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Background. Integration of reductionist and holistic approaches is one of the great
challenges for mathematical modeling. Mathematical models of complex systems are
divided into black-box, white-box and grey-box types. A black-box model is completely
nonmechanistic as internal mechanisms of a modeled complex system are hidden. A
white-box model demonstrates direct mechanisms of functioning of a complex system. It
holistically shows all events at microlevel, mesolevel and macrolevel of a modeled system
at all stages of its dynamics. Earlier we have used the white-box modeling for verification
and reformulation of the competitive exlusion principle. Here we investigate in more
details our white-box model of single-species population dynamics. This is fundamentally
important because most basic ecological models are of black-box type, including
Malthusian, Verhulst, Lotka-Volterra models. Methods. Our white-box model of single-
species population growth is a purely logical deterministic individual-based cellular
automata model. A biological prototype of the model is a vegetative propagation of
rhizomatous lawn grasses. Using the Monte Carlo method, we investigate a role of
different initial positioning of an individual in the habitat. We also investigate different size
and structure of the habitat and two types of fecundity. Results. We have created and
investigated a logical white-box model of an ecosystem with one species. This model
demonstrates mechanisms of the S-shaped and double S-shaped population growth. We
have investigated population growth limited by different factors, in particular by resources,
habitat structure, intraspecific competition, lifetime of individuals, regeneration time and
fecundity of individuals. We have compared the S-shaped curves with J-shaped curves of
population growth. Conclusion. We present a basic white-box model of population
dynamics which combines reductionist and holistic approaches. Integration of reductionist
and holistic approaches is provided by the simultaneous modeling of both part-whole and
cause-effect relations in complex system. We consider this holystic multi-level white-box
modeling approach as a method of artificial intelligence which works as hyper-logical
automatic deductive inference that provides direct mechanistic insights into complex
systems. The white-box modeling by logical deterministic cellular automata is a
perspective way for investigation not only of population dynamics but also of any complex
systems.
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INTRODUCTION

Background

A mechanistic approach corresponds to the classical ideal of science. Existing mathematical 
approaches to complex systems modeling are rather phenomenological than mechanistic. 
Mechanicalness in this case assumes integration of reductionist and holistic approaches. David 
Tilman drew attention to the fact that ecologists investigate interspecific competition 
phenomenologically, rather than mechanistically (Tilman 1987). The article was published in 
1987, however it is relevant for biodiversity science and mathematical modeling of complex 
systems even today. It discusses a problem among field experiments designed to test for the 
existence of interspecific competition in natural communities. Tilman suggests, ‘The design of 
the experiments, though, is a memorial to the extent to which the often-criticized Lotka-Volterra 
competition equations still pervade ecological thought. The experiments used a nonmechanistic, 
Lotka-Volterra-based, phenomenological definition of competition: two species compete when an
increase in the density of one species leads to a decrease in the density of the other, and vice 
versa. … With a few notable exceptions, most ecologists have studied competition by asking if an 
increase in the density of one species leads to a decrease in the density of another, without asking
how this might occur. … Experiments that concentrate on the phenomenon of interspecific 
interactions, but ignore the underlying mechanisms, are difficult to interpret and thus are of 
limited usefulness.’(Tilman 1987) 

Without mechanistic models we will not be able to overcome the limitations of 
phenomenological approach which hides from us internal functional mechanisms of ecosystems. 
Only a mechanistic approach will allow us not only to constate the loss of biodiversity, but to 
understand what needs to be done to save it. A mechanistic mathematical model of a complex 
system should be completely discrete, logical and consisting of cause-effects and of part-whole 
relations between micro-subsystems, meso-subsystems and a whole macro-system. 
The purpose of this study is a deeper mechanistic investigation of our logical white-box model of 
single-species population dynamics, which is an alternative to the Verhulst model of population 
growth (Kalmykov & Kalmykov 2013; Kalmykov & Kalmykov 2011). 

