10.7717/peerj.9501/fig-7
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OTUs were removed, saprotrophs were found to be the largest guild in cropland, with
counts of 2,962 OTUs (Fig. 7). The second largest group of guilds included the
pathotroph–saprotroph–symbiotroph group (2,485 OTUs) with fungal parasites and
unidentified saprotrophs (36%) dominating, animal pathogen, dung saprotroph,
endophyte, epiphyte, plant saprotroph and wood saprotroph (22%) and animal pathogen,
endophyte, lichen parasite, plant pathogen, soil and wood saprotroph (22%), these results
are presented in Fig. S3. The opposite situation was observed in grassland soil where
pathotroph–saprotroph–symbiotroph (7,283 OTUs) were the largest guild with fungal
parasites and unidentified saprotrophs (62%) dominating, and the second one was
saprotrophs (6,043 OTUs) with the domination of undefined saprotrophs (73%), soil
saprotrophs (20%) and wood saprotrophs (6%), which were depicted in Fig. S4.

DISCUSSION
Effects of land use type on soil microbial and enzymatic activity
Microbial biomass content and basal respiration rate are considered to be sensitive
indicators of changes in soil organic matter quality (Sparling, 1992). Cropland Podzol
soil showed significantly lower values in both parameters compared to grassland soil,
indicating better organic matter quality in grassland soil, this is probably connected with
the higher accumulation of organic substrates and the extensive root system of grass,
which creates better conditions for the growth of microbial biomass (Dilly et al., 2001;
Maková et al., 2011).

Soil enzymatic activity is very important for soil biochemical functioning. Therefore, it
may be a useful biomarker for monitoring the influence of land use type on the state of the
soil (Acosta-Martinez et al., 2007). PCA and correlation analyses have shown the
significant separation of enzymatic activity between the tested land use types. The results
also demonstrated a significant decline in dehydrogenase and β-glucosidase activities in
cropland. Similar trends in the comparison of bare fallow and grassland were described by
Kot et al. (2015). In our study, we found a significant relationship between SOC, WHC
and DA in both lands uses and between SOC and BA in grassland soil (Fig. 1). Higher
β-glucosidase activities in grassland soil may be connected with high grass root turnover or
the absence of tillage (Acosta-Martinez et al., 2007). The results obtained agree with the
other relevant studies (Bandick & Dick, 1999) indicating a higher enzymatic activity in
grassland soil because of the extensive accumulation of biomass including cellulosic grass
roots as compared to cropland soil. The differences in enzymatic activity, especially in DA
which are observed between plots I, II and III were also connected with soil moisture.
Therefore, the highest dehydrogenases activity was noted in soil with a higher water
content (26%). The higher relative abundance of some individual terminal restriction
fragments of AOA in cropland soils indicates changes in the community structure of these
microorganisms and suggests more intensive nitrification rates than in grassland. This may
be explained by the production of specific root exudates by grassland plants, which
may inhibit nitrification (Norton & Ouyang, 2019). Moreover, the rhizosphere microbes of
grassland can produce a wide array of signalling molecules (Ladygina, Dedyukhina &
Vainshtein, 2006) that may cause nitrification inhibitory effects (Norton & Ouyang, 2019).
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Additionally, changes in the relative abundance of ammonia-oxidizing archaea in cropland
and grassland can also be explained by the soil aggregate level. It has been established
that in cropland soil the small macroaggregates provide the necessary microenvironment
for AOA growth, thereby producing potential hotspots for ammonia oxidation (Chen
et al., 2016). The predominant t-RF 162 in both cropland and grassland soils could be
explained by the features of different members of Candidatus Nitrososphaera, that are
capable of biofilm formation, detoxification and adhesion, thus they are well adapted to
environmental changes (Hammerl et al., 2019; Kerou et al., 2016). Moreover, the members
of Thaumarchaeota, for example several species classified in the Nitrosotalea genus,
may be adapted to acidic environments with a pH lower than 6.5 (Ginawi et al., 2020),
therefore in our study their representatives were found in both tested sandy acidic soils
under cropland and grassland. It should be taken into consideration that the assignment of
archaeal community was based on databases in silico analysis. However, the presence
of Candidatus Nitrososphaera, Candidatus Nitrosoarchaeum limnia, Nitrosopumilus sp.,
Candidatus Nitrosotenuis and Candidatus Nitrosotalea were detected in different
sediment and soil environments (Hammerl et al., 2019; Cao et al., 2012; Ginawi et al., 2020;
Wessén et al., 2011).

