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Background: COVID-19 pandemics has challenged emergency response systems worldwide, with
widespread reports of essential services breakdown and collapse of health care structure. A critical
element involves essential workforce management since current protocols recommend release from duty
for symptomatic individuals, including essential personnel. Testing capacity is also problematic in several
countries, where diagnosis demand outnumbers available local testing capacity.

Purpose: This work describes a machine learning model derived from hemogram exam data performed
in symptomatic patients and how they can be used to predict qRT-PCR test results.

Methods: A Naïve-Bayes model for machine learning is proposed for handling different scarcity
scenarios, including managing symptomatic essential workforce and absence of diagnostic tests.
Hemogram result data was used to predict qRT-PCR results in situations where the latter was not
performed, or results are not yet available. Adjusts in assumed prior probabilities allow fine-tuning of the
model, according to actual prediction context.

Results: Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high
accuracy, sensitivity and specificity. Data assessment can be performed in an individual or simultaneous
basis, according to desired outcome. Based on hemogram data and background scarcity context,
resource distribution is significantly optimized when model-based patient selection is observed,
compared to random choice. The model can help manage testing deficiency and other critical
circumstances.

Conclusions: Machine learning models can be derived from widely available, quick, and inexpensive
exam data in order to predict qRT-PCR results used in COVID-19 diagnosis. These models can be used to
assist strategic decision-making in resource scarcity scenarios, including personnel shortage, lack of
medical resources, and testing insufficiency.
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ABSTRACT22

Background: COVID-19 pandemics has challenged emergency response systems worldwide,

with widespread reports of essential services breakdown and collapse of health care structure.

A critical element involves essential workforce management since current protocols recommend

release from duty for symptomatic individuals, including essential personnel. Testing capacity

is also problematic in several countries, where diagnosis demand outnumbers available local

testing capacity.
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Purpose: This work describes a machine learning model derived from hemogram exam data

performed in symptomatic patients and how they can be used to predict qRT-PCR test results.
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Methods: A Naı̈ve-Bayes model for machine learning is proposed for handling different scarcity

scenarios, including managing symptomatic essential workforce and absence of diagnostic

tests. Hemogram result data was used to predict qRT-PCR results in situations where the latter

was not performed, or results are not yet available. Adjusts in assumed prior probabilities allow

fine-tuning of the model, according to actual prediction context.
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Results: Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals

with high accuracy, sensitivity and specificity. Data assessment can be performed in an

individual or simultaneous basis, according to desired outcome. Based on hemogram data and

background scarcity context, resource distribution is significantly optimized when model-based

patient selection is observed, compared to random choice. The model can help manage testing

deficiency and other critical circumstances.
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Conclusions: Machine learning models can be derived from widely available, quick, and

inexpensive exam data in order to predict qRT-PCR results used in COVID-19 diagnosis.

These models can be used to assist strategic decision-making in resource scarcity scenarios,

including personnel shortage, lack of medical resources, and testing insufficiency.
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INTRODUCTION46

Since its first detection and description (Huang et al., 2020), COVID-19 expansion has brought47

worldwide concerns to governmental agents, public and private institutions, and health care48

specialists. Declared as a pandemic, this disease has deeply impacted many aspects of life in49

affected communities. Relative lack of knowledge about the disease particularities has led to50

significant efforts devoted to alleviating its effects (Lipsitch et al., 2020).51

Alternatives to mitigate the disease spread include social distancing (Anderson et al., 2020).52

Such a course of action has shown some success in limiting contagion rates (Tu et al., 2020).53

However, isolation policies manifest drawbacks as economic impact, with significant effects54

on macroeconomic indicators and unemployment rates (Nicola et al., 2020). To address this,55

governments worldwide have proposed guidelines to manage the essential workforce, considered56

pivotal for maintaining strategic services and provide an appropriate response to the pandemics57

expansion (Black et al., 2020).58

Widespread reports of threats to critical national infrastructure have been presented, with59

significant impact associated with medical attention (Kandel et al., 2020). Significant pressure is60

being faced by emergency response workers, with some countries on the brink of collapse of their61

national health systems (Tanne et al., 2020). The main concern associated with COVID-19 is the62

lack of extensive testing capacity. Shortage of diagnostic material and other medical supplies63

pose as a major restraining factor in pandemics control (Ranney et al., 2020).64

The most common COVID-19 symptoms are similar to other viral infectious diseases,65

making the prompt clinical diagnostic impractical (Adhikari et al., 2020). Official guidelines66

emphasize the use of quantitative real-time PCR (qRT-PCR) assays for detection of viral RNA67

in diagnosis as the primary reference standard (Tahamtan and Ardebili, 2020). In Brazil, test68

results are hardly available within at least a week, forcing physicians and health care providers69

to take strategic decisions regarding patient care without quality information.70

