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Background. A mechanistic modeling of complex systems is one of the main scientific
problems today. We consider that this problem may be solved by white-box modeling with
using logical deterministic cellular automata. Mathematical models of complex systems
are divided into three types: black-box (phenomenological), white-box (mechanistic, based
on the first principles) and grey-box (mixtures of phenomenological and mechanistic
models). Most basic ecological models are of black-box type, including Malthusian,
Verhulst, Lotka-Volterra models. The problem is that the using these black-box models
may give us only phenomenological mechanisms, but individual-based (mechanistic)
mechanisms of population dynamics remain hidden. Our main goal here is to show
possibilities of the white-box modeling in investigating mechanisms of S-shaped and
double S-shaped population growth of vegetatively propagated plants. Methods. Using
purely logical deterministic individual-based cellular automata we create a white-box
model of vegetatively propagated plants. From a general physical standpoint the
vegetative propagation of plants is an analogue of excitation propagation in excitable
media. A biological prototype of the model is a vegetative propagation of rhizomatous
lawn grasses. Using the Monte Carlo method, we investigate a role of different initial
positioning of an individual in the habitat. We also investigate different sizes of the habitat,
two types of fecundity and two types of boundary conditions. Results. We have created
and investigated a basic mechanistic model of one-species population dynamics. This
model demonstrates individual-based mechanisms of the S-shaped and double S-shaped
population growth. We have investigated mechanisms of the single-species population
growth limited by different factors, in particular by resources, habitat size, intraspecific
competition, lifetime of individuals, regeneration time and fecundity of individuals. Besides
that we have compared the S-shaped and J-shaped population growth. Conclusion. The
model demonstrates deterministic individual-based mechanisms of the S-shaped and
double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses.
An additional important result is a novel demonstration of the white-box modeling of the
ecosystem using logical deterministic individual-based cellular automata. We consider this
white-box modeling approach as a perspective method of artificial intelligence which works

PeerJ reviewing PDF | (2014:12:3707:1:0:NEW 11 Apr 2015)

Reviewing Manuscript



as automatic hyper-logical inference from the first principles of the studied subject. This
approach may provide direct mechanistic insights into any complex systems.
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ABSTRACT

Background. A mechanistic modeling of complex systems is one of the main scientific problems
today. We consider that this problem may be solved by white-box modeling with using logical
deterministic cellular automata. Mathematical models of complex systems are divided into three
types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and
grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models
are of black-box type, including Malthusian, Verhulst, Lotka-Volterra models. The problem is that
the  using  these  black-box  models  may  give  us  only  phenomenological  mechanisms,  but
individual-based (mechanistic)  mechanisms of population dynamics remain hidden. Our main
goal here is to show possibilities of the white-box modeling in investigating mechanisms of S-
shaped and double S-shaped population growth of vegetatively propagated plants.
Methods. Using  purely  logical  deterministic  individual-based  cellular  automata  we  create  a
white-box  model  of  vegetatively  propagated  plants.  From a  general  physical  standpoint  the
vegetative propagation of plants is an analogue of excitation propagation in excitable media. A
biological prototype of the model is a vegetative propagation of rhizomatous lawn grasses. Using
the Monte Carlo method, we investigate a role of different initial positioning of an individual in
the habitat. We also investigate different sizes of the habitat, two types of fecundity and two types
of boundary conditions. 
Results. We have created and investigated a basic mechanistic model of one-species population
dynamics. This model demonstrates individual-based mechanisms of the S-shaped and double S-
shaped population growth. We have investigated mechanisms of the single-species  population
growth  limited  by  different  factors,  in  particular  by  resources,  habitat  size,  intraspecific
competition, lifetime of individuals, regeneration time and fecundity of individuals. Besides that
we have compared the S-shaped and J-shaped population growth. 
Conclusion. The model demonstrates deterministic individual-based mechanisms of the S-shaped
and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. An
additional important result is a novel demonstration of the white-box modeling of the ecosystem
using  logical  deterministic  individual-based  cellular  automata.  We  consider  this  white-box
modeling approach as a perspective method of artificial intelligence which works as automatic

1

2

3

4
5
6
7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

PeerJ reviewing PDF | (2014:12:3707:1:0:NEW 11 Apr 2015)

Reviewing Manuscript

mailto:vyacheslav.l.kalmykov@gmail.com


hyper-logical  inference  from  the  first  principles  of  the  studied  subject.  This  approach  may
provide direct mechanistic insights into any complex systems. 
Keywords: population dynamics, complex systems, cellular automata, individual-based 
modeling, population growth curves, population waves, artificial intelligence

INTRODUCTION

Background

A mechanistic approach corresponds to the classical ideal of science. Existing mathematical 
approaches to complex systems modeling are rather phenomenological than mechanistic. 
Ecologists investigate population dynamics phenomenologically, rather than mechanistically 
(Tilman 1987). Nonmechanicalness (phenomenologicalness) is still a characteristic for 
mathematical modeling of complex systems. Most mathematical models in ecology, from simple 
equations of population growth to complex descriptions of ecosystem dynamics, are not 
individual-based, i.e. they do not model individuals and their local interactions (Huston et al. 
1988). The purpose of this study is a mechanistic investigation of the S-shaped and double S-
shaped population growth. Individual-based mechanisms of the S-shaped and double S-shaped 
population growth of vegetatively propagated plants should be completely discrete, logical and 
consisting of cause-effect and of part-whole relations between micro-subsystems, meso-
subsystems and a whole macro-system. 

