Sharing for science: High-resolution trophic interactions revealed rapidly by social media (#47047)

First submission

Guidance from your Editor

Please submit by 26 Apr 2020 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

5 Figure file(s)

1 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Sharing for science: High-resolution trophic interactions revealed rapidly by social media

Robin A Maritz Corresp., 1, Bryan Maritz 1

 $^{
m 1}$ Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa

Corresponding Author: Robin A Maritz Email address: maritzrobin.a@gmail.com

Discrete, ephemeral natural phenomena with low spatial or temporal predictability are incredibly challenging to study systematically. In ecology, species interactions, which constitute the functional backbone of ecological communities, can be notoriously difficult to characterise especially when taxa are inconspicuous and the interactions of interest (e.g., trophic events) occur infrequently, rapidly, or variably in space and time. Overcoming such issues has historically required significant time and resource investment to collect sufficient data, precluding the answering of many ecological and evolutionary questions. Here we show the utility of social media for rapidly collecting ephemeral ecological phenomena with low spatial and temporal predictability by using a Facebook group dedicated to collecting predation events involving reptiles and amphibians in sub-Saharan Africa. We collected over 1 900 independent feeding observations using Facebook from 2015-2019 involving 83 families of predators and 129 families of prey. Feeding events by snakes were particularly well-represented with close to 1 100 feeding observations recorded. Relative to an extensive literature review spanning 226 sources and 138 years, we found that social media has provided snake dietary records faster than ever before in history with prey being identified to a finer taxonomic resolution and showing only modest concordance with the literature due to the number of novel interactions that were detected. Finally, we demonstrate that social media can outperform other citizen science image-based approaches (iNaturalist and Google Images) highlighting the versatility of social media and its ability to function as a citizen science platform.

1	Sharing for Science: High-resolution trophic interactions revealed rapidly by social media
2	
3	Robin A. Maritz ¹ and Bryan Maritz ¹
4	
5	¹ Department of Biodiversity and Conservation Biology, University of the Western Cape,
6	Bellville, Western Cape, South Africa
7	
8	Corresponding Author: Robin A. Maritz ¹
9	Email Address: maritzrobin.a@gmail.com
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

Abstract

Discrete, ephemeral natural phenomena with low spatial or temporal predictability are incredibly
challenging to study systematically. In ecology, species interactions, which constitute the
functional backbone of ecological communities, can be notoriously difficult to characterise
especially when taxa are inconspicuous and the interactions of interest (e.g., trophic events)
occur infrequently, rapidly, or variably in space and time. Overcoming such issues has
historically required significant time and resource investment to collect sufficient data,
precluding the answering of many ecological and evolutionary questions. Here we show the
utility of social media for rapidly collecting ephemeral ecological phenomena with low spatial
and temporal predictability by using a Facebook group dedicated to collecting predation events
involving reptiles and amphibians in sub-Saharan Africa. We collected over 1900 independent
feeding observations using Facebook from 2015–2019 involving 83 families of predators and
129 families of prey. Feeding events by snakes were particularly well-represented with close to 1
100 feeding observations recorded. Relative to an extensive literature review spanning 226
sources and 138 years, we found that social media has provided snake dietary records faster than
ever before in history with prey being identified to a finer taxonomic resolution and showing
only modest concordance with the literature due to the number of novel interactions that were
detected. Finally, we demonstrate that social media can outperform other citizen science image-
based approaches (iNaturalist and Google Images) highlighting the versatility of social media
and its ability to function as a citizen science platform.

Introduction

48	Many ecological processes exist as the net product of a large number of discrete, ephemeral
49	events. At fine spatial and temporal scales, these events are often difficult to predict, making
50	them challenging to study systematically. This challenge is particularly true for interspecific
51	biological interactions and is magnified when one or both interacting species are difficult to
52	detect, with important impacts on our understanding of the ecology of many systems. Such
53	challenges can be overcome with large investments of time and money, but these costs can be
54	prohibitive and are likely part of the reason for the remarkable absence of empirical datasets
55	characterising species interactions in ecosystems (McCann, 2007; Tylianakis et al., 2008;
56	Hegland et al., 2010; Jordano, 2016).
57	
58	The origin and development of social media and the concurrent advances in access to mobile
59	cameras together represent a disruptive innovation that has changed the manner and rate at which
60	modern events are recorded and communicated. With over 3.26 billion people using social media
61	worldwide (Kemp, 2019) and at least 2.45 billion monthly active users on Facebook alone
62	(Facebook, 2019), the synergy of social media and readily accessible mobile cameras has
63	increased the observational effort of researchers by orders of magnitude. Harnessing this power
64	has far-reaching implications for understanding ecological and evolutionary processes
65	characterised by difficult to detect, discrete, ephemeral events through the resultant increase in
<mark>66</mark>	observation coverage and depth.
67	
68	Trophic interactions, defined as interspecific interactions in which one organism consumes
69	another, form the basis for understanding processes and system characteristics as diverse as

70	energy flow, population dynamics, food web dynamics, and the evolution of behavioural,
71	morphological and physiological adaptations by predators and prey (Garvey & Whiles, 2017).
72	Moreover, with a world experiencing climatic changes and worsening environmental conditions,
73	attention to species interactions will be crucial for understanding ecosystem function and
74	integrity rather than biodiversity alone (Valiente-Banuet et al., 2014). Despite their central
75	position in ecological and evolutionary theory, the characterisation of trophic interactions
76	between species and within food webs, particularly those in which such interactions are difficult
77	to study, are often incomplete or absent (Paine, 1988; Chacoff et al., 2012; Miranda, Parrini, &
78	Delerum 2013; Jordano, 2016). Moreover, because certain organismal traits can reduce the
7 9	detection likelihood of a given trophic interaction, trophic interactions involving terrestrial
80	organisms (particularly non-herbivorous interactions) are underrepresented (Miranda et al.,
81	2013). Additionally, possibly due to their relative abundance and ease of detection, invertebrate
82	organisms tend to be better represented in studies of trophic interactions than vertebrates
83	(Miranda et al., 2013), and among terrestrial vertebrates, endotherms tend to be better
84	represented than ectotherms (Miranda et al., 2013), possibly because of ease of sampling or
85	because endothermy often demands higher food intake rates. Finally, of the interactions detected,
86	organisms involved in lower-trophic-level interactions often suffer from taxonomic aggregation
87	(Polis, 1991), which can mask complex interactions and food web analyses (Greene & Jaksić,
88	1983; Paine, 1988; Thompson & Townsend, 2000).
89	
90	Together, reptiles and amphibians (hereafter herpetofauna) include more than 18000 ectothermic,
91	vertebrate species globally and account for more than half of all global tetrapod diversity
92	(Pincheira-Donoso, Bauer, & Uetz, 2013). In many terrestrial ecosystems, these animals can