Effects of land use type on the soil fungal community
The land use type significantly influences biodiversity causing changes to the relative
abundance and structure of microbial communities (Wang et al., 2017; Thomson et al.,
2015; Szoboszlay et al., 2017). Our results have shown that conversion to grassland led to an
increase in fungal richness and diversity compared to cropland. A number of studies
have confirmed that soil microbes are often changed by tillage, management practices and
land use (Yao et al., 2017; Wang et al., 2016). Different ecosystems and land uses have
various phytosanitary capacities, which refers to their ability to protect plants against pests
and diseases and is also associated with the presence of beneficial bacteria, fungi and
other mechanisms supporting biosecurity and protecting biodiversity (Food and
Agriculture Organization of the United Nations, 2017). Bacterial communities are rather
well characterized in cropland and grassland ecosystems (Kaiser et al., 2016; Kot et al.,
2015), however, little is known about the fungal community compositions of sandy acidic
soils under cropland and grassland.

In the present study, the results showed that different land use types had a significant
effect on the soil fungal community. It was found that Sordariomycetes and Eurotiomycetes
were the most dominant fungal classes in cropland, whereas Leotiomycetes and Mortierella
dominated in grassland. Sordariomycetes consists of fungi, which are very often detected
in agricultural soils (Ding et al., 2017). What is more, these fungi increase in number in
nitrogen-rich soils (Mueller, Belnap & Kuske, 2015) and are able to decompose organic
residues incorporated into the soil (Strope et al., 2011). This information may explain the
higher abundance of Sordariomycetes in cropland as opposed to grassland soils. Fungi
belonging to the Eurotiomycetes class are resistant to stress conditions because they can
adapt to them (e.g., acidity, salinity, heat, drought) they are also capable of living in extreme
ecosystems (Nai et al., 2013; Sterflinger, Tesei & Zakharova, 2012). Moreover, these fungi
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demonstrate cellulolytic abilities by producing cellulases, which participate in carbon
compound decomposition (Fan et al., 2012). The results of our study are based on ecological
guilds obtained by FUNGuild� for cropland soils and indicated that a huge percentage
of the fungal community participated in wood decomposition, which confirmed enzyme
secretion by these fungi. Therefore, the above-mentioned abilities may facilitate their
presence in arable acidic sandy soils. What is more, due to their metabolic functions in
carbon turnover and energy flow, both Sordariomycetes and Eurotiomycetes participate in
the biogeochemical transformations of SOC (Chen et al., 2012, 2015).

In comparison, the relative abundances of Sordariomycetes and Eurotiomycetes were
significantly lower in grassland than in cropland soils. Representatives of Eurotiomycetes
are widely distributed as denitrification drivers (Mueller, Belnap & Kuske, 2015)
causing losses in nitrous oxide from soil and atmospheric pollution, and therefore a lower
abundance of these microbes in grassland indicates the positive influence on soil quality
and environmental protection. Greater abundances of Mortierella and Leotiomycetes
with the domination of Helotiales were found under grassland. Members of the genera
Mortierella were found in arable soils (Liu et al., 2015), woodland soils (Franke-Whittle
et al., 2015) and soils with cover crops cultivation (Detheridge et al., 2016). The abundance
of Mortierella was positively correlated with soil nitrate-N and negatively with soil P
(Detheridge et al., 2016). Additionally, according to Zhang et al. (2014), Mortierella may
play a role in the transformation of inorganic sources of P by the secretion of organic
acids. Nallanchakravarthula et al. (2014) suggest that Mortierella is among the endophytic,
mycorrhizal fungi, which are most abundant in the soil rhizosphere. An analysis of
ecological guilds over the course of our research confirmed that endophytic and
mycorrhizal fungi dominated in grassland soils. All of these findings can be used to explain
the relatively high abundance of Mortierella in grassland soils with a potentially high
content of nitrate and a low content of phosphorus as well as an extensive rhizosphere
system created by the roots of grasses. The high abundance of Leotiomycetes in grassland
soils can be explained by the significant abilities of these fungi in the area of lignocellulose
degradation (Yoon et al., 2010; Sterflinger, Tesei & Zakharova, 2012) due to the high
content of substrates, which can stimulate their growth in grassland soils, that is,
rich-lignocellulose grass residues and an extensive root system in grassland soils.
Dominant Helotiales have been found previously in arctic soils and appear more
frequently in warm conditions (Deslippe et al., 2012) and agricultural soils (Klaubauf
et al., 2010), they are known as ectomycorrhizal fungi (Deslippe et al., 2012).

It is worth noting that the grassland soils were found to be richer in antagonistic,
beneficial fungi from the genus Trichoderma, suggesting the natural properties of grassland
in disease suppression through the presence of disease-suppressing fungi. Taking into
consideration the results of ecological guild groups, it was found that fungal parasites,
endophytes, ectomycorrhizal and endomycorrhizal fungi were present, and that they were
dominant, especially in grassland soil, thereby confirming its natural suppressiveness to
pathogens, which may be defined as the capacity of the soil to regulate soil-borne
pathogens (Bongiorno et al., 2019).
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Overall interactions of soil quality
In this study, we observe the correspondence between the microbiological and physical
parameters of the soil, although the correlations between them were dependent on the type
of land use. Therefore, different soil properties should be taken into consideration during
the evaluation of soil quality under different land uses. Soil organic carbon correlates
with many soil properties, therefore they may be used for soil quality monitoring (Delelegn
et al., 2017). The results of our study demonstrated that SOC was associated with water
holding capacity (WHC), soil enzymes (DA, BA) and microbial biomass (MBC). In this
study, we observed that cropland soils had a lower SOC, BD and WHC and that this was
linked to a reduction in microbial biomass and to a relative abundance of fungi.