Previous reports have described alterations in laboratory findings in COVID-19 patients.71

Hematological effects include leukopenia, lymphocytopenia and thrombocytopenia, while bio-72

chemical results show variation on alanine and aspartate aminotransferases, creatine kinase73

and D-dimer levels, among other parameters (Guan et al., 2020; Huang et al., 2020). Some74

efforts have been applied to evaluate clinical and epidemiological aspects of this disease using75

computational methods, such as diagnosis, prognosis, symptoms severity, mortality, and response76

to different treatments. A useful review of some of these methods is presented by Wynants and77

collaborators (Wynants et al., 2020).78

The main objective of this article is to provide insights to healthcare decision-makers facing79

scarcity situations, as a shortage of test capacity or limitations in the essential workforce. A80

useful method of doing so is using hemogram test results. This clinical exam is widely available,81

inexpensive, and fast, applying automation to maximize throughput. To do so, we have analyzed82

hemogram data from Brazilian symptomatic patients with available test results for COVID-19.83

We propose a framework using a Naı̈ve-Bayes model for machine learning, where test conditions84

can be adjusted to respond to actual lack of resources problems. Finally, four distinct scarcity85

scenarios examples are presented, including handling of the essential workforce and shortage of86

testing and treatment resources.87

MATERIAL AND METHODS88

Data Collection89

5644 patients admitted to the emergency department of Hospital Israelita Albert Einstein (HIAE90

- São Paulo, Brazil) presenting COVID-19-like symptoms were tested via qRT-PCR. A total91

number of 599 patients (10.61%) presented positive results for COVID-19. The full dataset92
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contains patients anonymized ID, age, qRT-PCR results, data on clinical evolution, and a total of93

105 clinical tests. Not all data was available for all patients, therefore the number of missing94

information is significant. All variables were normalized to maintain anonymity and remove95

scale effects. No missing data imputation was performed during model generation to avoid bias.96

Considering the significant ammount of missing data, only 510 patients presented values for all 1597

parameters evaluated in hemogram results (comprising the following cell counts or hematological98

measures: hematocrit, hemoglobin, platelets, mean platelet volume, red blood cells, lymphocytes,99

leukocytes, basophils, eosinophils, monocytes, neutrophils, mean corpuscular volume (MCV),100

mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC),101

and red blood cell distribution width (RDW). Data for the above parameters were used in102

model construction, along with qRT-PCR COVID-19 test results. The full dataset is available in103

https://www.kaggle.com/einsteindata4u/covid19.104

Machine Learning Analysis - Naı̈ve Bayes Classifier105

Machine learning (ML) is a field of study in computer science and statistics dedicated to106

the execution of computational tasks through algorithms that do not require explicit instruc-107

tions but instead rely on learning patterns from data samples to automate inferences (Mitchell,108

1997). These algorithms can infer input-output relationships without explicitly assuming a109

pre-determined model (Géron, 2017; Hastie et al., 2009). There are two learning paradigms:110

supervised and unsupervised. Supervised learning is a process in which the predictive models111

are constructed through a set of observations, each of those associated with a known outcome112

(label). In opposition, in unsupervised learning, one does not have access to the labels, it can be113

viewed as the task of ”spontaneously” finding patterns and structures in the input data.114

Our objective with this study is to predict in advance the results of the qRT-PCR test with115

machine learning models using data from hemogram tests performed on symptomatic patients.116

The main process can be divided into four steps: (1) pre-processing of the data (2) selection of an117

appropriate classification algorithm, (3) model development and validation, i.e., the process of118

using the selected characteristics to separate the two groups of subjects (positive for COVID-19119

vs. negative for COVID-19 in qRT-PCR test), and (4) test generated model with additional data.120

Steps are detailed as follows:121

Data Pre-processing: Samples presenting a missing value in any of the 15 evaluated features122

were removed. A total of 510 patients (73 positives for COVID-19 and 437 negatives) presented123

complete data and were considered for the model construction.124

Classification Algorithm: In this work, we use the Naı̈ve Bayes (NB) classifier, which is a125

probabilistic machine learning model used for classification tasks. The main reasons for choosing126

this classifier are due to their low computational cost and clear interpretation. In medicine, the127

first computer-learn attempts in decision support were based mainly on the Bayes theorem, in128

order to aggregate data information to physicians’ previous knowledge (Martin et al., 1960).129