On the types of mathematical models of complex systems

How to create an individual-based mechanistic model of population growth? First, we need to 
know how to mechanistically model a complex dynamic system. A complex dynamic system may
be considered as consisting of interacting subsystems. Interactions between subsystems lead to 
the emergence of new properties, e.g. of a new pattern formation. Therefore we should define 
these subsystems and logically describe their interactions in order to create and investigate a 
mechanistic model. If we want to understand how a complex dynamic system works, we must 
understand cause-effect relations and part-whole relations in this system. The causes should be 
sufficient to understand their effects and the parts should be sufficient to understand the whole. 
There are three types of possible models for complex dynamic systems: black-box, grey-box and 
white-box models (Fig. 1). 
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Figure 1: Three types of mathematical models for complex dynamic systems. This 
is a schematic representation of a black-box model, a grey-box model and a white-box 
model with the level of their mechanistic understanding.

Black-box models are completely nonmechanistic. They are phenomenological and ignore a 
composition and internal structure of a complex system. We cannot investigate interactions of 
subsystems of such a non-transparent model. A of complex dynamic systems has ‘transparent 
walls’ and directly shows underlying mechanisms. All events at micro-, meso- and macro-levels 
of a dynamic system are directly visible at all stages of its white-box model. Unfortunately, in 
most cases mathematical modelers prefer to use the heavy black-box mathematical methods, 
which cannot produce mechanistic models of complex dynamic systems in principle. Grey-box 
models are intermediate and combine black-box and white-box approaches. As a rule, this 
approach is used in ‘overloaded’ form, what makes it less transparent. Basic ecological models 
are of black-box type, e.g. Malthusian, Verhulst, Lotka-Volterra models. These models are not 
individual-based and cannot show features of local interactions of individuals of competing 
species. That is why they principally cannot provide a mechanistic insight into dynamics of 
ecosystems. Earlier we demonstrated, that the logical deterministic cellular automata approach 
allows to create the white-box models of ecosystems with interspecific competition between two, 
three and four grass species (Kalmykov & Kalmykov 2013). A similar cellular automata model of
interspecific competition was created by Silvertown and colleagues (Silvertown et al. 1992). 
Their model simulates competitive interactions of five grass species, based on experimentally 
determined rates of invasion. This is a grey-box model as it is based on complex stochastic rules 
of interspecific interactions. Another similar cellular automata model of single plant species was 
proposed by Komarov and colleagues, where they represented a link between the concept of 
discrete description of the ontogenesis of plants and the cellular automata (Komarov et al. 2003). 
The both two models (Komarov et al. 2003; Silvertown et al. 1992) do not take into account 
regeneration processes of an ecosystem. 
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Creation of a white-box model of complex system is associated with the problem of the necessity 
of an a priori basic knowledge of the modeling subject. The deterministic logical cellular 
automata are necessary but not sufficient condition of a white-box model. The second necessary 
prerequisite of a white-box model is the presence of the physical ontology of the object under 
study. The white-box modeling represents the automatic hyper-logical inference from the first 
principles because it is completely based on the deterministic logic and axiomatic theory of the 
subject. The purpose of the white-box modeling is to derive from the basic axioms a more 
detailed, more concrete mechanistic knowledge about the dynamics of the object under study. We
see no other way to obtain a specific and, at the same time, holistic mechanistic understanding of 
complex systems, apart from the white-box modeling. For providing a strong relevance of our 
model to the studied problem, we have specified the models’ rules (axioms) strictly in accordance
with the subject under study. Each logical rule of the model has a correct ecological and physical 
interpretation. From an ecological point of view we model a vegetative propagation of 
rhizomatous lawn grasses. From a physical point of view we model propagating of excitation 
(autowaves, travelling waves, self-sustaining waves) in an excitable (active) medium. The 
presence of such physical interpretation makes our specific ecological model more general and 
more natural. The necessity to formulate an intrinsic axiomatic system of the subject before 
creating its white-box model distinguishes the cellular automata models of white-box type from 
cellular automata models based on arbitrary logical rules. If cellular automata rules have not been
formulated from the first principles of the subject, then such a model may have a weak relevance 
to the real problem.