94

95

96

97

98

99

100

101

102

103

104

105

make up a large proportion of the total abundance of vertebrates and contribute significantly to the total biomass of a region (Western, 1974; Iverson, 1982; Jacobsen, 1982; Petranka & Murray, 2001). Moreover, herpetofauna (mostly amphibians and squamates) often occupy intermediate trophic levels providing important trophic links between small-bodied invertebrate primary consumers and higher trophic levels occupied primarily by endothermic predators (e.g., Polis, 1991). Interestingly, snakes, a monophyletic lineage of more than 3700 species (approximately 10% of global tetrapod diversity) are exclusively carnivorous and potentially occupy intermediate trophic positions between many other herpetofauna and higher trophic levels (FitzSimons, 1962; Greene, 1997). However, many species of herpetofauna are notoriously difficult to detect and observe in the wild (Steen, 2010; Durso, Willson, & Winne 2011; Durso & Siegel, 2015; Lardner et al., 2015; Rodda et al., 2015), and individuals of many species feed infrequently or discreetly (Greene, 1997), making the systematic observation and quantification of trophic interactions incredibly challenging. In this paper we demonstrate the utility of a method that uses Facebook, specifically a group

106

107

108

109

110

111

112

113

114

115

In this paper we demonstrate the utility of a method that uses Facebook, specifically a group dedicated to predation events involving reptiles and amphibians in sub-Saharan Africa, to collect images and videos of difficult to detect feeding interactions involving African herpetofauna. We describe how effectively and rapidly information regarding ecological phenomena, specifically trophic interactions, can be collected at large spatial scales and across diverse taxonomic clades using social media as a crowdsourcing platform. First, we highlight the remarkable diversity of predator and prey interactions identified over a five-year period. Next, because snake feeding events are well-represented in our dataset and are notoriously difficult to observe in the wild, we compare our novel snake feeding records to those gathered through an extensive review of snake

diets presented in the literature. Finally, we compare our novel snake dietary data to data collected from other digital media approaches (iNaturalist and Google Images) to demonstrate that it is the sheer number of social media observers that provides the observational power to regularly detect difficult to record trophic interactions. Ultimately, our findings reveal significant gaps in our understanding of feeding interactions involving southern African herpetofauna which our method can greatly reduce. Moreover, our approach highlights a potential application of social media that can act synergistically with traditional approaches to rapidly improve trophic interaction sampling coverage and depth in many ecosystems, and act as a model for using social media for studying difficult to detect ecological events.

Materials & Methods

Facebook data collection. We administrated and curated the Predation Records - Reptiles & Amphibians (Sub-Saharan Africa) group (facebook.com/groups/888525291183325) from its creation in August 2015 until December 2019. When sharing an observation to the group, we asked members to include details such as predator and prey identity, location, date, time, and observer or photographer's name. When information was missing, administrators or group members requested for the details to be added. Predator and prey identities were confirmed to the finest taxonomic-level possible using a combination of locality information and key physical characteristics and with support from taxon expert group members. In challenging cases, persons with taxon-expertise were consulted using Facebook or via email. Observations that appeared on other social media groups were incorporated in an *ad hoc* manner.

Literature data collection. We performed an extensive review of diet records for snake species in southern African snakes (the region where most Facebook observations occurred). We searched primary and grey literature sources (museum bulletins, society newsletters and bulletins, wildlife magazines, and non-indexed journals) for substantiated feeding records. Searches were conducted in English and the main platforms used were Google Scholar and the Biodiversity Heritage Library. Interactions published without supporting details (e.g., field guide descriptions) were categorised as secondary records and were not included in our final analyses. In all instances prey identity was recorded with modification based on updated taxonomy. In instances where only a generic name was provided, the most representative taxonomic name was assigned based on geographic location. Feeding interactions in which multiple prey items of the same type were ingested at once (e.g., 'three nestling chicks') were treated as a single record in the database. Captive-fed observations were recorded but excluded from this study. A list of literature sources used (N = 226) and the snake species which they provide data for can be found in the supporting information (Table S1).

Data management and curation. Data were recorded manually and kept in local storage with monthly back-ups to a personal cloud storage service. Images and videos from all Facebook posts were downloaded in the event that posts are deleted. For each feeding interaction, we recorded predator/prey identity, predator/prey life stage, direction of ingestion (for snake predators), interaction specifics (date, time, location), and any noteworthy details. Taxonomic hierarchies were automatically updated for each predator and prey item by referencing a local hierarchy database with information obtained from biodiversity databases (reptile-database.org; sabap2.adu.org.za; amphibiaweb.org; gbif.org).

1	2	2
- 1	n	_

For Facebook records, additional information included microhabitat (e.g., tree/shrub, artificial surface), type of interaction (true predation or scavenging), type of event (e.g., *in situ*, roadkill, captured–regurgitated), share date, person who shared the record, person(s) who observed the record, and post permalink. Duplicates were excluded in a semi-automated manner using a photo comparison program (Duplicate Photo Cleaner, v4.7, WebMinds, Inc.). Additionally, records were flagged and verified whenever an identical combination of predator, prey, and observer arose.

For literature records, additional information included predator and prey snout-vent-length, predator and prey mass, type of study (e.g., incidental, museum), museum voucher numbers (when available), and reference. We treated any record in which a given author had published the same interaction previously and did not provide any information on locality or date along with the most recent account as a duplicate.

Data collection from other digital media sources. We retrieved relevant observations from the iNaturalist citizen science platform (iNaturalist.org) in December 2019. These included all records shared on the iSpot platform (ispot.org.za) for southern Africa that were migrated to the iNaturalist platform during 2017. Currently, there is no centralised method for reporting species interactions on iNaturalist, but a pre-existing iNaturalist project, 'Interactions (s Afr)' (inaturalist.org/projects/interactions-s-afr), gathers feeding interaction data using the observation field "Eating: (Interaction)" which we used to query ("&field:Eating: (Interaction)=") and retrieve all snake feeding records in southern Africa logged onto the platform (N = 77).

Uncatalogued observations were located using the following independent queries: 'feeding', 'eating', 'meal', 'predation', 'swallow', and 'prey'; species was set to "Serpentes" and location used was "southern Africa" (N = 25). Records were exported using the download observations function. Duplicate interactions were identified based on iNaturalist observation number. The crowd-sourced identification was used when available. We manually inspected images of the target species (the four most observed species in the Facebook dataset) including brown-house snake (*Boaedon capensis*), southern African python (*Python natalensis*), boomslang (*Dispholidus typus*), and cape cobra (*Naja nivea*) for additional instances of feeding that had been missed.