Black-box, grey-box and white-box models 

How to create such a mechanistic model? First, we need to know how to mechanistically model a
complex dynamic system. A complex dynamic system may be considered as consisting of 
subsystems that interact. Interactions between subsystems lead to the emergence of new 
properties, e.g. of a new pattern formation. Therefore we should define these subsystems and 
logically describe their interactions in order to create and investigate a mechanistic model. If we 
want to understand how a complex dynamic system works, we must understand cause-effect 
relations and part-whole relations in this system. The causes should be sufficient to understand 
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their effects and the parts should be sufficient to understand the whole. There are three types of 
possible models for complex dynamic systems: black-box, grey-box and white-box models (Fig. 
1). 

Figure 1: Three types of mathematical models for complex dynamic systems. This 
is a schematic representation of a black-box model, a grey-box model and a white-box 
model with the level of their mechanistic understanding.

Black-box models are completely nonmechanistic. We cannot investigate interactions of 
subsystems of such a non-transparent model. A white-box model of complex dynamic systems 
has ‘transparent walls’ and directly shows underlying mechanisms – all events at micro-, meso- 
and macro-levels of a modeled dynamic system are directly visible at all stages. Earlier we 
demonstrated, that the logical deterministic cellular automata approach allows to create white-
box models of complex dynamic systems (Kalmykov & Kalmykov 2013). A micro-level is 
modeled by the lattice sites (cellular automata cells). A meso-level of local interactions of micro-
objects is modeled by the cellular automata neighbourhood. A macro-level is modeled by the 
entire cellular automata lattice. As a rule, this approach is used in ‘overloaded’ form, what makes 
it less transparent. This is achieved by adding differential equations and stochasticity. Grey-box 
models are intermediate and combine black-box and white-box approaches. Basic ecological 
models are of black-box type, e.g. Malthusian, Verhulst, Lotka-Volterra models. These models are
not individual-based and cannot show features of local interactions of individuals of competing 
species. That is why they principally cannot provide a mechanistic insight into complex dynamic 
systems`. 

A white-box model of a complex system is completely mechanistic. A white-box modeling is 
axiomatic modeling. Before creating a white-box model we need to formulate an intrinsic 
axiomatic system based on a general physical understanding of the subject area under study. 
Axioms are the first principles of the subject. When scientists verify a theory first of all they 
should strictly verify its axioms. 
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On the white-box modeling of population dynamics

Let's consider an example of the inadequacy of ecological models in result of incompleteness of 
their axiomatic system. There are many models of population dynamics that do not take into 
account what happens with individuals after their death. Dead individuals instantly disappear 
with roots, stubs, etc. ‘One reason for the lack of understanding on the part of most botanists 
results from their failure to take into account the phenomenon of regeneration in plant 
communities, which was first discussed in general terms by A. S. Watt in 1947.’ (Grubb 1977)

Stephen Hubbell in his Unified Neutral Theory of Biodiversity (UNTB) in fact refuses a 
mechanistic understanding of interspecific competition: ‘We no longer need better theories of 
species coexistence; we need better theories for species presence-absence, relative abundance 
and persistence times in communities that can be confronted with real data. In short, it is long 
past time for us to get over our myopic preoccupation with coexistence’ (Hubbell 2001). 
However, he admits that ‘the real world is not neutral’ (Rosindell et al. 2012). Since the basic 
postulate (axiom) of the UNTB about ecological neutrality of the presence of similar species in 
the ecosystem is wrong, this theory cannot be true. In addition, local interactions of individuals 
are absent in the neutral models in principle. That is why neutral models cannot provide a 
mechanistic insight into biodiversity. The UNTB models are of black-box and dark grey-box 
types only – Fig. 1. We agree with James Clark, that the dramatic shift in ecological research to 
focus on neutrality distracts environmentalists from the study of real biodiversity mechanisms 
and threats (Clark 2009). Within the last decade, the neutral theory has become a dominant part 
of biodiversity science, emerging as one of the concepts most often tested with field data and 
evaluated with models (Clark 2009). Neutralists are focused on considering unclear points of the 
neutral theory – the ecological drift, the link between pattern and process, relations of simplicity 
and complexity in modeling, the role of stochasticity and others, but not the real biodiversity 
problems themselves (Rosindell et al. 2012). Attempts to understand neutrality instead of 
biodiversity understanding look like attempts to explain the obscure by the more obscure. 
Nonmechanistic ecological models make it difficult to answer basic questions, e.g. Why are there
so many closely allied species? (Anonymous 1944) An example of the difficult ecological 
discussion is the debates ‘Ecological neutral theory: useful model or statement of ignorance?’ on 
the forum Cell Press Discussions (Craze 2012).Understanding of mechanisms of interspecific 
coexistence is a global research priority. These mechanisms can allow us to efficiently operate in 
the field of biodiversity conservation. Obviously, such knowledge must be based on mechanistic 
models of species coexistence. Unfortunately, ecological modelers prefer to use the heaviest 
black-box mathematical methods, which cannot produce mechanistic models of complex 
dynamic systems in principle, and not use simple and long-known purely logical deterministic 
cellular automata, which easily can produce white-box models and directly obtain clear 
mechanistic insights into dynamics of complex systems. 