On the white-box modeling of population dynamics

Let's consider an example of the inadequacy of some ecological models in result of their 
incompleteness or incorrectness. There are many models of population dynamics that do not take 
into account what happens with individuals after their death. Dead individuals instantly disappear
with roots, stubs, etc. “One reason for the lack of understanding on the part of most botanists 
results from their failure to take into account the phenomenon of regeneration in plant 
communities, which was first discussed in general terms by A. S. Watt in 1947” (Grubb 1977). 

Stephen Hubbell in his Unified Neutral Theory of Biodiversity (UNTB) in fact refuses a 
mechanistic understanding of interspecific competition: ‘We no longer need better theories of 
species coexistence; we need better theories for species presence-absence, relative abundance 
and persistence times in communities that can be confronted with real data. In short, it is long 
past time for us to get over our myopic preoccupation with coexistence’ (Hubbell 2001). 
However, he admits that ‘the real world is not neutral’ (Rosindell et al. 2012). Since the basic 
postulate of the UNTB about ecological neutrality of the similar species in the ecosystem is 
wrong, this theory cannot be true. In addition, direct local interactions of individuals are absent in
the neutral models in principle. That is why neutral models cannot provide a mechanistic insight 
into biodiversity. The UNTB models are of black-box and dark grey-box types only – Fig. 1. We 
agree with James Clark, that the dramatic shift in ecological research to focus on neutrality 
distracts environmentalists from the study of real biodiversity mechanisms and threats (Clark 
2009). Within the last decade, the neutral theory has become a dominant part of biodiversity 
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science, emerging as one of the concepts most often tested with field data and evaluated with 
models (Clark 2009). Neutralists are focused on considering unclear points of the neutral theory –
the ecological drift, the link between pattern and process, relations of simplicity and complexity 
in modeling, the role of stochasticity and others, but not the real biodiversity problems 
themselves (Rosindell et al. 2012). Attempts to understand neutrality instead of biodiversity 
understanding look like attempts to explain the obscure by the more obscure. Nonmechanistic 
ecological models make it difficult to answer basic questions, e.g. Why are there so many closely 
allied species? (Anonymous 1944) An example of the difficult ecological discussion is the 
debates ‘Ecological neutral theory: useful model or statement of ignorance?’ on the forum Cell 
Press Discussions (Craze 2012).Understanding of mechanisms of interspecific coexistence is a 
global research priority. These mechanisms can allow us to efficiently operate in the field of 
biodiversity conservation. Obviously, such knowledge must be based on mechanistic models of 
species coexistence. Unfortunately, ecological modelers prefer to use the heaviest black-box 
mathematical methods, which cannot produce mechanistic models of complex dynamic systems 
in principle, and not use simple and long-known purely logical deterministic cellular automata, 
which can produce white-box models and directly obtain clear mechanistic insights into 
dynamics of complex systems. 

METHODS

Biological prototype of the model

A vegetative propagation of rhizomatous lawn grasses is the biological prototype of our model
(Fig. 3). Festuca rubra trichophylla (Slender creeping red fescue) is the prototype of aggressive
vegetative propagation and Poa pratensis L. and Festuca rubra L. ssp. Rubra are the prototypes
of moderate vegetative propagation. One individual corresponds to one tiller. A tiller is a minimal
semi-autonomous  grass  shoot  that  sprouts  from the  base.  Rhizomes  are  horizontal  creeping
underground  shoots  using  which  plants  vegetatively  (asexually)  propagate.  Unlike  a  root,
rhizomes  have  buds and scaly leaves.  One tiller  may have maximum three  (Fig.  3D) or  six
rhizoms (Fig. 3B) in the model. Three rhizoms per tiller correspod to moderate propagation (only
a half of the nearest microhabitats) and six rhizoms per tiller correspond to aggressive vegetative
propagation. A tiller with roots and leaves develops from a bud on the end of the rhizome. A
populated  microhabitat  goes  into  the  regeneration  state  after  an  individual’s  death.  The
regeneration state of a site corresponds to the regeneration of microhabitat's resources including
recycling of a dead individual (Fig. 4). All individuals are identical. Propagation of offsprings of
one individual leads to colonization of the uniform, homogeneous and limited habitat (Fig. 2 and
Movies S5-S8). 

The cellular automata model

We have used logical deterministic individual-based cellular automata to model the S-shaped 
population growth mechanistically (Fig. 2). This model demonstrates the underlined individual-
based mechanisms. A classical model of the S-shaped population growth is the Verhulst model, 
which is of completely non mechanistic black-box nature.
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Figure 2: S-shaped population growth. A logical deterministic individual-based cellular
automata model of an ecosystem with one species shows both population dynamics and
pattern formation. The lattice consists of 25x25 sites. Individuals use the hexagonal 
neighborhood for their vegetative propagation. The lattice is closed on the torus to avoid 
boundary effects. (A-C) Population dynamics of the species. S-shaped population 
growth curve (C). (D-F) Spatio-temporal patterns of the model are represented in 
numerical form of program implementation. 