Google Images results were retrieved in October 2019. Searches were performed for each of the four target study species using the following query: "("scientific name" | "common name") (eating | prey | predation | swallow | meal | feeding)", and all resulting images were inspected for evidence of feeding. Only images of wild feeding observations were recorded. Photos documenting the same encounter were excluded manually. Observations derived from Google Images were more coarsely identified as the geographic location was frequently missing, but prey were identified to the finest taxonomic-level whenever possible.

Analytical approaches and comparisons. All data manipulations, graphical outputs, and statistical analyses were conducted in R version 3.6.1. In all analyses, non-southern African snake species were excluded. To assess interaction novelty, duplicate interactions within the dataset for each approach were removed. Then, for interactions in which the prey was identified to the species-level (repeated at each taxonomic level) the presence of a given predator-prey

interaction was assigned to either literature, each digital media source, or both (shared). For the comparison of prey-ratios derived from digital media sources, prey items categorised as 'large mammals' are species that typically exceed five kilograms.

Results

Between 2015 and 2019, we gathered a total of 1917 trophic interactions involving reptiles or amphibians via Facebook from the Predation Records - Reptiles & Amphibians (Sub-Saharan Africa) group (Fig. 1). We detected trophic interactions between 83 families of predators (across 30 orders and 9 classes) and 129 families of prey (across 51 orders and 14 classes). Our observations span 18 African countries. However, most feeding interactions were reported from South Africa (75.5%; N = 1446) which is reflective of a geographic bias in Facebook group participation. Observations of trophic interactions were dominated by predation by non-avian reptiles which accounted for 66.0% (N = 1266) of all trophic interactions in our dataset. Remarkably, snakes accounted for the majority of these observations (85.8%; N = 1086). We detected feeding events by 85 species of snakes including five of the eight families that occur in Africa.

In our study, there were at least 1369 unique observers who uploaded media documenting a predation event (μ = 1.44, SD = 1.88, range = 32). Across all observations (i.e., any class of predator), 82.0% of observers have reported only a single record. Whereas, 18.0% have reported at least two predation events, and 0.95% of observers have reported more than 10 predation events. There were 891 unique observers who had documented a predation event in which the predator was a snake (μ = 1.24, SD = 1.23, range = 19). For instances of snakes as predators,

231	89.5% of observers had only one observation, and only 0.45% of observers have reported more
232	than 10 snake predation events. Notably, the records posted by the top four observers were
233	dominated by observations of prey in road-killed specimens or from snakes that regurgitated
234	prey items during a requested snake removal.
235	
236	Our extensive literature review of southern African snake diets revealed a total of 2884 feeding
237	records covering 109 of southern Africa's 168 species, collected over a period of more than 130
238	years (Fig. 2). Contrastingly, in five years, we were able to collect 1066 feeding records, which
239	equates to 27.0% of all documented observation. When unsubstantiated records are included as a
240	conservative measure, our observations from Facebook account for 24.3% of all feeding records.
241	
242	Overall, feeding observations accrued at a significantly faster rate (Welch's t-test: t = -3.94, p =
243	0.0163) by utilising Facebook (μ = 213 records·yr ⁻¹) compared to historical collection and
244	reporting approaches (μ = 20.9 records·yr ⁻¹). To account for gaps in reporting, we conducted a
245	sliding-window analysis to test if there were any time periods that produced comparable rates of
246	data accumulation. There were no five-year periods that approached or exceeded the
247	accumulation rate observed using Facebook. The most comparable period was between 2006-
248	2010 (μ = 139 records·yr ⁻¹) which produced 696 records. Only after expanding the sliding-
249	window to a 10-year frame did the number of accumulated records from the literature ($N = 1187$)
250	exceed the number of records that were collected using Facebook in half of the time. This period
251	of high reporting rate can be attributed to the publication of several multi-taxa museum studies
252	from 1998-2007 (Shine et al., 1998; Keogh et al., 2000; Webb et al., 2000; Webb et al., 2001;
253	Shine et al., 2006a; Shine et al., 2006b; Shine et al., 2007). Importantly, the periods of

comparable reporting rates are the result of decades of work that ultimately culminated in the publication of the literature during those periods, rather than actual rates of record accrual as represented by our Facebook dataset.

We found important differences in the taxonomic resolution to which prey species were identified when comparing the two datasets. Prey were identified to the species level in 76.6% of Facebook records compared to only 50.4% of literature records ($X^2 = 216.9$, p < 0.0001) (Fig. 3)—probably because digestion of prey items in the gut of museum specimens often eliminates diagnostic characteristics. Similarly, a significantly larger proportion of the Facebook records were identifiable to at least the level of genus, family, and order than records in the literature dataset ($X^2 = 49.13-250.6$, all p < 0.0001).

Broadly speaking, the number of feeding observations for each snake species was moderately correlated across the two approaches (Spearman's correlation: ρ = 0.490, p < 0.0001). However, this relationship obscures some dramatic differences in the overlap in trophic interactions detected via each approach. For interactions with species-level identification of prey items, we identified 441 and 781 distinct interactions within the Facebook and literature datasets, respectively (Fig. 4). Surprisingly, only 114 of these interactions were shared between the two datasets, and, notably, 327 interactions (of the 441 interactions detected; 74.1%) were unique to the Facebook dataset. Cohen's Kappa coefficient (κ = -0.813) confirmed that the approaches were largely discordant. Given the bias toward higher-level taxonomic resolution for prey in the literature dataset (Fig. 3), we recalculated Cohen's Kappa with interactions aggregated at the level of genus, family, and order and found low concordance across all taxonomic levels of prey

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

identification (Cohen's Kappa $\kappa = -0.813 - -0.465$) with order-level taxonomic assignment showing the greatest, but still poor, level of concordance. Depending on level of prey identification, our analyses revealed that 28.4–74.1% of interactions detected via Facebook were previously undocumented (Fig. 4). Remarkably, even at the coarse taxonomic aggregation level of order, 28.4% of interactions detected using Facebook were novel. On iNaturalist, we found 92 snake feeding observations by querying the database. The earliest upload date of a feeding observations was in 2011 with an average of 11.3 observations added per year since then—a rate that is significantly slower (Welch's t-test: t = 4.15, p = 0.0139) than Facebook ($\mu = 213 \text{ records} \cdot \text{yr}^{-1}$). The greatest number of feeding observations reported on iNaturalist occurred in 2019 (N = 39) and represents fewer observations than the number of uploads to the Facebook group during its first year of infancy (N = 54). Nine of the top-ten snake species recorded feeding using iNaturalist were also in the top-ten in the Facebook dataset. Notably, the brown house snake (*Boaedon capensis*) had the most observations on both platforms. Interestingly, of the 61 distinct interactions with prey identified to the species-level that were reported on iNaturalist, 20 were not detected using Facebook and 13 interactions were not present in either the Facebook or the literature dataset. We gathered an additional seven feeding observations for four target species (B. capensis, Python natalensis, Dispholidus typus, and Naja nivea) by visually searching through species records for uncatalogued records. Across all four target species, Facebook outperformed iNaturalist (Fig. 5a). However, the number of records obtained for each of the target species was

proportionally similar between the two platforms. The maximum difference in proportions equated to 4.4% (*D. typus*, Facebook: 7.32% vs. iNaturalist: 11.8%).

