
Can parasites halt the invader? Mermithid nematodes
parasitizing the yellow-legged Asian hornet in France
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Since its introduction in France 10 years ago, the Yellow-legged Asian bee-hawking hornet
Vespa velutina has rapidly spread to neighboring countries (Spain, Portugal, Belgium, Italy,
and Germany), becoming a new threat to beekeeping activities. While introduced species
often leave behind natural enemies from their original home, which benefits them in their
new environment, they can also suffer local recruitment of natural enemies. Three
mermithid postparasitic juveniles were obtained from V. velutina adults in 2012, from two
French localities. However, these are the only parasitic nematodes reported up to now in
Europe, in spite of the huge numbers of nests destroyed each year and the recent
examination of 33,000 adult hornets. This suggests that the infection of V. velutina by
these nematodes is exceptional. Morphological criteria assigned the specimens to the
genus Pheromermis and molecular data (18S sequences) to the Mermithidae, due to the
lack of Pheromermis spp. sequences in GenBank. The species is probably Pheromermis
vesparum, a parasite of social wasps in Europe. This nematode is the second native enemy
of Vespa velutina recorded in France, after a conopid fly whose larvae develop as internal
parasitoids of adult wasps and bumblebees. In this paper, we provide arguments for the
local origin of the nematode parasite and its limited impact on hornet colony survival. We
also clarify why these parasites (mermithids and conopids) most likely could not hamper
the hornet invasion nor be used in biological control programs against this invasive
species.
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28 Introduction

29

30 The recent introduction of the Yellow-legged Asian hornet Vespa velutina in France was the first 

31 successful invasion of an exotic Vespidae in Europe (Rasplus et al., 2010; Beggs et al., 2011). This 

32 species is of great concern among public authorities and beekeepers because of its rapid multiplication 

33 and high impact on beekeeping due to its predatory action on honeybees (Perrard et al., 2009) and its 

34 hawking behavior that disrupts bee colony foraging (Rortais et al., 2010; Monceau et al., 2013; Arca et 

35 al., 2014). This invasive hornet was first observed in 2004 in Southwest France (Villemant et al., 

36 2011); since then it has spread out across 67 French departments (ca. 340 000 km²) (Rome et al., 2013; 

37 INPN, 2015). In addition, it spread to Spain in 2010, to Portugal and Belgium in 2011 (Rome et al., 

38 2013), to Italy in 2012 (Demichelis et al., 2014), and arrived in Germany in 2014 (R. Witt pers. comm., 

39 2014) (Fig. 1). It is expected to eventually spread throughout Europe (Villemant et al., 2011) and with 

40 recent climate change scenarios, future movements are even more pessimistic (Barbet-Massin et al., 

41 2013). 

42 Multiple biotic factors, including resources, competition, and natural enemies can affect the 

43 demographics of an invader, either independently or interactively and thus play a role in its 

44 establishment. Introduced species often leave behind natural enemies from their original home, thus 

45 benefiting them in the new environment and resulting in an increase of growth, reproduction and 

46 competitive ability (Holway, Suarez & Case, 1998; Colautti et al., 2004; Torchin & Mitchell, 2004; 

47 Lee & Klasing, 2004; Roy et al., 2011). Local recruitment of natural enemies in their new home can 

48 also affect the development of the invasion and lessen their effect on local hosts (Prenter et al., 2004; 

49 Girardoz, Kenis & Quicke, 2006; Dunn, 2009; Kenis et al., 2009; Péré et al., 2011).

50 The first native enemy of Vespa velutina reported in Europe was a thick-headed fly (family 

51 Conopidae) whose larvae develop as internal parasitoids of adult wasps and bumblebees (Darrouzet, 

52 Gévar & Dupont, 2015). We report here a new parasite, a mermithid nematode of the genus 

53 Pheromermis that was obtained from V. velutina adults in 2012 in two different French localities. As 

54 far as we know, no other nematode parasites of V. velutina have been reported up to now in Europe. 

55 In this paper, we discuss how these parasites could potentially hamper the hornet invasion and 

56 whether they could be used in biological control programs against this invasive species.

57

58 Materials and methods
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59

60 Origin of specimens

61 The invasive progress of the alien hornet has been monitored since 2006 through an online biodiversity 

62 database maintained by the Muséum National d'Histoire Naturelle (MNHN) and regularly updated by 

63 one of us, Q.R. (Rome et al., 2013; INPN, 2015). This monitoring showed that more than 7000 nests 

64 were discovered from 2006 to 2014. Nests are mainly observed in autumn after leaf fall, when the 

65 colonies reach maturity and contain several hundred to two thousand adult hornets (Rome et al., 2015). 

66 This surveillance network provides useful information but the hornets were not regularly surveyed for 

67 parasites. However, in order to study seasonal changes in V. velutina colony structure, we dissected 77 

68 nests between 2007 and 2011 (Rome et al., 2015); we sorted and weighed some 33,000 adult hornets 

69 without discovering any individual infested by nematodes. The only parasitized adult we obtained 

70 contained a conopid pupa that has not been identified (Villemant et al., 2008).