Here, as a simple example, we show our white-box model of population and ecosystem dynamics
(Fig. 2) and characterise this cellular automata model. We investigate in details an ecosystem 
model with one species. This model is both the simplest and most basic, because it demonstrates 
not only the well known phenomenological S-shaped population growth curve, but also the 
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underlined individual-based mechanism of its origin. A classical model of the S-shaped 
population growth is the Verhulst model, but it is completely non mechanistic black-box model, 
as the internal structure of the system and mechanisms remain hidden. 

METHODS

Biological prototype of the model

A vegetative propagation of rhizomatous lawn grasses is the biological prototype of our model
(Fig. 3). Festuca rubra trichophylla (Slender creeping red fescue) is the prototype of aggressive
vegetative propagation and Poa pratensis L. and Festuca rubra L. ssp. Rubra are the prototypes of
moderate vegetative propagation. One individual corresponds to one tiller. A tiller is a minimal
semi-autonomous  grass  shoot  that  sprouts  from the  base.  Rhizomes  are  horizontal  creeping
underground  shoots  using  which  plants  vegetatively  (asexually)  propagate.  Unlike  a  root,
rhizomes  have  buds and scaly leaves.  One tiller  may have maximum three  (Fig.  3D) or  six
rhizoms (Fig. 3B) in the model. Three rhizoms per tiller correspod to moderate propagation and
six rhizoms per tiller correspond to aggressive vegetative propagation. A tiller with roots and
leaves develops from a bud on the end of the rhizome. A populated microhabitat goes into the
regeneration state after an individual’s death. The regeneration state of a site corresponds to the
regeneration of microhabitat's resources including recycling of a dead individual (Fig. 4). All
individuals are identical. Propagation of offsprings of one individual leads to colonization of the
uniform, homogeneous and limited habitat (Fig. 2 and Movies S5-S8). 

The cellular automata model

We use our logical deterministic individual-based cellular automata to model the S-shaped 
population growth mechanistically. Three patterns of population dynamics of this model are 
shown in Fig. 2. 

Figure 2: S-shaped population growth. A logical deterministic individual-based cellular
automata model of an ecosystem with one species shows both population dynamics and
pattern formation. The lattice consists of 25x25 sites. Individuals use the hexagonal 
neighborhood for propagation. The lattice is closed on the torus to avoid boundary 
effects. (A-C) Population dynamics of the species. S-shaped population growth curve 
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(C). (D-F) Spatio-temporal patterns of the model represented in numerical form of 
program implementation. 

The presented cellular automata model is defined by the 4-tuple: 
1. a lattice of sites; 

2. a set of possible states of a lattice site; 

3. a neighborhood; 

4. rules of transitions between the states of a lattice site. 

The best example of white-box mechanism is a mechanical watch. Our model metaphorically 
resembles a mechanical watch in transparent case. A neighborhood logically binds dynamics of 
all cellular automata sites into one holistic complex dynamic system. There are three most known
cellular-automamta neighborhoods: von Neumann, Moore and hexagonal. The neighborhood may
be of any type. Here we use the hexagonal and tripod neighborhoods which allow to model 
aggressive and moderate vegetative propagation of rhizomatous lawn grasses (Fig. 3). Different 
configurations of tripod patterns in Figs 3C and 3D is a result of the fact that the cellular 
automata neighborhood is implemented successively for each lattice site.