The presented cellular automata model is defined by the 4-tuple: 
1. a cellular automata lattice, uniting a collection of sites; 

2. a finite set of possible states for each lattice site; 

3. a cellular automata neighborhood which consists of a site and its intrinsically defined 
neighbors; 

4. a function of transitions between the states of a lattice site.

The best example of a white-box mechanism is a mechanical watch. Our model metaphorically 
resembles a mechanical watch in transparent case. A neighborhood logically binds dynamics of 
all cellular automata sites into one holistic complex dynamic system. There are three most known
cellular-automata neighborhoods: von Neumann, Moore and hexagonal. The neighborhood may 
be of any type. Here we use the hexagonal and tripod neighborhoods which allow to model 
aggressive and moderate vegetative propagation of rhizomatous lawn grasses (Fig. 3). Different 
configurations of tripod patterns in Figs 3C and 3D is a result of the fact that the cellular 
automata neighborhood is implemented successively for each lattice site.
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Figure 3: Cellular automata neighborhoods. A cellular automata neighborhood 
models a vegetative propagation of plants and defines fecundity and spatial positioning 
of an individual’s offsprings. Positioning of offsprings is explained by how the cellular 
automata neighborhood is implemented successively for each lattice site. A central site 
of the neighborhood is defined by the array element with index (i, j), where i and j are 
integer numbers. Neighboring sites of the central site are defined by the array elements 
with indexes. (A) Hexagonal neighborhood. (B) A model example of vegetative 
propagation of an individual in the hexagonal neighborhood. Offsprings occupy all 
nearest lattice sites what corresponds to aggressive propagation. A maximum number of
offsprings per one individual (fecundity) equals six. (C) Tripod neighborhood. (D) A 
model example of vegetative propagation of an individual in the tripod neighborhood. 
Offsprings occupy a half of the nearest lattice sites what corresponds to the moderate 
propagation. A maximum number of offsprings per one individual equals three. 

Integration of  reductionist  and holistic  approaches  is  one of  the  challenges  for  mathematical
modeling.  Our  white-box  model  of  single-species  population  dynamics  opens  up  new
possibilities  to  solve this  challenge.  This mechanistic  model  is  hierarchically subdivided into
micro-subsystems, meso-subsystems and the whole macro-system. A micro-level is modeled by
lattice  sites  (cellular  automata  cells).  A meso-level  of  local  interactions  of  micro-objects  is
modeled by the cellular automata neighborhood. A macro-level is modeled by the entire cellular
automata lattice. This is a ‘multy-level’ modelling as parallel logical operations performed on
micro-level, meso-level and macro-level of the model. A unique feature of the cellular-automata
is the possibility to model part-whole relationships mechanistically. The relationships of the parts
and the whole are modelled using the transition function (combination of the neigbourhood and
rules  of  transition)  between  states  of  a  lattice  site.  Parts  are  the  lattice  sites  and  the  whole
(ecosystem) is the lattice. On each iteration of evolution of the modeled macrosystem the states
of its microsystems are changing simultaneously on the basis of logical ruless taking into account
states  of  the  neighbouring  microsystems  (neigbourhood’s  sites).  This  allows  to  model  how
interactions of microsystems (parts) produce evolution of the macro-system (whole) which leads

194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

PeerJ reviewing PDF | (2014:12:3707:1:0:NEW 11 Apr 2015)

Reviewing Manuscript



to emergence of its new properties (the ecosystem patterns). The white-box cellular automata
model shows interactions of parts within the whole, i.e. ‘part-whole’ relations in the modeled
complex system.
Figures 3 and 4 illustrate rules of our model. 

Figure 4: Rules of the ecosystem model with one species. Directed graph of 
transitions between the states of a lattice site is represented in pictorial (A) and 
numerical forms (B). The graph represents a birth-death-regeneration process.

Here we show a description of the states of a lattice site (microecosystem) in the single species 
population growth model. Each site may be in one of the four states 0, 1, 2, 3 (Fig. 4), where: 

0 – a free microhabitat which can be occupied by an individual of the species;

1 – a microhabitat is occupied by a living individual of the species; 

2 – a regeneration state of a microhabitat after death of an individual of the species;

3 – a site in this state represents an element of the boundary that cannot be occupied by an
individual. 

A free microhabitat is the intrinsic part of environmental resources per one individual and it 
contains all necessary resources for an individual's life. A microhabitat is modeled by a lattice 
site.
The cause-effect relations are logical rules of transitions between the states of a lattice site (Fig. 
4B):

0→0, a microhabitat remains free if there is no one living individual in its neighborhood;
0→1, a microhabitat will be occupied by an individual of the species if there is at least 
one individual in its neighborhood;
1→2, after death of an individual of the species its microhabitat goes into the regeneration
state;
2→0, after the regeneration state a microhabitat will be free if there is no one living 
individual in its neighborhood;
2→1, after the regeneration state a microhabitat will be occupied by an individual of the 
species if there is at least one individual in its neighborhood;
3→3, a site remains in this state, which defines a boundary site.