Targeted Google Images searches for the four target species returned 13–25 records per species which exceeds the number of records posted to iNaturalist for each the target species but still underperforms relative to Facebook (Fig. 5a). Additionally, the ratio of prey types for several of the target species were heavily skewed depending on the source of the observation (Fig. 5b). In particular, 84.2% of records for *N. nivea* depicted ophiophagy (i.e. snake-eating), particularly involving puff adders (*Bitis arietans*) and mole snakes (*Pseudaspis cana*) (Fig. 5b). Additionally, 84.6% of *P. natalensis* observations involved animals feeding on large mammals (e.g., antelope) and our search failed to produce any instances of bird-eating (Fig. 5b). Notably, this method did not produce any novel species interactions.

Discussion

Our study demonstrates the power of crowdsourcing via social media to gather a geographically and taxonomically diverse dataset of difficult to observe trophic interactions between southern African herpetofauna, their predators, and their prey. Despite these types of interactions being difficult to observe, our approach has yielded observations faster, at finer taxonomic resolution, and that differ significantly from what is currently known within 138 years of herpetological literature. Taken together, these findings provide a powerful example of the potential application of social media to gather discrete, ephemeral ecological interactions.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

and citizen science to gather biological information (reviewed by Toivonen et al., 2019). Although a number of studies have made use of digital media platforms (i.e., not specifically designed for citizen science) to better understand the geographic and temporal distribution of biological traits or organisms (Leighton et al., 2016; Jimenez-Valverde et al., 2019; Marshal & Strine, 2019), other studies have started to detail ecological and evolutionary processes explicitly. Google Images has been used to quantify insect-pollinator relationships (Bahlai & Landis, 2016), commensalism-like relationships between birds and large mammals (Mikula et al., 2018), to assess the diets of predatory birds (Mikula et al., 2016; Naude et al., 2019), and the diets of predatory insects (Hernandez et al., 2019). Similarly, Facebook has been used to quantify co-grazing patterns between two deer species (Mori, Bari, & Coraglia, 2018) and ad hoc observations have revealed a fascinating foraging strategy in skunks (Pesendorfer, Dickerson, & Dragoo, 2018). Importantly, many of these taxa are often conspicuous due to their size, colouration, microhabitat usage, or duration spent in one location, and the resources in several of the studies are conspicuous (for the same reasons) or spatially restricted. Ultimately, these characteristics improve detection probability and reporting rates. Conversely, our study has demonstrated that social media (specifically Facebook) draws observational power from such a large network that even elusive ecological interactions with low temporal and spatial predictability can be gathered rapidly. Our approach has several strengths that make its application in ecological and evolutionary studies appealing. Firstly, the ease of reporting means that observers are more likely to share

their observations. A dedicated, actively managed, public group allows for photos to be funnelled

Importantly, our work is part of a growing recognition of the remarkable power of social media

340

341

342

343

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

from across Facebook, and many of our observers had already shared their observations to Facebook in some other context before those posts were shared to our dedicated predation records group. Importantly, the group acts as an outlet for observations that would never otherwise have been documented formally; now, those records can be incorporated into a growing database. Secondly, while citizen science projects like iNaturalist and iSpot attract many users, citizen science platforms are mainly populated by a few very active users (Sauermann & Franzoni, 2015). Facebook does not require an inherent interest in a particular topic which allows for a diverse range of media to be posted and shared publicly. Together with the low probability of encountering feeding events—as indicated by the number of single observations in our dataset—dedicated flora and fauna platforms do not attract enough observers to gather sizeable datasets, especially outside of major populated areas. Thirdly, the interactive nature of Facebook facilitates direct communication with observers which can result in more photos or details, if needed. Information such as locality data can be requested directly from observers thus reducing the reliance on geo-tagging functions of social media platforms, which can be incorrect or missing from posts altogether (Di Minin, Tenkanen, & Toivonen, 2015). Fourth, the Facebook group format provides an ideal platform to discuss identification of species with interested experts, thereby facilitating expert-crowdsourcing of species identifications. Austen et al. (2018) proposed that the identification of species in digital natural history observations should be based on more than one photo and verified by more than one expert. Thus, Facebook groups offer effective mechanisms to meet these criteria. Finally, the community of observers receive informed feedback from researchers regarding their observation. Unlike passive data collection methods (e.g., Google Images), active engagement with observers and other members acts as an

opportunity to educate the public about the importance of an observation and active engagement and feedback has the potential to incentivise continued participation.

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

366

367

The data gathered via our approach is not without its context-specific challenges. Primarily, our approach does not offer an obvious mechanism for quantifying sampling effort, prohibiting rateor density-dependent analyses of these processes. Secondly, our approach, as with nearly all sampling approaches, may over-represent certain interactions in important ways (Glaudas, Kearney, & Alexander, 2017). For one, our approach is likely to include events that happen (1) frequently, (2) near humans (either urban areas or well-trafficked nature reserves), and (3) over longer periods of time. Third, the permanence of posts and their associated media, which appear on social media platforms like Facebook, are not guaranteed, and images may be removed, or their visibility settings may be changed by the owner at any time. As a result, there is a need to store images and data outside of the platform in a timely manner. Finally, we have adopted to manually curate and log observations into a database rather than seek automated approaches in part due to the loss of API function in April 2018 associated with a change in Facebook's terms of service (Freelon, 2018). This manual approach has worked well at the scale of our analysis but will become problematic at the scale of some of the data that social media has the potential to gather. Advances in machine learning for identification of species in images are progressing rapidly (reviewed by Wäldchen & Mäder, 2018) and are starting to be utilised for scientific assessment of social media images (Di Minin et al., 2018). However, in our context, we continue to be limited by the fact that the observations being reported are inherently difficult to observe, thus limiting the availability of sufficient amounts of training data. Nonetheless, automation of

image identification, or even social media group administration, will be required to scale our approach to truly global ecological or evolutionary questions.