On the basis of the study, we recommend that the soil fungal community composition
should be treated as a very important indicator of soil quality evaluation of cropland
and grassland. This indicator informs us not only about the relative abundance of fungi but
also, due to the fact that there are many new sequence databases, it can be used for the
evaluation of the functions of fungi present in the soil environment and to assess the
presence of pathogenic and antagonistic fungi in soils. This may be useful in agriculture
management for high-level productivity. Nevertheless, the methodological aspects of next
generation sequencing should be improved in order to identify the unassigned fungi
present in the soil environment.

CONCLUSIONS
Our study showed that grassland (present for 25 years) compared to cropland had a
significantly higher organic carbon content, microbial biomass, basal respiration,
enzyme activities, fungal diversity, richness and diversity of the soil fungal community
and water holding capacity. The principal component analysis (PCA) of soil properties
indicated the general differences between land use type (grassland and cropland).
MBC, WHC, DA, BA, pH, SOC in grassland and MBC and DA in cropland had the most
influence over soil variability.

Conversion to grassland increased soil fungal and ammonia-oxidizing archaeal relative
abundances and changed the structure of fungal communities. Moreover, we observed
a significant decrease in the relative abundance of potential crop pathogens (especially
Penicillium sp. and Fusarium sp.) in grassland and an increase in Trichoderma sp.
(beneficial and antagonistic fungus) compared to cropland. It is worth emphasizing that
the results suggest that grassland use can have a phytosanitary capacity in ecosystem
functioning, this was observed in the decrease in the number of fungal pathogens in
grassland compared to cropland soils. Although changes in the relative abundance of
AOA were observed between cropland and grassland soils, in silico analysis indicated
that uncultured ammonia-oxidizing archaea of Thaumarchaeota, such as Candidatus
Nitrososphaera viennensis, Candidatus Nitrososphaera evergladensis and Candidatus
Nitrosoarchaeum limnia, Nitrosopumilus sp., Candidatus Nitrosotenuis and Candidatus
Nitrosotalea were found in both of the tested sandy acidic soils. Moreover, the results
suggested a status improvement in soil organic carbon and nitrogen dynamics by
increasing the relative abundance of fungi and ammonia-oxidizing archaea.
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All of the results obtained will contribute to an improved understanding of the
differences between cropland and grassland and the link between soil quality and the
soil microbial community, especially fungal diversity, as significant, qualitative and
quantitative components of complex microbial communities.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The study was supported by HORIZON 2020, European Commission, Programme:
H2020-SFS-4-2014: Soil quality and function, project No. 635750-iSQAPER, Interactive
Soil Quality Assessment in Europe and China for Agricultural Productivity and
Environmental Resilience (iSQAPER). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
European Commission: H2020-SFS-4-2014.
Europe and China for Agricultural Productivity and Environmental Resilience
(iSQAPER): 635750-iSQAPER.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Magdalena Frąc conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Jerzy Lipiec conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

� Bogusław Usowicz conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Karolina Oszust performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the paper, and approved the final draft.

� Małgorzata Brzezi�nska performed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

The access authorization to the fields were given verbally by farmer Marek Lasocki,
owner of fields included into our manuscript and the Agricultural Farm in Trzebieszów,
Poland.

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 18/24

http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/


Data Availability
The following information was supplied regarding data availability:

The Illumina sequencing data are available at NCBI SRA: SRP131723 and the raw data
are also available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.9501#supplemental-information.

REFERENCES
Acosta-Martinez V, Cruz L, Sotomayor-Ramirez D, Pérez-Alegría L. 2007. Enzyme activities as

affected by soil properties and land use in a tropical watershed. Applied Soil Ecology 35(1):35–45
DOI 10.1016/j.apsoil.2006.05.012.

Alef K. 1995. Dehydrogenase activity. In: Alef K, Nannipieri P, eds. Methods in Applied Soil
Microbiology and Biochemistry. London: Academic Press.

Anderson TH. 2003. Microbial eco-physiological indicators to assess soil quality. Agriculture,
Ecosystems and Environment 98(1–3):285–293 DOI 10.1016/S0167-8809(03)00088-4.

Bakker MM, Govers G, Kosmas C, Vanacker V, Van Oost K, Rounsevell M. 2005. Soil erosion
as a driver of land-use change. Agriculture, Ecosystems and Environment 105(3):467–481
DOI 10.1016/j.agee.2004.07.009.