These logical statements are realized for all micro-levels (sites) with their meso-levels 
(neighborhoods) and thus for the whole macro-level (lattice) of the complex system on each time 
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iteration. We consider implementation of this algorithm as hyper-logical operations or automatic 
hyper-logical inference from the first principles of the studied subject. 

RESULTS AND DISCUSSION

According to Alexander Watt, a a plant ecosystem may be considered ‘as a working mechanism’ 
which ‘maintains and regenerates itself’ (Watt 1947). Our model demonstrates a such 
mechanism. From a more general physical point of view we model an active (excitable) media 
with autowaves (travelling waves, self-sustaining waves) (Kalmykov & Kalmykov 2013; Krinsky
1984; Zaikin & Zhabotinsky 1970). Active medium is a medium that contains distributed 
resources for maintenance of autowave propagation. An autowave is a self-organizing and self-
sustaining dissipative structure. An active medium may be capable to regenerate its properties 
after local dissipation of resources. In our model, propagation of individuals occurs in the form of
population waves. We use the axiomatic formalism of Wiener and Rosenblueth for modeling of 
excitation propagation in active media (Wiener & Rosenblueth 1946). In accordance with this 
formalism rest, excitation and refractoriness are the three successive states. In our formalism the 
rest state corresponds to the free state of a microhabitat, the excitation state corresponds to the 
life activity of an individual in a microhabitat and the refractory state corresponds to the 
regeneration state of a microhabitat. All states have identical duration. If the refractory period 
will be much longer than the active period, then such a model may be interpreted, for example, as
propagation of the single wave of dry grass fire. Time duration of the basic states can be easily 
varied using additional states of the lattice sites. 
Different initial conditions may lead to formation of different spatio-temporal patterns and as a 
result they may lead to different dynamics of the system. Using the Monte Carlo method, we 
have investigated the influence of different initial conditions on population dynamics of one 
species. We have investigated two different boundary conditions, two different cellular automata 
neighborhoods and four different lattice sizes (Figs 5 and 6). Ecosystem dynamics on the plane 
with boundary is more natural than on a torus, where boundary effects are absent. The models 
with non-periodic boundary conditions correspond to laboratory and field experiments where 
experimental plots also have a boundary. Models with periodic boundary conditions are 
investigated more commonly, as they allow to avoid boundary effects. Periodic boundary 
conditions cannot be reproduced in real ecosystems, but they allow to investigate models in a 
more general form. Therefore, we decided to explore the both types of boundary conditions. 
Figure 5 shows the results obtained in the study of aggressive propagation and Figure 6 shows the
results obtained in the study of moderate propagation. In Figs 5B-D and 6E-H we show the S-
shaped population growth and in Fig. 6B-D we show the double S-shaped population growth. 
Sizes of the lattice which define available space for colonization consisted of 3x3, 8x8, 23x23 
and 98x98 sites. We have investigated the boundary conditions of two types - when the lattice 
was closed on the torus by periodic conditions (Fig 5A-D and Fig 6A-D) and when the lattice has
a boundary (Fig 5E-H and Fig 6E-H). There were no changes of population dynamics in result of 
the different initial positioning of an individual on the lattice in cases with periodic boundary 
conditions (Fig 5A-D and Fig 6A-D). In cases when a lattice has a boundary, different initial 
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positioning of an individual lead to differences in population dynamics (Fig 5E-H and Fig 6E-H).
Moreover, increasing of the lattice may lead to more complex dynamics (Figs 5E-H, 6E-H).
Periodic fluctuations in numbers of individuals are observed at the plateau phase in most of the 
experiments. With increasing of the lattice size, these periodic fluctuations in population size 
become less visible. The periodic fluctuations on the plateau phase are absent when the lattice 
consists of 3x3 sites in the case of the tripod neighborhood (Fig. 6A, 6E). The similar plateau 
phases without fluctuations were found at the 3Nx3N sizes of the lattice (6x6, 9x9, 12x12, 15x15,
18x18, 27x27 lattices were tested), with and without boundary effects and when the 
neighborhood was tripod.

Figure 5: Results of the Monte Carlo simulations with the hexagonal 
neighborhood. Investigation of the influence of boundary conditions, initial positioning 
of an individual and lattice sizes on single-species population dynamics. (A-D) The 
lattice is closed on the torus to avoid boundary effects. (E-H) The lattice has a boundary.
Every Monte Carlo simulation consisted of 100 repeated experiments with different initial
positioning of an individual on the lattice.