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

388

389

The relatively low measures of concordance between the data gathered via Facebook, and that reported in the literature (Fig. 4), or via other digital media platforms (Fig. 5b) raises an important question of which more closely reflects reality. Some approaches to studying diet such as fixed videography (Glaudas et al., 2017) and DNA barcoding of prey remains (reviewed by Alberdi et al., 2019) offer promising future prospects for relatively unbiased dietary analysis for many organisms, including snakes. However, these approaches are incredibly effort- and costintensive, limiting their widespread application. Currently, it is unclear to what degree our data might bias for or against detection of certain interactions. However, we are encouraged by the detection in our Facebook dataset of several apparently difficult to detect interactions (e.g., puff adders (Bitis arietans) consuming amphibians, the first reported diet record for Swazi rock snakes (*Inyoka swazicus*)), and interactions with both incredibly short handling times (e.g., a vine snake (*Thelotornis capensis*) catching and swallowing a rain frog (*Breviceps* sp.) in under 20 seconds). It is apparent from our analysis that Google Images may be the least effective means for collecting representative diet data, at least for our study system. This is likely to be the case because not all webpages are indexed by Google, (including Facebook) and blogs or media outlets are dominated by eye-catching photos and particularly notable or lengthy encounters. On the other hand, iNaturalist may provide more representative data that can be used in corroboration with Facebook data, which can be promising for regions with more involvement (e.g., United States of America: 483000+; United Kingdom: 28000+; South Africa: 7300+ observers).

4	1	1

Our approach has several implications for our understanding of snake biology. It is well established that diet has played a major role in the evolution of snakes (Greene, 1983; Colston et al., 2010) and their venoms (Daltry et al., 1996; Barlow et al., 2009; Casewell et al., 2013). Additionally, snake feeding, either through demographic effects on prey populations, risk of predation and 'landscape of fear' dynamics, or the selective agents for prey anti-predatory adaptations, are likely to represent the major impacts that snakes have within ecosystems and food webs. Understanding these processes is inextricably linked with high-quality natural history data regarding variation in snake diets. However, our understanding of the details of snake diets remains surprisingly superficial, especially in places like Africa where snake bite is a major health concern (Harrison et al., 2009; Chippaux, 2011). In this context, we think that our novel approach to gathering natural history data can provide a powerful tool to supplement existing datasets and ultimately improve our understanding of snake feeding, thereby contextualising studies of snakes, their ecological functions, and their venoms.

The approach that we describe here has enormous potential beyond our usage of it, and we look forward to seeing its application in multiple ecological and evolutionary contexts. Even within our own dataset, we have only begun to explore the full potential of our data by addressing species-specific questions (Layloo, Smith, & Maritz, 2017; Maritz, Alexander, & Maritz, 2019; Maritz et al., 2019; Smith et al., 2019). However, the data lends itself to addressing other questions such as seasonality in feeding and prey preference, intraguild predation, and the evolution of diet. We, additionally, see its value in documenting other ephemeral, discrete, event-driven processes similar to predation, particularly if they can be captured as photographs of the

types of subjects already shared to social media. For example, photographs of pollinators visiting flowers could be crowd-sourced and curated to better understand pollination dynamics, images of identifiable animals (e.g., distinct markings) could be used to assess seasonal body condition, home range size, and lifespan, and photographs of urban biodiversity could elucidate novel urban ecology interactions between species, or even human-wildlife conflict. Importantly, images of many of these types of events are being shared on social media platforms already, and all that is required is for interested researchers to start engaging with those data.

Conclusions

Employing social media as a citizen science platform allowed for the collection of trophic data across a remarkable diversity of interactions involving African reptiles and amphibians.

Particularly, the results of the dietary analysis of snakes demonstrate how rapidly and precisely information can be collected to characterise an ecological process compared to traditional approaches. Additionally, the results show a large discordance between sampling via social media and traditional approaches including the detection of many novel interactions, which emphasises the magnitude of the knowledge gap regarding snake diets. Finally, the results highlight how social media can outperform traditional citizen science and crowdsourcing approaches when observations involve elusive animals or unpredictable events, which is likely due differences in the number of active members and thus overall sampling intensity. Beyond herpetological studies, the observational power and approach showcased here has enormous potential for the documentation and investigation of other rare events that underlie important ecological processes.

Acknowled	geme	nts
-----------	------	-----

We acknowledge Andre Coetzer, Tyrone Ping, and Luke Verburgt for their roles in conceiving the idea for the Predation Records - Reptiles & Amphibians (Sub-Saharan Africa) Facebook group. Additionally, we thank them and Gary Nicolau for assisting in the management of the group's membership and discussions as admins. We are indebted to the members of the group (and other members of the Facebook community) who have shared observations to and participated in our research project. We thank the Facebook users who encourage members on other groups and pages to share their observations with us. Specifically, we acknowledge A. Myburgh, G. Brown, F. Theart, N. Barrett, L. Kemp, and A. Kemp for their notable efforts. We are grateful for the identifications provided by experts in the community. Particularly, we thank Tyrone Ping, Gary Nicolau, Luke Kemp, Luke Verburgt, Werner Conradie, Johan Marais, James Harvey, Stephen Spawls, and Dan Parker for their continued input. We recognise the 2017 University of the Western Cape Biodiversity and Conservation Biology Herpetology honours students for assisting in the early phase of the literature search.

References

Alberdi, A, Aizpurua, O, Bohmann, K, Gopalakrishnan, S, Lynggaard, C, Nielsen, M, Gilbert,
 MT. 2019. Promises and pitfalls of using high-throughput sequencing for diet analysis.
 Molecular Ecology Resources 19:327–348 DOI: 10.1111/1755-0998.12960
 Austen, GE, Bindemann, M, Griffiths, RA, Roberts, DL. 2018. Species identification by
 conservation practitioners using online images: Accuracy and agreement between experts.
 PeerJ, 6:e4157 DOI: 10.7717/peerj.4157

480	Bahlai, CA, Landis, DA. 2016. Predicting plant attractiveness to pollinators with passive
481	crowdsourcing. Royal Society Open Science 3:150677 DOI: 10.1098/rsos.150677
482	Barlow, A, Pook, CE, Harrison, RA, Wüster, W. 2009. Coevolution of diet and prey-specific
483	venom activity supports the role of selection in snake venom evolution. Proceedings of the
484	Royal Society B: Biological Sciences 276:2443–2449 DOI: 10.1098/rspb.2009.0048
485	Casewell, NR, Wüster, W, Vonk, FJ, Harrison, RA, Fry, BG. 2013. Complex cocktails: the
486	evolutionary novelty of venoms. Trends in Ecology & Evolution 28:219–229 DOI:
487	10.1016/j.tree.2012.10.020
488	Chacoff, NP, Vázquez, DP, Lomáscolo, SB, Stevani, EL, Dorado, J, Padrón, B. 2011. Evaluating
489	sampling completeness in a desert plant-pollinator network. Journal of Animal Ecology
490	81:190–200 DOI: 10.1111/j.1365-2656.2011.01883.x
491	Chippaux, J. 2011. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic
492	approach. Toxicon 57:586–599 DOI: 10.1016/j.toxicon.2010.12.022
493	Colston, TJ, Costa, GC, Vitt, LJ. 2010. Snake diets and the deep history hypothesis. <i>Biological</i>
494	Journal of the Linnean Society 101:476–486 DOI: 10.1111/j.1095-8312.2010.01502.x
495	Daltry, JC, Wüster, W, Thorpe, RS. 1996. Diet and snake venom evolution. <i>Nature</i> 379:537–554
496	DOI: 10.1038/379537a0
497	Di Minin, E, Fink, C, Tenkanen, H, Hiippala, T. 2018. Machine learning for tracking illegal
498	wildlife trade on social media. Nature Ecology & Evolution 2:406-407 DOI:
499	10.1038/s41559-018-0466-x
500	Di Minin, E, Tenkanen, H, Toivonen, T. 2015. Prospects and challenges for social media data in
501	conservation science. Frontiers in Environmental Science 3:63 DOI:
502	10.3389/fenvs.2015.00063