The Naı̈ve Bayes (NB) method combines the previous probability of an event (also called prior130

probability, or simply prior) with additional evidence (as, for example, a set of clinical data from131

a patient) to calculate a combined, conditional probability that includes the prior probability132

given the extra information. The result is the posterior probability of an outcome, or simply133

posterior. This classifier is called ”naı̈ve” because it considers that each exam result (variables)134

is independent of each other. Once this situation is not realistic in medicine, the model should135

not be interpreted (Schurink et al., 2005). Besides this drawback, it can outperform more robust136

alternatives in classification tasks, and once it reflects the uncertainty involved in the diagnosis,137

Bayesian approaches are more suitable than deterministic techniques (Gorry and Barnett, 1968;138

Hastie et al., 2009).139

Model Development and Validation: A classifier is an estimator with a predict method that140
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takes an input array (test) and makes predictions for each sample in it. In supervised learning141

estimators (our case), this method returns the predicted labels or values computed from the142

estimated model (positive or negative for COVID-19). Cross-validation is a model evaluation143

method that allows one to evaluate an estimator on a given dataset reliably. It consists of144

iteratively fitting the estimator on a fraction of the data, called training set, and testing it on the145

left-out unseen data, called test set. Several strategies exist to partition the data. In this work, we146

used the Leave-one-out (LOO) cross-validation model, as in Chang et al. (Chang et al., 2003).147

The number of data points was split N times (number samples). The method was trained on all148

the data except for one point, and a prediction was made for that point. The proposed approach149

was implemented in Python v.3 (https://www.python.org) code using Scikit-Learn v.150

0.22.2 (Pedregosa et al., 2011) as a backend.151

Model Test: In order to evaluate the adequacy and generalization power of the proposed model, a152

set of 92 samples (10 positives for COVID-19 and 82 negatives) was extracted from the patient153

database. Those samples were not initially employed in model delineation, considering they154

present a single missing value among all 15 employed hemogram parameters. Missing data155

for this training set was imputed using the average value of the missing parameter within the156

resulting group (positive or negative). The test set was submitted to the previously generated157

model in order to evaluate classification performance.158

RESULTS159

Descriptive Analysis160

For data description, probability density function (PDF) of all 15 hemogram parameters were161

estimated through the original sample by kernel density estimator. Some hemogram parameters162

present notable differences between the distributions of positive and negative results, mainly163

regarding its modal value (distribution peak value) and variance (distribution width). Differences164

are summarized in Table 1. Regarding basophiles, eosinophils, leukocytes and platelets counts,165

qRT-PCR positive group distribution shows lower modal value and lower variance. On the166

other hand, monocyte count displays opposite behavior, once lower modal value and variance167

are observed for the qRT-PCR positive group. Lower variance may depict a condition pattern,168

therefore it is expected that negative cases present higher variance once it may contain a higher169

variety of conditions (reasons for symptom presence). The remaining nine hemogram parameters170

did not show a notable difference between negative and positive groups. PDF analysis results are171

presented in Supplementary Material Figure S1.172

Table 1. Descriptive analysis of hemogram parameters used in present study.

Parameter Modal value Variance

Basophiles Reduced in positive cases Reduced in positive cases

Eosinophiles Reduced in positive cases Reduced in positive cases

Leukocytes Reduced in positive cases Reduced in positive cases

Monocytes Augmented in positive cases Augmented in positive cases

Platelets Reduced in positive cases Reduced in positive cases

Parameters not shown displayed no difference between groups

Naı̈ve Bayes Model Results173

A NB classifier based on training set hemogram data was developed. Under the model, the174

complete range of prior probabilities (from 0.0001 to 0.9999 by 0.0001 increments) was scruti-175

nized, and posterior probability of each class was computed for different prior conditions. A176

4/14PeerJ reviewing PDF | (2020:05:48815:0:0:CHECK 10 May 2020)

Manuscript to be reviewed

Gwenn Englebienne
1) You don't need to do this. it's Naive Bayes, you can just ignore the missing values in both the numerator and both parts of the denominator.
2) What do you mean, training set?