We show four Movies S1-S4 As examples of the Monte Carlo  simulations. Each Monte Carlo
simulation consists of five repeated experiments with different initial positioning of an individual
on the lattice. The lattices are homogeneous and limited in all experiments. They are consisted of
23x23 sites available for occupation by individuals. In Movie S1 the lattice is closed on the torus
and the neighborhood is hexagonal. In Movie S2 the lattice has a boundary and the neighborhood
is hexagonal. In Movie S3 the  lattice is closed on the torus and the neighborhood is tripod. In
Movie S4 the lattice has a boundary and the neighborhood is tripod.
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Figure 6: Results of the Monte Carlo simulations with the tripod neighborhood. 
Investigation of the influence of boundary conditions, initial positioning of an individual 
and lattice sizes on single-species population dynamics. (A-D) The lattice is closed on 
the torus to avoid boundary effects. (E-H) The lattice has a boundary. Every Monte Carlo
simulation consisted of 100 repeated experiments with different initial positioning of an 
individual on the lattice.

In more detail individual-based mechanisms of the double S-shaped population growth curve are
presented in Fig. 7C and Movie S7. Details of individual-based mechanisms of three types of the
S-shaped population growth curves are presented in Fig. 7A, 7B, 7D and in Movies S5, S6, S8. 
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Figure 7: Population growth curves. The lattice size which is available for occupation 
consisted of 50x50 sites in all four cases. (A) S-shaped curve with short phase of 
decelerating growth. Cellular automata neighborhood is hexagonal and the lattice is 
closed on the torus (Movie S5). (B) S-shaped curve with sharp transition to long phase 
of decelerating growth. Cellular automata neighborhood is hexagonal and the lattice has
a boundary (Movie S6). (C) Double S-shaped population growth curve. Cellular 
automata neighborhood is tripod and the lattice is closed on the torus (Movie S7). (D) S-
shaped curve with very long phase of decelerating growth. Cellular automata 
neighborhood is tripod and the lattice has a boundary (Movie S8).

Figure 7A shows the S-shaped population growth curve with short phase of decelerating growth. 
This curve reaches a plateau earlier than on population curves in Figures 7B-D. The plateau is 
reached on the 32nd iteration (Movie S5). The higher rate of population growth is explained by 
aggressive propagation and by the lack of boundary effects because the lattice of closed into a 
torus. 
Figure 7B shows the S-shaped population growth curve with sharp transition to long phase of 
decelerating growth. This curve has a sharp slowdown of population growth before the beginning
of phase of decelerating growth. It occurs on the 25th iteration, when population waves of 
aggressively propagating species reach the habitat boundary (Movie S6). In contrast to the curve 
in Figure 7A, this population curve reaches the plateau on the 49th iteration. Reduced population 
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growth rate of aggressively propagating species is explained by the presence of boundary effects 
because the lattice has a boundary.
In Figure 7C the population growth curve has a double S-shaped form. The double S-shaped 
population growth is a result of temporary slowdown of growth, which occurs at the stage when 
colonization of the free field is replaced by interpenetration of colliding population waves into 
already occupied areas. Starting from the 34th iteration, the stage of gradually compaction of 
populated areas begins (Movie S7). This compaction arises from the fact that after rounding of 
the torus population waves occupy the remaining free sites in the partially populated part of 
habitat as result of a 'phase shift' of the colliding waves. The free vacancies in population waves 
remain in result of moderate propagation of individuals. The moderate propagation is modeled by
the tripod neighborhood. Speed of the sealing colonization increases slowly due to the form of 
the population waves which invade into already occupied areas by the expanding wedge. At the 
same time contribution into population growth from colonization of the areas which consists only
of free sites (microhabitats) decreases. The areas which consist only of free microhabitats 
disappear on the 49th iteration. The population growth rate temporarily slows down what forms 
the first plateau of the curve. This plateau phase lasts during 5 iterations. The accelerating of 
additional compactization of population waves leads to the new population growth starting from 
the 53rd iteration. The population curve reaches the second plateau on the 98th iteration.
Figure 7D shows the S-shaped population growth curve with very long phase of decelerating 
growth. This curve reaches a plateau on the 72nd iteration (Movie S8). Reduced population 
growth rate and reduced maximum number of individuals in the habitat (834 individuals) are a 
result of the boundary conditions and the moderate fecundity of individuals (because of tripod 
neighborhood). 

The S-shaped and the J-shaped population growth curves

We have investigated the S-shaped population growth which is limited by following factors: 
finite size of the habitat (limited resources), habitats' size, type of boundary conditions of habitat, 
intraspecific competition, lifetime of individuals, regeneration time of microhabitats, fecundity of
individuals (Figs 2, 5-7 and Movies S1-S8). In this section we show the model of the J-shaped 
population growth and investigate two cases of geometric population growth. Unlike of the S-
shaped population model, the J-shaped population model describes a situation in which 
population growth is not limited in resources, by intraspecific competition or for any other 
environmental reasons. J-shaped population model describes a full reproductive potential which 
lead to geometrical population growth (Fig. 8). In other respects this model similar to our model 
of the S-shaped population growth. It also takes into account natural decline of individuals. 
Individual's lifetime equals one iteration. 
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Figure 8: J-shaped population growth. Propagation of individuals occurs in the 
absence of intraspecific competition and any restrictions on the resources. A species 
colonizes an infinite ecosystem under ideal conditions. (A) The number of offsprings per 
individual equals three. (B) The number of offsprings per individual equals six. (C) 
Geometric population growth in the first case (A). (D) Geometric population growth in the
second case (B).