503	Durso, AM, Willson, JD, Winne, CT. 2011. Needles in haystacks: Estimating detection
504	probability and occupancy of rare and cryptic snakes. Biological Conservation 144:1508-
505	1515 DOI: 10.1016/j.biocon.2011.01.020
506	Durso, AM, Seigel, RA. 2015. A snake in the hand is worth 10,000 in the bush. Journal of
507	Herpetology 49:503–506 DOI: 10.1670/15-49-04.1
808	Facebook. 2019, October 30. Facebook Reports Third Quarter 2019 Results [Press Release].
509	Available at https://investor.fb.com/investor-news/press-release-details/2019/Facebook-
510	Reports-Third-Quarter-2019-Results/default.aspx (accessed 20 January 2020)
511	FitzSimons, VFM. 1962. Snakes of Southern Africa. Cape Town, South Africa: Purnell and Sons
512	Freelon, D. 2018. Computational research in the post-API age. <i>Political Communication</i> 35:665-
513	668 DOI: 10.1080/10584609.2018.1477506
514	Garvey, JE, Whiles, M. 2017. Trophic Ecology. London, England: CRC Press.
515	Glaudas, X, Kearney, TC, Alexander, GJ. 2017. Museum specimens bias measures of snake diet:
516	a case study using the ambush-foraging puff adder (Bitis arietans). Herpetologica 73:121-
517	128 DOI: 10.1655/herpetologica-d-16-00055
518	Greene, HW. 1983. Dietary correlates of the origin and radiation of snakes. <i>American Zoologist</i>
519	23:431–441 DOI: 10.1093/icb/23.2.431
520	Greene, HW, Jaksić, FM. 1983. Food-niche relationships among sympatric predators: effects of
521	level of prey identification. Oikos 40:151-154 DOI: 10.2307/3544212
522	Greene, HW. 1997. Snakes: The Evolution of Mystery in Nature. Berkeley, California:
523	University of California Press.
524	Harrison, RA, Hargreaves, A, Wagstaff, SC, Faragher, B, Lalloo, DG. 2009. Snake envenoming:
525	a disease of poverty. PLoS Neglected Tropical Diseases 3:e569 DOI:

526	10.1371/journal.pntd.0000569
527	Hegland, SJ, Dunne, J, Nielsen, A, Memmott, J. 2010. How to monitor ecological communities
528	cost-efficiently: the example of plant-pollinator networks. Biological Conservation
529	143:2092–2101 DOI: 10.1016/j.biocon.2010.05.018
530	Hernandez, M, Masonick, P, Weirauch, C. 2019. Crowdsourced online images provide insights
531	into predator-prey interactions of putative natural enemies. Food Webs 21:e00126 DOI:
532	10.1016/j.fooweb.2019.e00126
533	Iverson, JB. 1982. Biomass in turtle populations: a neglected subject. <i>Oecologia</i> 55:69–76 DOI:
534	10.1007/bf00386720
535	Jacobsen, NHG. 1982. The ecology of the reptiles and amphibians in the Burkea africana-
536	Eragrostis pallens savanna of the Nylsvley Nature Reserve. M. Sci. Thesis, University of
537	Pretoria, South Africa.
538	Jiménez-Valverde, A, Peña-Aguilera, P, Barve, V, Burguillo-Madrid, L. 2019. Photo-sharing
539	platforms key for characterising niche and distribution in poorly studied taxa. Insect
540	Conservation and Diversity 12: 389-403 DOI: 10.1111/icad.12351
541	Jordano, P. 2016. Sampling networks of ecological interactions. Functional Ecology 30:1883-
542	1893 DOI: 10.1101/025734
543	Kemp, S. 2019, January 30. Digital 2019: Global Internet Use Accelerates. Available at
544	https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
545	(accessed 23 January 2020)
546	Keogh, J, Branch, WR, Shine, R. 2000. Feeding ecology, reproduction and sexual dimorphism in
547	the colubrid snake Crotaphopeltis hotamboeia in southern Africa. African Journal of
548	Herpetology 49:129–137 DOI: 10.1080/21564574.2000.9635439

549	Lardner, B, Rodda, GH, Adams, AA, Savidge, JA, Reed, RN. 2015. Detection rates of geckos in
550	visual surveys: turning confounding variables into useful knowledge. Journal of
551	Herpetology 49: 522–532 DOI: 10.1670/14-048
552	Layloo, I, Smith, C, Maritz, B. 2017. Diet and feeding in the cape cobra, Naja nivea. African
553	Journal of Herpetology 66:147–153 DOI: 10.1080/21564574.2017.1388297
554	Leighton, GR, Hugo, PS, Roulin, A, Amar, A. 2016. Just Google it: assessing the use of Google
555	Images to describe geographical variation in visible traits of organisms. Methods in
556	Ecology and Evolution 7:1060–1070 DOI: 10.1111/2041-210x.12562
557	Maritz, B, Alexander, GJ, Maritz, RA. 2019. The underappreciated extent of cannibalism and
558	ophiophagy in African cobras. Ecology 100:e02522 DOI: 10.1002/ecy.2522
559	Maritz, R, Conradie, W, Sardinha, CI, Peto, A, Chechene, AHC, Maritz, B. 2019. Ophiophagy
560	and cannibalism in African vine snakes (Colubridae: Thelotornis). African Journal of
561	Ecology [early view] DOI: 10.1111/aje.12702
562	Marshall, BM, Strine, CT. 2019. Exploring snake occurrence records: spatial biases and marginal
563	gains from accessible social media. PeerJ 7:e8059 DOI: 10.7717/peerj.8059
564	McCann, K. 2007. Protecting biostructure. Nature 446:29 DOI: 10.1038/446029a
565	Mikula, P, Morelli, F, Lučan, RK, Jones, DN, Tryjanowski, P. 2016. Bats as prey of diurnal
566	birds: a global perspective. Mammal Review 46:160–174 DOI: 10.1111/mam.12060
567	Mikula, P, Hadrava, J, Albrecht, T, Tryjanowski, P. 2018. Large-scale assessment of
568	commensalistic-mutualistic associations between African birds and herbivorous mammals
569	using internet photos. PeerJ 6:e4520 DOI: 10.7717/peerj.4520
570	Miranda, M, Parrini, F, Dalerum, F. 2013. A categorization of recent network approaches to
571	analyse trophic interactions. Methods in Ecology and Evolution 4:897–905 DOI:

572	10.1111/2041-210x.12092
573	Mori, E, Bari, PD, Coraglia, M. 2018. Interference between roe deer and Northern chamois in the
574	Italian Alps: are Facebook groups effective data sources? Ethology Ecology & Evolution
575	30:277–284 DOI: 10.1080/03949370.2017.1354922
576	Naude, VN, Smyth, LK, Weideman, EA, Krochuk, BA, Amar, A. 2019. Using web-sourced
577	photography to explore the diet of a declining African raptor, the Martial Eagle
578	(Polemaetus bellicosus). Condor:121, 1–9 DOI: 10.1093/condor/duy015
579	Paine, RT. 1988. Road maps of interactions or grist for theoretical development? Ecology
580	69:1648–1654 DOI: 10.2307/1941141
581	Pesendorfer, MB, Dickerson, S, Dragoo, JW. 2018. Observation of tool use in striped skunks:
582	how community science and social media help document rare natural phenomena.
583	Ecosphere 9:e02484 DOI: 10.1002/ecs2.2484
584	Petranka, JW, Murray, SS. 2001. Effectiveness of removal sampling for determining salamander
585	density and biomass: a case study in an Appalachian streamside community. Journal of
586	Herpetology 35:36-44 DOI: 10.2307/1566020
587	Pincheira-Donoso, D, Bauer, AM, Meiri, S, Uetz, P. 2013. Global taxonomic diversity of living
588	reptiles. PLoS One 8:e59741 DOI: 10.1371/journal.pone.0059741
589	Polis, GA. 1991. Complex trophic interactions in deserts: an empirical critique of food-web
590	theory. American Naturalist 138:123–155 DOI: 10.1086/285208
591	Rodda, GH, Dean-Bradley, K, Campbell, EW, Fritts, TH, Lardner, B, Adams, AA, Reed, RN.
592	2015. Stability of detectability over 17 years at a single site and other lizard detection
593	comparisons from Guam. Journal of Herpetology 49:513-521 DOI: 10.1670/14-085
594	Sauermann, H, Franzoni, C. 2015. Crowd science user contribution patterns and their

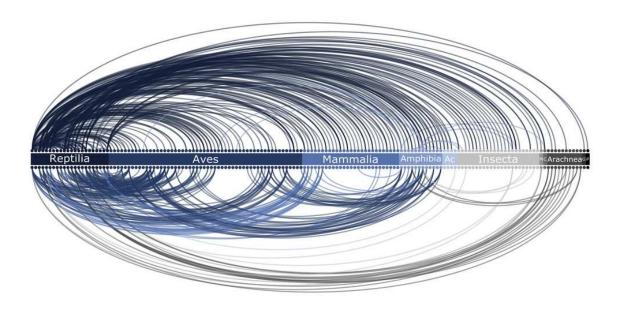
595	implications. Proceedings of the National Academy of Sciences 112:6/9–684 DOI:
596	10.1073/pnas.1408907112
597	Shine, R, Branch, WR, Webb, JK, Harlow, PS, Shine, T, Keogh, JS. 2007. Ecology of cobras
598	from southern Africa. Journal of Zoology 272:183-193 DOI: 10.1111/j.1469-
599	7998.2006.00252.x
600	Shine, R, Branch, WR, Harlow, PS, Webb, JK. 1998. Reproductive biology and food habits of
601	horned adders, Bitis caudalis (Viperidae), from southern Africa. Copeia 1998(2):391-401
602	DOI: 10.2307/1447433
603	Shine, R, Branch, WR, Harlow, PS, Webb, JK, Shine, T. 2006a. Biology of burrowing asps
604	(Atractaspididae) from southern Africa. Copeia 2006(1):103-115 DOI: 10.1643/0045-
605	8511(2006)006[0103:bobaaf]2.0.co;2
606	Shine, R, Branch, WR, Webb, JK, Harlow, PS, Shine, T. 2006b. Sexual dimorphism,
607	reproductive biology, and dietary habits of psammophiine snakes (Colubridae) from
608	southern Africa. Copeia 2006(4):650-664 DOI: 10.1643/0045-
609	8511(2006)6[650:sdrbad]2.0.co;2
610	Smith, CCD, Layloo, I, Maritz, RA, Maritz, B. 2019. Sexual dichromatism does not translate
611	into sex-based difference in morphology or diet for the African boomslang. Journal of
612	Zoology 308:253–258 DOI: 10.1111/jzo.12670
613	Steen, DA. 2010. Snakes in the grass: secretive natural histories defy both conventional and
614	progressive statistics. Herpetological Conservation and Biology 5:183-188.
615	Thompson, RM, Townsend, CR. 2000. Is resolution the solution?: The effect of taxonomic
616	resolution on the calculated properties of three stream food webs. Freshwater Biology
617	44:413–422 DOI: 10.1046/j.1365-2427.2000.00579.x

618	Tolvonen, I, Heikinheimo, V, Fink, C, Hausmann, A, Hilppala, I, Jarv, O, Tenkanen, H, Di
619	Minin, E. 2019. Social media data for conservation science: a methodological overview.
620	Biological Conservation 233:298–315 DOI: 10.1016/j.biocon.2019.01.023
621	Tylianakis, JM, Didham, RK, Bascompte, J, Wardle, DA. 2008. Global change and species
622	interactions in terrestrial ecosystems. Ecology Letters 11:1351–1363 DOI: 10.1111/j.1461
623	0248.2008.01250.x
624	Valiente-Banuet, A, Aizen, MA, Alcántara, JM, Arroyo, J, Cocucci, A, Galetti, M, García, MB,
625	García, D, Gómez, JM, Jordano, P, Medel, R, Navarro, L, Obeso, JR, Oviedo, R, Ramírez
626	N, Rey, PJ, Traveset, A, Verdú, M, Zamora, R. 2014. Beyond species loss: the extinction
627	of ecological interactions in a changing world. Functional Ecology 29:299–307 DOI:
628	10.1111/1365-2435.12356
629	Webb, JK, Branch, WR, Shine, R. 2001. Dietary habits and reproductive biology of typhlopid
630	snakes from southern Africa. Journal of Herpetology 35:558-567 DOI: 10.2307/1565893
631	Webb, JK, Shine, R, Branch, WR, Harlow, PS. 2000. Life-history strategies in basal snakes:
632	reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons
633	(Serpentes: Leptotyphlopidae). Journal of Zoology 250:321–327 DOI: 10.1111/j.1469-
634	7998.2000.tb00776.x
635	Western, D. 1974. The distribution, density and biomass density of lizards in a semi-arid
636	environment of northern Kenya. African Journal of Ecology 12:49-62 DOI:
637	10.1111/j.1365-2028.1974.tb00106.x
638	Wäldchen, J, Mäder, P. 2018. Machine learning for image based species identification. Methods
639	in Ecology and Evolution 9:2216–2225 DOI: 10.1111/2041-210x.13075
640	