Gwenn Englebienne
This sentence is gramatically incorrect, and I don't know what it's supposed to mean.



posterior probability value of 0.5 was defined as the classification threshold in one of the positive177

or negative predicted groups. Resulting model showed a good predictive power of the qRT-PCR178

test result based on hemogram data. Figure 1 shows the accuracy, sensitivity, and specificity179

curves derived from the model for different prior probabilities of each class (positive or negative180

for COVID-19). Reported prior probabilities refer to positive COVID-19 condition.181

Figure 1. Performance metrics of proposed Naive-Bayes model. prior probabilities are

presented in reference to positive qRT-PCR prediction. Confusion matrices (left to right) are

presented for 0.9999, 0.2933 and 0.0001 prior probabilities, respectively. Sensitivity=True

Positive Ratio; Specificity=True Negative Ratio

When setting the prior probability to the maximum defined value (0.9999), the NB classifier182

correctly diagnosed all PCR positive cases. On the other hand, such configuration improperly183

predicted 77.3% of negative PCR results as positive. Regarding the lower possible prior184

probability setting, it does not classify a single observation as positive. This result can be185

explained by the unbalanced number of observations for each class, tending to over classify186

samples as the class with more observation, i.e. negative results. Such characteristics can also187

be noticed in the general accuracy, since the decrease in the prior ponce the classifier tends to188

diagnose all observations as belonging to the dominant class (negative) and consequently raising189

the total of correctly classified samples. The break-even point is met when prior probability is190

set to 0.2933. Under this condition, all metrics are approximately 76.6%.191

Regarding the model sensitivity, the rate of positive samples correctly classified is over 85%192

within 0.999 to 0.5276 range, with small decrease of it when the prior probability of positive193

result is diminished within this range. When prior is set to under 0.0606, the number of positive194

predicted samples decrease rapidly, yielding lower sensitivity. As for specificity, it presents195

linear growth as tested priors decrease. Ultimately, the accuracy results profile are similar to196
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specificity, due to the negative patients dominance.197

As mentioned above, prior probability choice has a critical relevance in proposed model198

use. It is clear that, when extreme values of positive probability are applied (close to 0 or 1),199

specific classes (positive or negative qRT-PCR test results predictions) are favoured, increasing200

its ability of correct detection. As an example, when a value of 0.9999 is set for prior probability201

of positive result is set, an increase in misclassification in negative class results is observed. At202

the same time, it is possible to properly identify samples where hemogram evidence strongly203

indicates a negative result, according to the model. This is based on the fact that evidence used in204

the model construction (in present case, hemogram data) must strongly support the reduction of205

posterior probability of disease to values under 0.5, therefore leading to a negative result. This206

logic can be applied to fine tune the prior probability used in the model, in order to improve207

correct classification of positive or negative groups prediction. Examples of how to use this208

feature is provided in the “Discussion” section. Test samples (n=92, including 10 qRT-PCR209

positives) were used to test the proposed model. Figure 2 presents results obtained from the210

model application to test dataset.211

Figure 2. Classification performance for training (LOO) and test datasets. Results

presented for the complete prior probability range. Results are presented as the percentage of

correctly predicted qRT-PCR exams. Informed prior probability refers to positive outcome. TN:

true negative; TP: true positive.

DISCUSSION212

Laboratory findings can provide vital information for pandemics surveillance and management213

(Lippi and Plebani, 2020). Hemogram data have been previously proposed as useful parameters214
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in diagnosis and management of viral pandemics (Shimoni et al., 2013). In the present work,215

an analysis concerning hemogram data from symptomatic patients suspected of COVID-19216

infection was executed. A machine learning model based on Naı̈ve Bayes method is proposed217

in order to predict actual qRT-PCR from such patients. The presented model can be applied to218

different situations, aiming to assist medical practitioners and management staff in key decisions219

regarding this pandemic. Figure 3 summarizes model construction and application. Predictions220

are not intended to be used as a diagnostic method since this technique was designed to anticipate221

qRT-PCR results only. As such, it is highly dependable on factors affecting qRT-PCR efficiency,222

and its prediction capacity is dependent on the sensitivity, accuracy, and specificity of the original223

laboratory exam (Sethuraman et al., 2020).224

Figure 3. NB Model construction and application diagram.