Bandick AK, Dick RP. 1999. Field management effects on soil enzyme activities. Soil Biology and
Biochemistry 31(11):1471–1479 DOI 10.1016/S0038-0717(99)00051-6.

Beeckman F, Motte H, Beeckman T. 2018. Nitrification in agricultural soils: impact, actors and
mitigation. Current Opinion in Biotechnology 50:166–173 DOI 10.1016/j.copbio.2018.01.014.

Bongiorno G, Postma J, Bünemann EK, Brussaard L, De Goede RGM, Mäder P, Tamm L,
Thuerig B. 2019. Soil suppressiveness to Pythium ultimum in ten European long-term field
experiments and its relation with soil parameters. Soil Biology and Biochemistry 133:174–187
DOI 10.1016/j.soilbio.2019.03.012.

Cao P, Zhang L-M, Shen J-P, Zheng Y-M, Di HJ, He J-Z. 2012. Distribution and diversity of
archaeal communities in selected Chinese soils. FEMS Microbiology Ecology 80(1):146–158
DOI 10.1111/j.1574-6941.2011.01280.x.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N,
Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE,
Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ,
Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows
analysis of high-throughput community sequencing data. Nature Methods 7:335–336
DOI 10.1038/nmeth.f.303.

Che J, Zhao XQ, Zhou X, Jia ZJ, Shen RF. 2015. High pH-enhanced soil nitrification was
associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. Applied Soil
Ecology 85:21–29 DOI 10.1016/j.apsoil.2014.09.003.

Chen Z, Guo Y, Du Z, Wu W, Meng M. 2016. Change in the abundance and community
composition of ammonia-oxidizing bacteria and archaea at soil aggregate level as native pasture
converted to cropland in a semiarid alpine steppe of central Asia. Journal of Soils and Sediments
16:243–254 DOI 10.1007/s11368-015-1278-0.

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 19/24

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP131723
http://dx.doi.org/10.7717/peerj.9501#supplemental-information
http://dx.doi.org/10.7717/peerj.9501#supplemental-information
http://dx.doi.org/10.7717/peerj.9501#supplemental-information
http://dx.doi.org/10.1016/j.apsoil.2006.05.012
http://dx.doi.org/10.1016/S0167-8809(03)00088-4
http://dx.doi.org/10.1016/j.agee.2004.07.009
http://dx.doi.org/10.1016/S0038-0717(99)00051-6
http://dx.doi.org/10.1016/j.copbio.2018.01.014
http://dx.doi.org/10.1016/j.soilbio.2019.03.012
http://dx.doi.org/10.1111/j.1574-6941.2011.01280.x
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1016/j.apsoil.2014.09.003
http://dx.doi.org/10.1007/s11368-015-1278-0
http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/


Chen L, Xu J, Feng Y, Wang J, Yu Y, Brookes PC. 2015. Responses of soil microeukaryotic
communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing.
Frontiers in Microbiology 6:1149 DOI 10.3389/fmicb.2015.01149.

Chen M, Li X, Yang Q, Chi X, Pan L, Chen N, Yang Z, Wang T, Wang M, Yu S. 2012. Soil
eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic
and beneficial fungi were selected. PLOS ONE 7(7):e40659 DOI 10.1371/journal.pone.0040659.

Claassen R, Carriazo F, Ueda K. 2010. Grassland conversion for crop production in the
United States: defining indicators for policy analysis. OECD agri-environmental indicators:
lessons learned and future directions, March 23–26, 2010. Economic Research Service, U.S.
Department of Agriculture, Washington, D.C. Available at https://www.oecd.org/greengrowth/
sustainable-agriculture/44807867.pdf.

Clark DR, McKew BA, Dong LF, Leung G, Dumbrell AJ, Stott A, Grant H, Nedwell DB,
Trimmer M, Whitby C. 2020. Mineralization and nitrification: archaea dominate
ammonia-oxidising communities in grassland soils. Soil Biology and Biochemistry 143:107725
DOI 10.1016/j.soilbio.2020.107725.

Cookson WR, Müller C, O’Brien PA, Murphy DV, Grierson PF. 2006. Nitrogen dynamics
in an Australian semiarid grassland soil. Ecology 87(8):2047–2057
DOI 10.1890/0012-9658(2006)87[2047:NDIAAS]2.0.CO;2.

Delelegn YT, Purahong W, Blazevic A, Yitaferu B, Wubet T, Göransson H, Godbold DL. 2017.
Changes in land use alter soil quality and aggregate stability in the highlands of northern
Ethiopia. Scientific Reports 7(1):13602 DOI 10.1038/s41598-017-14128-y.

Deng L, Zhu G-Y, Tang Z-S, Shangguan Z-P. 2016. Global patterns of the effects of land-use
changes on soil carbon stocks. Global Ecology and Conservation 5:127–138
DOI 10.1016/j.gecco.2015.12.004.