641	Figure Legends
642	Figure 1: Arc diagram depicting family-level interactions detected using Facebook. Arcs
643	represent the connection between predator and prey families and the colour of the arc indicates
644	which taxonomic group the predator belongs to. Colour opacity corresponds to the frequency that
645	an interaction was detected (i.e., darker shading = more observations). Interactions on the top of
646	the plot represent herpetofauna as predators while interactions on the bottom of the plot represent
647	herpetofauna as prey. Abbreviations: Actinopterygii (Ac), Malacostraca (M), Chilopoda (C),
648	Gastropoda (G), and Plantae (P).
649	
650	Figure 2: Accumulation of snake feeding records identified by literature sources and
651	Facebook.
652	
653	Figure 3: Taxonomic resolution of snake prey items identified by literature sources and
654	Facebook. *** p-value < 0.0001
655	
656	Figure 4: Proportion of unique snake feeding interactions identified by literature sources
657	and Facebook. An interaction is defined as any instance of a specific snake species consuming a
658	specific prey item. Interactions were included only if the prey were identified to the taxonomic
659	level under analysis. Duplicate interactions within an approach were removed.
660	
661	Figure 5: Comparison of feeding observations for four target snake species collected from
662	Facebook, iNaturalist, and Google Images. (A) The number of observations collected across

663 the three digital platforms, and (B) the proportion of records with prey belonging to a given prey

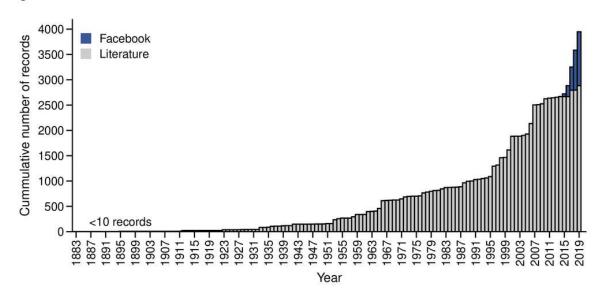
category across the three platforms.



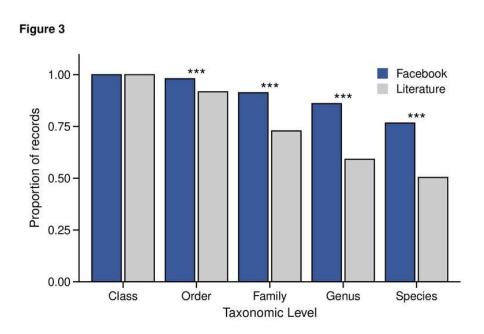
Arc diagram depicting family-level interactions detected using Facebook.

Arcs represent the connection between predator and prey families and the colour of the arc indicates which taxonomic group the predator belongs to. Colour opacity corresponds to the frequency that an interaction was detected (i.e., darker shading = more observations). Interactions on the top of the plot represent herpetofauna as predators while interactions on the bottom of the plot represent herpetofauna as prey. Abbreviations: Actinopterygii (Ac), Malacostraca (M), Chilopoda (C), Gastropoda (G), and Plantae (P).

Figure 1

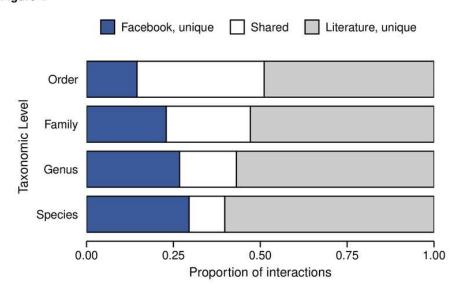


Accumulation of snake feeding records identified by literature sources and Facebook.



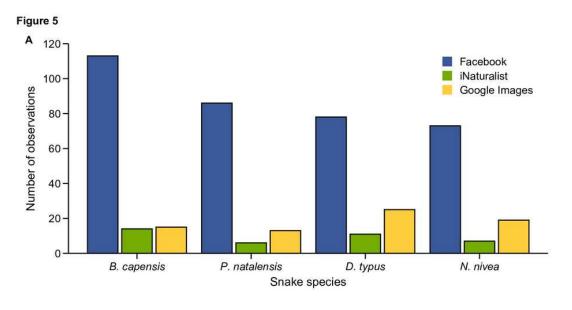
Taxonomic resolution of snake prey items identified by literature sources and Facebook.

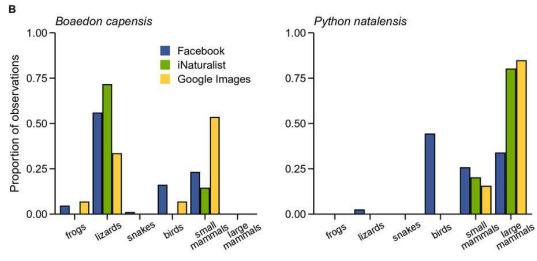
*** p-value < 0.0001

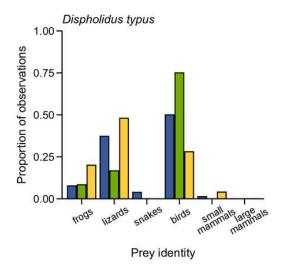


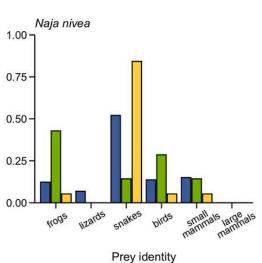
Proportion of unique snake feeding interactions identified by literature sources and Facebook.

An interaction is defined as any instance of a specific snake species consuming a specific prey item. Interactions were included only if the prey were identified to the taxonomic level under analysis. Duplicate interactions within an approach were removed.






Comparison of feeding observations for four target snake species collected from Facebook, iNaturalist, and Google Images.


(A) The number of observations collected across the three digital platforms, and (B) the proportion of records with prey belonging to a given prey category across the three platforms.