Descriptive analysis of hemogram clinical findings shows differences in blood cell counts225

and other hematological parameters among COVID-19 positive and negative patient results.226

Differences are conspicuous among three measures (leukocytes, monocytes and platelets) and227

more discrete to additional two (basophiles and eosinophiles). It is possible that differences228

are also present across the complete data spectrum, even though they are not clearly visualized229

with PDF data. These results are in accordance to previous reports of changes in laboratory230

findings in COVID-19 infected patients, where conditions as leukopenia, lymphocytopenia and231

thrombopenia were reported (Fan et al., 2020). It is important to highlight that data analysis232

is not sufficient to characterize clinical hematological alterations in evaluated patients (when233

compared to demographic hematologic parameters data), once data was normalized for the234

evaluated sample set only. However, even within this particular quota of population (individuals235

presenting COVID-19-like symptoms), differences were found between individuals presenting236

negative or positive qRT-PCR COVID test results. The proposed NB-ML model can be helpful in237

accessing different levels of information from hemogram results, through inferring non-evident238

patterns and parameter relationships from this data.239

Bayesian techniques are based on the choice of a prior probability of an event (in present240

case, positive result for qRT-PCR test). The method considers actual evidence (hemogram data)241

to result in a posterior probability of the outcome (prediction of a positive result). By changing242

the selected prior probability, we can derive an uncertainty analysis of the model to understand243

its distribution. Uncertainty can be then applied to adequately adapt the classifier to a particular244

ongoing context. This option allows the evaluation of different decision-making scenarios245

concerning diverse aspects of pandemics management. During a crisis situation, measures should246
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be taken seeking to maximize benefits and achieve a fair resource allocation (Emanuel et al.,247

2020). To illustrate the model flexibility and how it can be used to help on this matter, a general248

framework of application is proposed, followed by a simulation of four scenarios where resource249

scarcity is assumed.250

Application Framework251

The proposed NB model can be applied in two distinct situations. When clinical data is available252

for a particular patient, it is highly recommended that medical staff determine the prior probability253

on a case-by-case basis. When no clinical or medical data is available, or when decisions254

regarding resource management involving multiple symptomatic patients are necessary, the255

model can be used in multiple individuals simultaneously, aiming to identify those with higher256

probabilities of presenting positive qRT-PCR results.257

Individual Assessment258

Individual risk management and personal evaluation is essential for COVID-19 response (Gasmi259

et al., 2020). Individuals presenting COVID-19 symptoms are medically evaluated where no260

COVID-19 test is available for appropriate diagnosis confirmation. Medical practitioners can261

determine a probability of disease based on anamnesis, symptoms, clinical exams, laboratory262

findings and other available data. This probability of infection, as determined by the physician263

or medical team, can be considered as the prior probability. Using hemogram data as input,264

and informing the prior probability of COVID-19 based on medical findings, the model will265

consider hemogram data to inform a posterior probability, which can be higher or lower than the266

original, and based on the hemogram alterations caused by the virus infection. It is important that267

hemogram data would not be included in original medical assessment and prior determination,268

in order to avoid bias and reduce model overfit.269

Multiple Patients Evaluation270

It can be used in situations where decisions are necessary for resource management including271

multiple individuals. Choice of a target group (positive or negative qRT-PCR result prediction)272

should be defined. The model can be applied to multiple individuals simultaneously, with273

the choice of prior probability carefully adjusted to result in a specific number of predicted274

individuals from the target group, according to the desired outcome. This method increases275

the correct selection of candidates belonging to the target group, when compared to random276

selection. When additional clinical data is available, or become available later, patients selected277

during bulk evaluation should be reassessed individually as proposed in the general framework,278

in order to reduce misclassifications.279

Applications to Scarcity Scenarios:280

Examples of proposed model use are presented for some specific scarcity scenarios in Table 2.281

As can be seen, the model sensitivity can be adjusted by selecting prior probability employed,282

according to desired outcome or interest group. prior selection should be carefully decided,283

based on current context or situation proposed, and must consider the classification group where284

higher accuracy is intended.285

High accuracy in qRT-PCR result prediction is achieved based on hemogram information286

only. Further analysis performed on the original data (not shown) suggest that additional clinical287

results can improve prediction efficiency. This conclusion is in accordance with previous findings288

suggesting biochemical and immunological abnormalities, in addition to hematologic alterations,289

can be caused by COVID-19 disease (Henry et al., 2013). In this context, the relevance of data290

employed to generate ML models is emphasized. The use of large and comprehensive datasets,291

containing as much information as possible regarding clinical and laboratory findings, symptoms,292

disease evolution, and other relevant aspects, is crucial in devising useful and adequate models.293
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Table 2. Strategies for NB-ML model applications and symptomatic patient selection in scarcity conditions. Hemogram test results are available for all

symptomatic patients. Scenarios proposed for situations where test results are not available (no testing or waiting qRT-PCR test results). Prediction results

were appraised in a binary form, with positive or negative classification based on posterior probability threshold of 0.5. Results are presented in reference

to random patient selection.