Figure 3: Cellular automata neighborhoods. A cellular automata neighborhood 
models a vegetative propagation of plants and defines fecundity and spatial positioning 
of an individual’s offsprings. Coordinates i and j are integer numbers. Positioning of 
offsprings is explained by how the cellular automata neighborhood is implemented 
successively for each lattice site. (A) Hexagonal neighborhood. (B) A model example of 
vegetative propagation of an individual in the hexagonal neighborhood. Offsprings 
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occupy all nearest lattice sites what corresponds to aggressive propagation. A maximum
number of offsprings per one individual (fecundity) equals six. (C) Tripod neighborhood. 
(D) A model example of vegetative propagation of an individual in the tripod 
neighborhood. Offsprings occupy a half of the nearest lattice sites what corresponds to 
the moderate propagation. A maximum number of offsprings per one individual equals 
three. 

A pure mechanistic model of a complex system is a discrete logical model consisting of cause-
effects relations and part-whole relations. The causes are sufficient to understand their effects and
the parts are sufficient to understand the whole. This mechanistic model is hierarchically 
subdivided into micro-subsystems, meso-subsystems and a whole macro-system. Interactions 
between subsystems of a complex system lead to emergence of its new properties. Figs 3 and 4 
illustrate rules of our basic model. Logical calculations are realized for micro-levels, meso-levels 
and macro-levels of complex system on each iteration of the cellular automata what may be 
considered as hyper-logical calculations or automatic hyper-logical inference.

Figure 4: Rules of the ecosystem model with one species. Directed graph of 
transitions between the states of a lattice site is represented in pictorial (A) and 
numerical forms (B). The graph represents a birth-death-regeneration process.

Here we show a description of the states of the single species model. Each site may be in one of 
the four states 0, 1, 2, 3 (Fig. 4), where: 

0 – a free microhabitat which can be occupied by an individual of the species;

1 – a microhabitat is occupied by a living individual of the species; 

2 – a regeneration state of a microhabitat after death of an individual of the species;

3 – a site in this state represents an element of the boundary conditions, i.e. a border. 

A free microhabitat is the intrinsic part of environmental resources per one individual and it 
contains all necessary resources and conditions for an individual's life. A microhabitat is modeled
by a lattice site.
The cause-effects relations are logical rules of transitions between the states of a lattice site (Fig. 
4B):

0→0, a microhabitat remains free if there is no one living individual in its neighborhood;
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0→1, a microhabitat will be occupied by an individual of the species if there is at least 
one individual in its neighborhood;

1→2, after death of an individual of the species its microhabitat goes into the regeneration
state;

2→0, after the regeneration state a microhabitat becomes free if there is no one living 
individual in its neighborhood;

2→1, after the regeneration state a microhabitat is occupied by an individual of the 
species if there is at least one individual in its neighborhood;

3→3, a site remains in this state, which defines a border site.