Deslippe JR, Hartmann M, Simard SW, Mohn WW. 2012. Long-term warming alters the
composition of arctic soil microbial communities. FEMS Microbiology Ecology 82(2):303–315
DOI 10.1111/j.1574-6941.2012.01350.x.

Detheridge AP, Brand G, Fychan R, Crotty FV, Sanderson R, Griffith GW, Marley CL. 2016.
The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agriculture,
Ecosystems and Environment 228:49–61 DOI 10.1016/j.agee.2016.04.022.

Dilly O, Winter K, Lang A, Munch JC. 2001. Energetic eco-physiology of the soil microbiota in
two landscapes of southern and northern Germany. Journal of Plant Nutrition and Soil Science
164(4):407–413 DOI 10.1002/1522-2624(200108)164:4<407::AID-JPLN407>3.0.CO;2-9.

Ding J, Jiang X, Guan D, Zhao B, Ma M, Zhou B, Cao F, Yang X, Li L, Li J. 2017. Influence of
inorganic fertilizer and organic manure application on fungal communities in a long-term field
experiment of Chinese Mollisols. Applied Soil Ecology 111:114–122
DOI 10.1016/j.apsoil.2016.12.003.

Eivazi F, Tabatabai MA. 1988. Glucosidases and galactosidases in soils. Soil Biology and
Biochemistry 20(5):601–606 DOI 10.1016/0038-0717(88)90141-1.

Fan F, Li Z, Wakelin SA, Yu W, Liang Y. 2012. Mineral fertilizer alters cellulolytic community
structure and suppresses soil cellobiohydrolase activity in a long-term fertilization experiment.
Soil Biology and Biochemistry 55:70–77 DOI 10.1016/j.soilbio.2012.06.008.

Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR. 2013. FunGene:
the functional gene pipeline and repository. Frontiers in Microbiology 4:291
DOI 10.3389/fmicb.2013.00291.

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 20/24

http://dx.doi.org/10.3389/fmicb.2015.01149
http://dx.doi.org/10.1371/journal.pone.0040659
https://www.oecd.org/greengrowth/sustainable-agriculture/44807867.pdf
https://www.oecd.org/greengrowth/sustainable-agriculture/44807867.pdf
http://dx.doi.org/10.1016/j.soilbio.2020.107725
http://dx.doi.org/10.1890/0012-9658(2006)87[2047:NDIAAS]2.0.CO;2
http://dx.doi.org/10.1038/s41598-017-14128-y
http://dx.doi.org/10.1016/j.gecco.2015.12.004
http://dx.doi.org/10.1111/j.1574-6941.2012.01350.x
http://dx.doi.org/10.1016/j.agee.2016.04.022
http://dx.doi.org/10.1002/1522-2624(200108)164:4%3C407::AID-JPLN407%3E3.0.CO;2-9
http://dx.doi.org/10.1016/j.apsoil.2016.12.003
http://dx.doi.org/10.1016/0038-0717(88)90141-1
http://dx.doi.org/10.1016/j.soilbio.2012.06.008
http://dx.doi.org/10.3389/fmicb.2013.00291
http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/


Food and Agriculture Organization of the United Nations. 2017. Preparing a national
phytosanitary capacity development strategy. Implementation Review and Support System
12:1–40.

Frąc M, Hannula SE, Be1kaM, Jędryczka M. 2018. Fungal biodiversity and their role in soil health.
Frontiers in Microbiology 9:707 DOI 10.3389/fmicb.2018.00707.

Franke-Whittle IH, Manici LM, Insam H, Stres B. 2015. Rhizosphere bacteria and fungi
associated with plant growth in soils of three replanted apple orchards. Plant and Soil
395(1–2):317–333 DOI 10.1007/s11104-015-2562-x.

Garland JL, Mills AL. 1991. Classification and characterization of heterotrophic microbial
communities on the basis of patterns of community-level sole-carbon-source utilization.
Applied and Environmental Microbiology 57(8):2351–2359
DOI 10.1128/AEM.57.8.2351-2359.1991.

Ginawi A, Wang L, Wang H, Yu B, Yunjun Y. 2020. Effects of environmental variables on
abundance of ammonia-oxidizing communities in sediments of Luotian River, China,
converting highly productive arable cropland in Europe to grassland: a poor candidate for
carbon sequestration. PeerJ 8(3):e8256 DOI 10.7717/peerj.8256.

Gosling P, Van der Gast C, Bending GD. 2017. Converting highly productive arable cropland in
Europe to grassland: a poor candidate for carbon sequestration. Scientific Reports 7:10493
DOI 10.1038/s41598-017-11083-6.

Hammerl V, Kastl EM, Schloter M, Kublik S, Schmidt H, Welzl G, Jentsch A, Beierkuhnlein C,
Gschwendtner S. 2019. Influence of rewetting on microbial communities involved in
nitrification and denitrification in a grassland soil after a prolonged drought period. Scientific
Reports 9:2280 DOI 10.1038/s41598-018-38147-5.