To assess the effect of intraspecific competition and regeneration of microhabitats on population 
growth we have compared our model of the S-shaped (Fig. 7A and Movie S5) with the J-shaped 
population growth (Fig. 8B, D). Comparative dynamics of these models is shown in Table 1. 
Comparison of these two examples shows that intraspecific competition is a powerful factor 
which limits population growth. We also compared our double S-shaped population growth 
model (Fig. 7C and Movie S7) with the J-shaped population growth model (Fig. 8A, C). 
Comparative dynamics of these models is shown in Table 2. Thus, we have compared our models
of the S-shaped and the double S-shaped population growth with the J-shaped population growth.
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Table 1: Comparative population dynamics in the models with the S-shaped and 
the J-shaped population growth.

Time (Number of iteration and 
generation)

0 1 2 3 4 5

Number of individuals in the S-
shaped population growth model 
(Fig. 7A and Movie S5). Intraspecific 
competition exists. Fecundity equals 
6 individuals.

1 6 13 24 37 54

Number of individuals in the J-
shaped population growth model 
(Fig. 8B,D). Intraspecific competition
is absent. Geometric population 
growth. Fecundity equals 6. 

1 6 36 216 1296 7776

Table 2: Comparative population dynamics in the models with the double S-
shaped and the J-shaped population growth.

Time (Number of iteration and 
generation)

0 1 2 3 4 5

Number of individuals in the S-
shaped population growth model 
(Fig. 7C and Movie S7). Intraspecific 
competition exists. Fecundity equals 
3.

1 3 6 10 15 21

Number of individuals in the J-
shaped population growth model 
(Fig. 8A,C). Intraspecific competition
is absent. Geometric population 
growth. Fecundity equals 3.

1 3 9 27 81 243

The basic ecological model, which has been presented in this paper, can easily be expanded by 
the introduction of additional states, different neighborhoods, nested and adjoint lattices 
(Kalmykov & Kalmykov 2012). Such extension has allowed us to create pure mechanistic 
models of interspecific competition between two, three and four species that are complete 
competitors, and then to verify and reformulate the competitive exlusion principle (Kalmykov & 
Kalmykov 2013) in order to solve the biodiversity mystery (Sommer 1999). 
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CONCLUSIONS

We have presented and investigated a mechanistic model of dynamics of single species plant
population. This model is based on pure logical deterministic individual­based cellular automata.
It has a physical and ecological ontology. Here the physical ontology is the ontology of the active
medium and ecological ontology represents an ecosytem with one vegetatively propagated plant
species. We investigated deterministic individual-based mechanisms underlying the S-shaped and
double S-shaped population growth of vegetatively propagated plants.  Iimitating modeling of
vegetatively propagated rhizomatous lawn grasses was not our main goal. The main goal was
demonstration of possibilities of the white-box modeling on example of population growth. The
white-box model was made on the basis of physical axioms of excitation propagation in excitable
medium. These basic physical axioms of the model have a universal character that, in principle,
allows transferring the obtained results to other subject areas. An additional important result is
itself  demonstration  of  the  white-box  modeling  of  complex  systems  using  logical  cellular
automata. We consider the details of the “white-box modeling” methodology as the main results
of our work. We would like to make this perspective approach more widely used in the practice
of mathematical modeling of complex systems. And we have tried to supplement the discussion
about  “the value of white boxes” by considering specific ways of implementation this model
approach.  Our study directly introduces the white-box approach into ecological modeling. The
white-box  approach  opens  up  new perspectives  in  modeling  by implementing  a  multy-level
mechanistic modeling of complex systems. Our deterministic logical cellular automata model
works  as  a  system of  artificial  intelligence.  Cellular  automata  are  known as  the  method  of
artificial intelligence. But there is a problem how to use this method of artificial intelligence for
investigation of complex systems. We show how logical deterministic cellular automata may be
used for mathematical white-box modeling of complex systems on example of ecosystem with
one species.  Parallelism of the logical operations of cellular  automata in total  volume of the
modeled  macrosystem  allows  to  speak  that  the  model  hyper-logically  provides  automatic
deductive inference. The term 'deductive' is used here because all logical operations are based on
axioms. We consider that the main difficulty of this white-box modeling is to create an adequate
axiomatic system based on an intrinsic physical ontology of the complex system under study. The
main  feature  of  the  approach is  the  use  of  cellular  automata  as  a  way of  linking semantics
(ontology) and logic of the subject area. Our logical white-box model of an ecosystem with one
species  combines  reductionist  and  holistic  approaches  to  modeling  of  complex  systems.  We
consider the white-box modeling by logical deterministic cellular automata as a perspective way
for investigation of any complex systems. 
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1
Three types of mathematical models for complex dynamic systems.