RESULTS AND DISCUSSION

According to Alexander Watt, a plant community may be considered ‘as a working mechanism’ 
which ‘maintains and regenerates itself’ (Watt 1947). Our model demonstrates a such 
mechanism in the most simplified form. From a more general physical point of view we model an
active (excitable) media with autowaves (travelling waves, self-sustaining waves) (Kalmykov & 
Kalmykov 2013; Krinsky 1984; Zaikin & Zhabotinsky 1970). Active medium is a medium that 
contains distributed resources for maintenance of autowave propagation. An autowave is a self-
organizing and self-sustaining dissipative structure. An active medium may be capable to 
regenerate its properties after local dissipation of resources. In our model, propagation of 
individuals occurs in the form of population waves. We use the axiomatic formalism of Wiener 
and Rosenblueth for modeling of excitation propagation in active media (Wiener & Rosenblueth 
1946). In accordance with this formalism rest, excitation and refractoriness are the three 
successive states. In our formalism the rest state corresponds to the free state of a microhabitat, 
the excitation state corresponds to the life activity of an individual in a microhabitat and the 
refractory state corresponds to the regeneration state of a microhabitat. All states have identical 
duration. If the refractory period will be much longer than the active period, then such a model 
may be interpreted, for example, as propagation of the single wave of dry grass fire. Time 
duration of the basic states can be easily varied using additional states of the lattice sites. 
Different initial conditions may lead to formation of different spatio-temporal patterns and as a 
result they may lead to different dynamics of the system. Using the Monte Carlo method, we 
have investigated the influence of different initial conditions on population dynamics of one 
species. We have investigated two different boundary conditions, two different cellular automata 
neighborhoods and four different lattice sizes (Figs 5 and 6). Different cellular automata 
neighborhoods allowed us to investigate aggressive and moderate variants of vegetative 
propagation of rhizomatous lawn grasses. Aggressive propagation was modeled by the hexagonal 
neighborhood (Fig. 3A), where an individual's offsprings may occupy all nearest microhabitats 
(Fig. 3B). Moderate propagation was modeled using the tripod neighborhood (Fig. 3C), where an 
individual's offsprings may occupy only a half of the nearest microhabitats (Fig. 3D). Figure 5 
shows the results obtained in the study of aggressive propagation and Figure 6 shows the results 
obtained in the study of moderate propagation. In Figs 5B-D and 6E-H we show the S-shaped 
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population growth and in Fig. 6B-D we show the double S-shaped population growth. Sizes of 
the lattice which define available space for colonization consisted of 3x3, 8x8, 23x23 and 98x98 
sites. We investigated the boundary conditions of two types when the lattice was closed on the 
torus by periodic conditions (Fig 5A-D and Fig 6A-D) and when the lattice has a boundary (Fig 
5E-H and Fig 6E-H). There were no changes of population dynamics in result of the different 
initial positioning of an individual on the lattice in cases with periodic boundary conditions (Fig 
5A-D and Fig 6A-D). In cases when a lattice has a boundary, different initial positioning of an 
individual lead to differences in population dynamics (Fig 5E-H and Fig 6E-H). Moreover, 
increasing of the lattice may lead to more complex dynamics (Figs 5E-H, 6E-H).
Periodic fluctuations in numbers of individuals are observed at the plateau phase in most of the 
experiments. With increasing of the lattice size, these periodic fluctuations in population size 
become less visible. The periodic fluctuations on the plateau phase are absent when the lattice 
consists of 3x3 sites in the case of the tripod neighborhood (Fig. 6A, 6E). The similar plateau 
phases without fluctuations were found at the 3Nx3N sizes of the lattice (6x6, 9x9, 12x12, 15x15,
18x18, 27x27 lattices were tested), with and without edge effects and when the neighborhood 
was tripod.

Figure 5: Results of the Monte Carlo simulations with hexagonal neighborhood. 
Investigation of the influence of boundary conditions, initial positioning of an individual 
and lattice sizes on single-species population dynamics. (A-D) The lattice is closed on 
the torus to avoid boundary effects. (E-H) The lattice has a boundary. Every Monte Carlo
simulation consisted of 100 repeated experiments with different initial positioning of an 
individual on the lattice.

As examples of the Monte Carlo  simulation we show four Movies S1-S4. Each Monte Carlo
simulation consists of five repeated experiments with different initial positioning of an individual
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on the lattice. The lattices are uniform, homogeneous and limited in all experiments. They are
consisted of 23x23 sites available for occupation by individuals. In Movie S1 the lattice is closed
on the torus and the neighborhood is hexagonal. In Movie S2 the lattice has a boundary and the
neighborhood is hexagonal. In Movie S3 the lattice is closed on the torus and the neighborhood is
tripod. In Movie S4 the lattice has a boundary and the neighborhood is tripod.

Figure 6: Results of the Monte Carlo simulations with tripod neighborhood. 
Investigation of the influence of boundary conditions, initial positioning of an individual 
and lattice sizes on single-species population dynamics. (A-D) The lattice is closed on 
the torus to avoid boundary effects. (E-H) The lattice has a boundary. Every Monte Carlo
simulation consisted of 100 repeated experiments with different initial positioning of an 
individual on the lattice.