InsamH. 1997. A new set of substrates proposed for community characterization in environmental
samples. In: Insam H, Rangger A, eds. Microbial Communities: Functional Versus Structural
Approach. Berlin: Springer, 259–260.

Junier P, Junier T, Witzel K-P. 2008. TRiFLe, a program for in silico terminal restriction fragment
length polymorphism analysis with user-defined sequence sets. Applied and Environmental
Microbiology 74(20):6452–6456 DOI 10.1128/AEM.01394-08.

Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, Schrumpf M,
Daniel R. 2016. Driving forces of soil bacterial community structure, diversity, and function in
temperate grasslands and forests. Scientific Reports 6:33696 DOI 10.1038/srep33696.

Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, Weckwerth W, Schleper C. 2016.
Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and
adaptations of archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences
113(49):E7937–E7946 DOI 10.1073/pnas.1601212113.

Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, Wanek W, Gottsberger R, Strauss J,
Gorfer M. 2010. Molecular diversity of fungal communities in agricultural soils from Lower
Austria. Fungal Diversity 44:65–75 DOI 10.1007/s13225-010-0053-1.

Kot A, Frąc M, Lipiec J, Usowicz B. 2015. Biological activity and microbial genetic diversity of
bare-fallow and grassland soils. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science
65(7):648–657 DOI 10.1080/09064710.2015.1042027.

Ladygina N, Dedyukhina EG, Vainshtein MB. 2006. A review on microbial synthesis of
hydrocarbons. Process Biochemistry 41(5):1001–1014 DOI 10.1016/j.procbio.2005.12.007.

Lal R. 2005. World crop residues production and implications of its use as a biofuel.
Environment International 31(4):575–584 DOI 10.1016/j.envint.2004.09.005.

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 21/24

http://dx.doi.org/10.3389/fmicb.2018.00707
http://dx.doi.org/10.1007/s11104-015-2562-x
http://dx.doi.org/10.1128/AEM.57.8.2351-2359.1991
http://dx.doi.org/10.7717/peerj.8256
http://dx.doi.org/10.1038/s41598-017-11083-6
http://dx.doi.org/10.1038/s41598-018-38147-5
http://dx.doi.org/10.1128/AEM.01394-08
http://dx.doi.org/10.1038/srep33696
http://dx.doi.org/10.1073/pnas.1601212113
http://dx.doi.org/10.1007/s13225-010-0053-1
http://dx.doi.org/10.1080/09064710.2015.1042027
http://dx.doi.org/10.1016/j.procbio.2005.12.007
http://dx.doi.org/10.1016/j.envint.2004.09.005
http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/


Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC,
Schleper C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature
442(7104):806–809 DOI 10.1038/nature04983.

Lipiec J, Brzezi�nska M, Turski M, Szarlip P, Frąc M. 2015. Wettability and biogeochemical
properties of the drilosphere and casts of endogeic earthworms in pear orchard. Soil & Tillage
Research 145:55–61 DOI 10.1016/j.still.2014.08.010.

Liu J, Sui Y, Yu Z, Shi Y, Chu H, Jin J, Liu X, Wang G. 2015. Soil carbon content drives the
biogeographical distribution of fungal communities in the black soil zone of northeast China.
Soil Biology and Biochemistry 83:29–39 DOI 10.1016/j.soilbio.2015.01.009.

Maková J, Javoreková S, Medo J, Majerčíková K. 2011. Characteristics of microbial biomass
carbon and respiration activities in arable soil and pasture grassland soil. Journal of Central
European Agriculture 12(4):752–765 DOI 10.5513/JCEA01/12.4.986.

Millard P, Singh BK. 2010. Does grassland vegetation drive soil microbial diversity?
Nutrient Cycling in Agroecosystems 88(2):147–158 DOI 10.1007/s10705-009-9314-3.

Mueller RC, Belnap J, Kuske CR. 2015. Soil bacterial and fungal community responses to nitrogen
addition across soil depth and microhabitat in an arid shrubland. Frontiers in Microbiology
6(109):1–11 DOI 10.3389/fmicb.2015.00891.

Nai C, Wong HY, Pannenbecker A, Broughton WJ, Benoit I, De Vries RP, Gueidan C,
Gorbushina AA. 2013.Nutritional physiology of a rock-inhabiting, model microcolonial fungus
from an ancestral lineage of the Chaetothyriales (Ascomycetes). Fungal Genetics and Biology
56:54–66 DOI 10.1016/j.fgb.2013.04.001.

Nallanchakravarthula S, Mahmood S, Alstrom S, Finlay RD. 2014. Influence of soil type, cultivar
and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of
strawberry. PLOS ONE 9(10):e111455 DOI 10.1371/journal.pone.0111455.

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016.
FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild.
Fungal Ecology 20:241–248 DOI 10.1016/j.funeco.2015.06.006.