Condition Context example Objective Strategy Action

Starting /

fixed

prior

Results in training

set (positive

misclassified

among cleared)

Results in test set

(positive

misclassified

among cleared)

Testing

shortage

Testing capacity

is limited to

a third of

candidates only

Maximize

number

of infected

patients tested

Prioritize

TP

identification

Fine-tune prior

until positive

reach testing

capacity

0.5

130% increase

in actual infected

patients tested

(prior=0.3482)

100% increase in

actual infected

patients tested

(prior=0.9607)

Lack of

essential

workforce

Professionals with

high risk of nocosomial

or work-related

transmission

Keep symptomatic,

non-infected

essential

workers in duty

Search for evident

non-infected

workers (TN

identification)

All workers are

considered as

infected, unless

model says otherwise

0.9999

19.4% of total

workforce

cleared (0%)

50% of total

workforce

cleared (6.5%)

Lack of

essential

workforce

Professionals with

medium to

low risk of

transmission

Keep symptomatic,

non-infected

essential

workers in duty

Find ideal balance

to simultaneously,

maximize both

TN and TP

Use intersection of

sensitivity and

specificity curves

from training set

0.2933

69.0% of total

workforce

cleared (5%)

81.5% of total

workforce

cleared (6.6%)

Limited

medical

access

Medical assistance

limited to

20% of symptomatic

individuals only

Avoid contagion

exposure of non-infected

patients in ER during

medical assistance

Eliminate non-infected

from candidates for

medical assistance

(TN identification)

Fine-tune prior to select

most likely negative results.

Select remanining set

for medical assistance

0.5

35.6% decrease in

non-infected

patients exposure

(prior=0.0954)

18.8% decrease in

non-infected

patients exposure

(prior=0.4652)

TP: True Positive; TN: True Negative
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The development of nationwide or regional databases based on local data is essential, in order to294

capture epidemiological idiosyncrasies associated with such populations (Terpos et al., 2020).295

Also, natural differences in hemogram results from distinct demographic groups (as seen in296

reference values according to age, sex, or other physiological factors) can aggregate noise to297

the model, which can be reduced when large database are employed in model construction, and298

results can be devised for each ethnographic strata.299

Despite having high overall accuracy, performance metrics obtained with proposed model300

show unequal ability to predict positive or negative results. This situation is caused by a301

significant imbalance in number of samples belonging to each of this qRT-PCR result groups302

in original data. The use of balanced data in machine learning model design is important to303

assure high prediction quality (Krawczyk, 2016). The option of maintaining original data in304

model construction was adopted, since it better represents actual COVID-19 prevalence among305

symptomatic patients, and therefore seems to represent a more realistic situation. Additional306

simulations applying a balanced model (data not shown) using positive group oversampling307

(to compensate its insufficiency in original data) have devised alternative models with superior308

prediction power. Alternative balanced model results are presented in Supplementary Material309

Figure S2.Therefore, additional positive samples will be added to the data and used in future310

model versions.311

As a perspective, collection of hemogram results from asymptomatic patients (in addition to312

symptomatic individuals) can be used to evaluate the utility of this approach on the detection313

of asymptomatic infections, in order to provide alternatives in diagnostics, especially in a314

context of testing deficiency. A web-based application was developed by the authors, in which315

hemogram data can be introduced for a single individual, along with prior probability of infection,316

based on data used to generate the present model. The online tool is available at http:317

//sbcb.inf.ufrgs.br/covid. Future implementation will allow the upload of multiple318

patients simultaneously, and construction or testing of user data-derived models. This service319

will allow easy access and practical application of the proposed model.320
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(a) Basophils (b) Eosinophils (c) Hematocrit

(d) Hemoglobin (e) Leukocytes (f) Lymphocytes

(g) MCH (h) MCHC (i) MCV

(j) Mean Platelet Volume (k) Monocytes (l) Neutrophils

(m) Platelets (n) RDW (o) Red Blood Cells

Figure S1. Probability density function (PDF) of all 15 hemogram parameters.
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Figure S2. Performance metrics of alternative balanced Naive-Bayes model. In this case,

random oversampling of positive results was employed, until sample number in each class is

identical. Prior probabilities are presented in reference to positive qRT-PCR prediction.

Confusion matrices (left to right) are presented for 0.9999, 0.2237 and 0.0001 prior

probabilities, respectively. Sensitivity=True Positive Ratio; Sensitivity=True Negative Ratio.

Random seed was set to 0 for replication purposes.
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