In more detail different spatio-temporal mechanisms we present the double S-shaped population
growth curve (Fig. 7, Movie S7) and three types of the S-shaped population growth curves. (Fig.
7, Movies S5,S6,S8). 
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Figure 7: Population growth curves. The lattice size which is available for occupation 
consisted of 50x50 sites in all four cases. (A) S-shaped curve with short phase of 
decelerating growth. Cellular automata neighborhood is hexagonal and the lattice is 
closed on the torus (Movie S5). (B) S-shaped curve with sharp transition to long phase 
of decelerating growth. Cellular automata neighborhood is hexagonal and the lattice has
a boundary (Movie S6). (C) Double S-shaped population growth curve. Cellular 
automata neighborhood is tripod and the lattice is closed on the torus (Movie S7). (D) S-
shaped curve with very long phase of decelerating growth. Cellular automata 
neighborhood is tripod and the lattice has a boundary (Movie S8).

Figure 7A shows the S-shaped population growth curve with short phase of decelerating growth. 
This curve reaches a plateau earlier than on population curves in Figures 7B-D. The plateau is 
reached on the 32nd iteration (Movie S5). The higher rate of population growth is explained by 
aggressive propagation and by the lack of edge effects. 
Figure 7B shows the S-shaped population growth curve with sharp transition to long phase of 
decelerating growth. This curve has a sharp slowdown of population growth before beginning of 
phase of decelerating growth. It occurs on the 25th iteration, when population waves of 
aggressively propagating species reach the habitat boundaries (Movie S6). In contrast to the 
curve in Figure 7A, this population curve reaches the plateau on the 49th iteration. Reduced 
population growth rate of aggressively propagating species is explained by the presence of edge 
effects.
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In Figure 7C the population growth curve has a double S-shaped form. The double S-shaped 
population growth is a result of temporary slowdown of growth, which occurs at the stage when 
colonization of the free field is replaced by interpenetration of colliding population waves into 
already occupied areas. Starting from the 34th iteration, the stage of gradually compaction of 
populated areas begins (Movie S7). This compaction arises from the fact that after rounding of 
the torus population waves occupy the remaining free sites in the partially populated part of 
habitat as result of a 'phase shift' of the colliding waves. The free vacancies in population waves 
remain in result of moderate propagation of individuals. The moderate propagation is modeled by
the tripod neighborhood. Speed of the sealing colonization increases slowly due to the form of 
the population waves which invade into already occupied areas by the expanding wedge. At the 
same time contribution into population growth from colonization of the areas which consists only
of free microhabitats decreases. The areas which consist only of free microhabitats disappear on 
the 49th iteration. The population growth rate temporarily slows down what forms the first 
plateau of the curve. This plateau phase lasts during 5 iterations. The accelerating of additional 
compactization of population waves leads to the new population growth starting from the 53rd 
iteration. The population curve reaches the second plateau on the 98th iteration.
Figure 7D shows the S-shaped population growth curve with very long phase of decelerating 
growth. This curve reaches a plateau on the 72nd iteration (Movie S8). Reduced population 
growth rate and reduced maximum number of individuals in the habitat (834 individuals) are a 
result of the boundary conditions and with the moderate fecundity of individuals (because of 
tripod neighborhood). 

We have investigated population growth limited by different factors, e.g. finite size of the habitat 
(limited resources), its forms, intraspecific competition, lifetime of individuals, regeneration time 
of microhabitats, fecundity of individuals (Figs 2, 5-7 and Movies S1-S8). Here we show the 
model of J-shaped population growth and investigate two cases of geometric population growth. 
Unlike of the S-shaped population model, the J-shaped population model describes a situation in 
which population growth is not limited in resources, for environmental reasons or by existence of
competitors, predators, herbivores and diseases. J-shaped population model describes a full 
reproductive potential which lead to geometrical population growth (Fig. 8). In other respects this
model corresponds with our model of S-shaped population growth. It also takes into account 
natural decline of individuals. Individual's lifetime equals one iteration.
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Figure 8: J-shaped population growth model. Propagation of individuals occurs in the
absence of intraspecific competition and any restrictions on the resources. A species 
colonizes an infinite ecosystem under ideal conditions. (A) The number of offsprings per 
individual equals three. (B) The number of offsprings per individual equals six. (C) 
Geometric population growth in the first case (A). (D) Geometric population growth in the
second case (B).