This is a schematic representation of a black-box model, a grey-box model and a white-box

model with the level of their mechanistic understanding.
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2
S-shaped population growth.

A logical deterministic individual-based cellular automata model of an ecosystem with one

species shows both population dynamics and pattern formation. The lattice consists of 25x25

sites. Individuals use the hexagonal neighborhood for propagation. The lattice is closed on

the torus to avoid boundary effects. (A-C) Population dynamics of the species. S-shaped

population growth curve (C). (D-F) Spatio-temporal patterns of the model represented in

numerical form of program implementation.
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3
Cellular automata neighborhoods.

A cellular automata neighborhood models a vegetative propagation of plants and defines

fecundity and spatial positioning of an individual’s offsprings. Positioning of offsprings is

explained by how the cellular automata neighborhood is implemented successively for each

lattice site. A central site of the neighborhood is defined by the array element with index (i,

j), where i and j are integer numbers. Neighboring sites of the central site are defined by the

array elements with indexes. (A) Hexagonal neighborhood. (B) A model example of

vegetative propagation of an individual in the hexagonal neighborhood. Offsprings occupy all

nearest lattice sites what corresponds to aggressive propagation. A maximum number of

offsprings per one individual (fecundity) equals six. (C) Tripod neighborhood. (D) A model

example of vegetative propagation of an individual in the tripod neighborhood. Offsprings

occupy a half of the nearest lattice sites what corresponds to the moderate propagation. A

maximum number of offsprings per one individual equals three.
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4
Results of the Monte Carlo simulations with the hexagonal neighborhood.

Investigation of the influence of boundary conditions, initial positioning of an individual and

lattice sizes on single-species population dynamics. (A-D) The lattice is closed on the torus to

avoid boundary effects. (E-H) The lattice has a boundary. Every Monte Carlo simulation

consisted of 100 repeated experiments with different initial positioning of an individual on

the lattice.
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5
Rules of the ecosystem model with one species.

Directed graph of transitions between the states of a lattice site is represented in pictorial (A)

and numerical forms (B). The graph represents a birth-death-regeneration process.
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6
Results of the Monte Carlo simulations with the tripod neighborhood.

Investigation of the influence of boundary conditions, initial positioning of an individual and

lattice sizes on single-species population dynamics. (A-D) The lattice is closed on the torus to

avoid boundary effects. (E-H) The lattice has a boundary. Every Monte Carlo simulation

consisted of 100 repeated experiments with different initial positioning of an individual on

the lattice.
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7
Population growth curves.

The lattice size which is available for occupation consisted of 50x50 sites in all four cases. (A)

S-shaped curve with short phase of decelerating growth. Cellular automata neighborhood is

hexagonal and the lattice is closed on the torus (Movie S5). (B) S-shaped curve with sharp

transition to long phase of decelerating growth. Cellular automata neighborhood is hexagonal

and the lattice has a boundary (Movie S6). (C) Double S-shaped population growth curve.

Cellular automata neighborhood is tripod and the lattice is closed on the torus (Movie S7). (D)

S-shaped curve with very long phase of decelerating growth. Cellular automata neighborhood

is tripod and the lattice has a boundary (Movie S8).
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8
J-shaped population growth model.

Propagation of individuals occurs in the absence of intraspecific competition and any

restrictions on the resources. A species colonizes an infinite ecosystem under ideal

conditions. (A) The number of offsprings per individual equals three. (B) The number of

offsprings per individual equals six. (C) Geometric population growth in the first case (A). (D)

Geometric population growth in the second case (B).
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Table 1(on next page)

Comparative population dynamics in the models with the S-shaped and the J-shaped
population growth.
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Time (Number of iteration and 
generation)

0 1 2 3 4 5

Number of individuals in the S-shaped 
population growth model (Fig. 7A and 
Movie S5). Intraspecific competition 
exists. Fecundity equals 6 individuals.

1 6 13 24 37 54

Number of individuals in the J-shaped 
population growth model (Fig. 8B,D). 
Intraspecific competition is absent. 
Geometric population growth. 
Fecundity equals 6. 

1 6 36 216 1296 7776
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Table 2(on next page)

Comparative population dynamics in the models with the double S-shaped and the J-
shaped population growth.
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Time (Number of iteration and 
generation)

0 1 2 3 4 5

Number of individuals in the S-shaped 
population growth model (Fig. 7C and 
Movie S7). Intraspecific competition 
exists. Fecundity equals 3.

1 3 6 10 15 21

Number of individuals in the J-shaped 
population growth model (Fig. 8A,C). 
Intraspecific competition is absent. 
Geometric population growth. 
Fecundity equals 3.

1 3 9 27 81 243
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