Norton J, Ouyang Y. 2019. Controls and adaptive management of nitrification in agricultural soils.
Frontiers in Microbiology 10:1–18 DOI 10.3389/fmicb.2019.01931.

Oleszczuk P. 2008. The toxicity of composts from sewage sludges evaluated by the direct contact
tests phytotoxkit and ostracodtoxkit. Waste Management 28(9):1645–1653
DOI 10.1016/j.wasman.2007.06.016.

Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a web
browser. BMC Bioinformatics 12(1):385 DOI 10.1186/1471-2105-12-385.

Oszust K, Frąc M, Gryta A, Bili�nska N. 2014. The influence of ecological and conventional plant
production systems on soil microbial quality under Hops (Humulus lupulus). International
Journal of Molecular Sciences 15(6):9907–9923 DOI 10.3390/ijms15069907.

Prosser JI, Hink L, Gubry-Rangin C, Nicol GW. 2020. Nitrous oxide production by ammonia
oxidizers: physiological diversity, niche differentiation and potential mitigation strategies.
Global Change Biology 26(1):103–118 DOI 10.1111/gcb.14877.

Prosser JI, Nicol GW. 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche
specialisation and differentiation. Trends in Microbiology 20(11):523–531
DOI 10.1016/j.tim.2012.08.001.

Qin Z, Dunn JB, Kwon H, Mueller S, Wander MM. 2016. Soil carbon sequestration and land use
change associated with biofuel production: empirical evidence. Global Change Biology Bioenergy
8(1):66–80 DOI 10.1111/gcbb.12237.

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 22/24

http://dx.doi.org/10.1038/nature04983
http://dx.doi.org/10.1016/j.still.2014.08.010
http://dx.doi.org/10.1016/j.soilbio.2015.01.009
http://dx.doi.org/10.5513/JCEA01/12.4.986
http://dx.doi.org/10.1007/s10705-009-9314-3
http://dx.doi.org/10.3389/fmicb.2015.00891
http://dx.doi.org/10.1016/j.fgb.2013.04.001
http://dx.doi.org/10.1371/journal.pone.0111455
http://dx.doi.org/10.1016/j.funeco.2015.06.006
http://dx.doi.org/10.3389/fmicb.2019.01931
http://dx.doi.org/10.1016/j.wasman.2007.06.016
http://dx.doi.org/10.1186/1471-2105-12-385
http://dx.doi.org/10.3390/ijms15069907
http://dx.doi.org/10.1111/gcb.14877
http://dx.doi.org/10.1016/j.tim.2012.08.001
http://dx.doi.org/10.1111/gcbb.12237
http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/


Šimek M, Kalčik J. 1998. Carbon and nitrate utilization in soils: the effect of long-term fertilization
on potential denitrification. Geoderma 83(3–4):269–280 DOI 10.1016/S0016-7061(98)00002-0.

Sparling GP. 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator
of changes in soil organic matter. Australian Journal of Soil Research 30(2):195–207
DOI 10.1071/SR9920195.

Sterflinger K, Tesei D, Zakharova K. 2012. Fungi in hot and cold deserts with particular reference
to microcolonial fungi. Fungal Ecology 5(4):453–462 DOI 10.1016/j.funeco.2011.12.007.

Strope PK, Nickerson KW, Harris SD, Moriyama EN. 2011. Molecular evolution of urea
amidolyase and urea carboxylase in fungi. BMC Evolutionary Biology 11(1):80
DOI 10.1186/1471-2148-11-80.

Schmidt PA, Bálint M, Greshake B, Bandowa C, Römbke J, Schmitt I. 2013. Illumina
metabarcoding of a soil fungal community. Soil Biology & Biochemistry 65:128–132
DOI 10.1016/j.soilbio.2013.05.014.

Szoboszlay M, Dohrmann AB, Poeplau C, Don A, Tebbe CC. 2017. Impact of land-use change
and soil organic carbon quality on microbial diversity in soils across Europe. FEMSMicrobiology
Ecology 93(12):fix146 DOI 10.1093/femsec/fix146.

Thalmann A. 1968. Zur Methodik der Bestimmung der Dehydrogenase-Aktivität im Boden mittels
Triphenyltetrazoliumchlorid (TTC) [Methods of dehydrogenase activity determination with
triphenyltetrazoliumchlorid (TTC)]. Landwirtsh Forsch 21:249–258 [in German].

Thomson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula SE, Buee M, Mougel C,
Ranjard L, Van Veen JA, Martin F, Bailey MJ, Lemanceau P. 2015. Soil conditions and land
use intensification effects on soil microbial communities across a range of European field sites.
Soil Biology and Biochemistry 88:403–413 DOI 10.1016/j.soilbio.2015.06.012.

TournaM, Freitag TE, Nicol GW, Prosser JI. 2008.Growth, activity and temperature responses of
ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology
10(5):1357–1364 DOI 10.1111/j.1462-2920.2007.01563.x.

Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk H-P, Schleper C. 2005. Novel genes for
nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic
crenarchaeota in nitrogen cycling. Environmental Microbiology 7(12):1985–1995
DOI 10.1111/j.1462-2920.2005.00906.x.

Vaccari FP, Lugato E, Gioli B, D’Acqui L, Genesio L, Toscano P, Matese A, Miglietta F. 2012.
Land use change and soil organic carbon dynamics in mediterranean agro-ecosystems: the case
study of Pianosa Island. Geoderma 175–176:29–36 DOI 10.1016/j.geoderma.2012.01.021.

Vilgalys Mycology Lab. 1992. Conserved primer sequences for PCR amplification and
sequencing from nuclear ribosomal RNA. Available at https://sites.duke.edu/vilgalyslab/
rdna_primers_for_fungi.

Wang J, Song Y, Ma T, Raza W, Li J, Howland JG, Huang Q, Shen Q. 2017. Impacts of inorganic
and organic fertilization treatments on bacterial and fungal communities in a paddy soil.
Applied Soil Ecology 112:42–50 DOI 10.1016/j.apsoil.2017.01.005.

Wang W, Wang H, Feng Y, Wang L, Xiao X, Xi Y, Luo X, Sun R, Ye X, Huang Y, Zhang Z,
Cui Z. 2016. Consistent responses of the microbial community structure to organic farming
along the middle and lower reaches of the Yangtze River. Scientific Reports 6(1):35046
DOI 10.1038/srep35046.

Wardle DA, Bardgett RD, Klironomos JN, Setӓlӓ H, Van der Putten WH, Wall DH. 2004.
Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633
DOI 10.1126/science.1094875.

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 23/24

http://dx.doi.org/10.1016/S0016-7061(98)00002-0
http://dx.doi.org/10.1071/SR9920195
http://dx.doi.org/10.1016/j.funeco.2011.12.007
http://dx.doi.org/10.1186/1471-2148-11-80
http://dx.doi.org/10.1016/j.soilbio.2013.05.014
http://dx.doi.org/10.1093/femsec/fix146
http://dx.doi.org/10.1016/j.soilbio.2015.06.012
http://dx.doi.org/10.1111/j.1462-2920.2007.01563.x
http://dx.doi.org/10.1111/j.1462-2920.2005.00906.x
http://dx.doi.org/10.1016/j.geoderma.2012.01.021
https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi
https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi
http://dx.doi.org/10.1016/j.apsoil.2017.01.005
http://dx.doi.org/10.1038/srep35046
http://dx.doi.org/10.1126/science.1094875
http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/


Wessén E, SöderströmM, Stenberg M, Bru D, Hellman M,Welsh A, Thomsen F, Klemedtson L,
Philippot L, Hallin S. 2011. Spatial distribution of ammonia-oxidizing bacteria and archaea
across a 44-hectare farm related to ecosystem functioning. ISME Journal 5(7):1213–1225
DOI 10.1038/ismej.2010.206.

WRB IUSS Working Group. 2015. World reference base for soil resources 2014, update 2015.
International soil classification system for naming soils and creating legends for soil maps.
World Soil Resources Reports, No. 106. FAO, Rome.

Wright CK, Wimberly MC. 2013. Recent land use change in the western corn belt threatens
grasslands and wetlands. Proceedings of the National Academy of Sciences 110(10):4134–4139
DOI 10.1073/pnas.1215404110.

Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G. 2017. Three years of biochar amendment alters soil
physiochemical properties and fungal community composition in a black soil of northeast
China. Soil Biology and Biochemistry 110:56–67 DOI 10.1016/j.soilbio.2017.03.005.

Yoon J-H, Choi JH, Kang S-J, Choi N-S, Lee J-S, Song JJ. 2010. Jeongeupia naejangsanensis gen.
nov., sp. nov., a cellulose-degrading bacterium isolated from forest soil from Naejang Mountain
in Korea. International Journal of Systematic and Evolutionary Microbiology 60(3):615–619
DOI 10.1099/ijs.0.012591-0.

Zhang HS, Qin FF, Qin P, Pan SM. 2014. Evidence that arbuscular mycorrhizal and
phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica:
nutrient uptake and ion distribution within root tissues. Mycorrhiza 24(5):383–395
DOI 10.1007/s00572-013-0546-3.

Frąc et al. (2020), PeerJ, DOI 10.7717/peerj.9501 24/24

http://dx.doi.org/10.1038/ismej.2010.206
http://dx.doi.org/10.1073/pnas.1215404110
http://dx.doi.org/10.1016/j.soilbio.2017.03.005
http://dx.doi.org/10.1099/ijs.0.012591-0
http://dx.doi.org/10.1007/s00572-013-0546-3
http://dx.doi.org/10.7717/peerj.9501
https://peerj.com/

	Structural and functional microbial diversity of sandy soil under cropland and grassland
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