To assess the effect of intraspecific competition and regeneration of microhabitats on population 
growth we compared our model of the S-shaped growth (Fig. 7A and Movie S5) with the J-
shaped model of population growth in the presence of unlimited resources and without 
intraspecific competition (Fig. 8B, D). Comparative dynamics of these models is shown in Table 
1. Comparison of these two examples shows that intraspecific competition is a powerful factor 
which limits population growth. We also compared our double S-shaped population growth 
model (Fig. 7C and Movie S7) with the J-shaped population growth model (Fig. 8A, C). 
Comparative dynamics of these models is shown in Table 2. Thus, we have compared our models
of S-shaped and double S-shaped population growth with the J-shaped population growth. 
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Table 1: Comparative population dynamics in the models with the S-shaped and 
the J-shaped population growth.

Time (Number of iteration and 
generation)

0 1 2 3 4 5

Number of individuals in the S-shaped 
population growth model (Fig. 7A and 
Movie S5). Intraspecific competition 
exists. Fecundity equals 6 individuals.

1 6 13 24 37 54

Number of individuals in the J-shaped 
population growth model (Fig. 8B,D). 
Intraspecific competition is absent. 
Geometric population growth. 
Fecundity equals 6. 

1 6 36 216 1296 7776

Table 2: Comparative population dynamics in the models with the double S-
shaped and the J-shaped population growth.

Time (Number of iteration and 
generation)

0 1 2 3 4 5

Number of individuals in the S-shaped 
population growth model (Fig. 7C and 
Movie S7). Intraspecific competition 
exists. Fecundity equals 3.

1 3 6 10 15 21

Number of individuals in the J-shaped 
population growth model (Fig. 8A,C). 
Intraspecific competition is absent. 
Geometric population growth. 
Fecundity equals 3.

1 3 9 27 81 243

The basic ecological model, which presented in this paper, can easily be expanded by the 
introduction of additional states, different neighborhoods, nested and adjoint lattices (Kalmykov 
& Kalmykov 2012). Such extension has allowed us to create pure mechanistic models of 
interspecific competition between two, three and four species that are complete competitors, and 
then to verify and reformulate the competitive exlusion principle (Kalmykov & Kalmykov 2013) 
in order to solve the biodiversity mystery (Sommer 1999). 

CONCLUSIONS

We have presented and investigated a mechanistic model of single species population dynamics. 
This model is based on pure logical deterministic individual-based cellular automata. It has a 
physical and ecological ontology of part-whole and cause-effects relations. A physical ontology is
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the ontology of the active medium and ecological ontology represents an ecosytem with the plant 
community. This is a white-box model of single-species population dynamics. The presented 
model gives a strong mechanistic insight of the S-shaped and double S-shaped population 
growth. This model provides mechanistic fundamentals for population dynamics. It is useful as a 
starting point for pure mechanistic modeling of population and ecosytem dynamics of more 
complex situations like interspecific competition. Our deterministic logical cellular automata 
model work as a system of artificial intelligence. It hyper-logically provides automatic deductive 
inference. Instead of single logical steps, built up to a linear logical sequence, the program may 
iteratively perform parallel logical operations in all sites of the cellular automata lattice. We 
consider that the main difficulty of this white-box modeling is to create an adequate axiomatic 
system based on an intrinsic physical ontology of the complex system under study. The main 
feature of the approach is the use of cellular automata as a way of linking semantics (ontology) 
and logic of the subject area. Here we have created and investigated a logical white-box model of
an ecosystem with one species, which combines reductionist and holistic approaches to the 
modeling of complex systems. Integration of reductionist and holistic approaches is provided by 
the simultaneous modeling of both part-whole and cause-effect relations in complex system. We 
consider the white-box modeling by logical deterministic cellular automata as a perspective way 
for investigation not only of population dynamics but also of all complex systems. 
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