71 Nematode parasites were unexpectedly noticed in hornets by local observers on two occasions. 

72 In November 2012, one mermithid was obtained from ten adult hornets dissected from a nest collected 

73 at Dompierre-sur-Besbre, Allier (Ph. Noireterre pers. comm., 2012). In January 2013, two mermithids 

74 were obtained from dead adults in an advanced state of decomposition, from a nest at Issigeac, 

75 Dordogne (P. Doumanjou-Laroque pers. comm., 2013). The mermithids were sent to the MNHN for 

76 identification. Specimens are deposited in the MNHN collection as MNHN JL50 (Dompierre-sur-

77 Besbre) and MNHN JL51A and JL51B (Issigeac).

78

79 Morphology

80 The mermithid nematode from Dompierre-sur-Besbre (Allier) was photographed (Fig. 2), then part of 

81 its body was sampled for the molecular study, and the remainder was submitted to one of us (G.O.P.) 

82 for further identification. Mermithid nematodes, including the present species, are quite large at 

83 maturity and often exceed the length of their host. The specimen from the Asian hornet was a 

84 postparasitic juvenile and had morphological characters that aligned it with species of the genus 

85 Pheromermis Poinar, Lane and Thomas, 1976.

86

87 Molecular identification

88 Total genomic DNA was extracted from a 5 mm long medial segment sampled from each specimen, 

89 using the Qiagen DNA Mini Kit and following the manufacturer’s protocol. Three candidate genes 
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90 were selected for PCR amplification: the mitochondrial cytochrome oxidase I (COI) and the nuclear 

91 large and small subunit rRNA genes (28S-rRNA and 18S-rRNA). The choice was dictated by the large 

92 number of nematode sequences already available in GenBank for comparison.

93 The genes were amplified using standard primers and amplification profiles (Table 1). The 

94 PCRs were conducted in 20 μl reaction volume, containing 1-5 ng of DNA and to a final concentration 

95 of 1X reaction buffer, 2.5 mM MgCl2, 0.26 mM dNTP, 0.3 μM of each primer, 5% DMSO and 1.5 

96 units of Qiagen Taq polymerase. For all primer pair combinations, the amplification profile was: 5 min 

97 initial denaturation at 94 °C, 40 cycles of 40 s at 94 °C, 40 s at primer annealing temperature (see Table 

98 1) and 60 s at 72 °C, followed by a final extension of 5 min at 72 °C. PCR products were visualized on 

99 a 1.5% agarose gel stained with ethidium bromide and the positive PCRs were sequenced in both 

100 directions using the Sanger method.

101 A preliminary BLAST search suggested that the 18S and 28S sequences obtained from the 

102 samples were rather similar to those of Mermithidae present in GenBank. However, only two out of the 

103 twelve 28S GenBank sequences overlapped significantly with our sequences, so further comparisons 

104 were restricted to the 18S gene. All 18S sequences of Mermithidae available in GenBank were then 

105 downloaded and aligned with the sequences we obtained, resulting in a 1322 bp alignment. The 18S 

106 GenBank sequences proved to be rather variable in length, some of them with minimal overlap with the 

107 region amplified using our primers. The dataset was then reduced, retaining only the sequences longer 

108 that 400 bp. 

109 All new sequences have been submitted to GenBank under the accession numbers xxx-xxx.

110 The final matrix, including 26 ingroup sequences and five outgroups (Aulolaimidae: 

111 Aulolaimus and Isolaimiidae: Isolaimium) was analyzed under the maximum likelihood criteria, using 

112 RAxML v. 7.0.3 (Stamatakis, 2006), selecting a GTR+Γ+I model and random starting tree, with 

113 empirical base frequencies and estimated α-shape parameters and GTR-rates. Nodal support was 

114 estimated using 100 bootstrap replicates.

115

116 Results

117

118 Morphology

119 Only the specimen from Dompierre-sur-Besbre revealed morphological features (Fig. 2); the other two 

120 specimens from Issigeac were too damaged by putrefaction. The morphological features of the single 
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121 juvenile examined were consistent with those of juveniles of the European wasp mermithid, 

122 Pheromermis vesparum Kaiser, 1987. This species specializes on social Hymenoptera and has been 

123 reported from Vespa spp. and Polistes sp. 

124 This genus is characterized by the presence of four submedian cephalic papillae; large 

125 anteriorly placed cup-shaped amphids; an S-shaped vagina not bent in a transverse plane to the body; 

126 six hypodermal cords; paired, short, separate spicules; cuticle with cross fibers; and eggs lacking 

127 processes (Poinar, Lane & Thomas, 1976). Because most of these are characters of the adults and the 

128 specimens from the Asian hornet were postparasitic juveniles, it is possible that more than one species 

129 of Pheromermis was involved. 

130

131 Molecular identification

132 Of the three specimens analyzed, one from Issigeac was probably too decomposed and the resulting 

133 DNA likely too degraded because all amplification attempts failed. Instead we recovered sequences for 

134 the 18S and 28S genes from the other two specimens i.e. from two localities. The 18S sequences were 

135 identical, while the 28S differed only by 1.6%, with all variable positions concentrated in the loop 

136 regions. Despite several attempts, the amplification of the COI gene also failed, suggesting that the 

137 standard primers are ineffective for amplifying the COI gene in this species. 

138 The tree obtained from the maximum likelihood analysis recovers the two 18S sequences well 

139 nested within the family Mermithidae, and sisters to three specimens identified as Mermis nigrescens 

140 (Fig. 3), a parasite of grasshoppers (Baker & Capinera, 1997). These results are congruent with the 

141 morphological identification, although no molecular data of Pheromermis are currently available for 

142 comparison and thus, we cannot identify the specimens at the species level. We have to consider them 

143 as belonging to Pheromermis sp. However, larvae collected from V. velutina most probably belong to 

144 Pheromermis vesparum Kaiser, 1987, a well-known parasite of social wasps. It has been recorded from 

145 Vespa crabro, Vespula vulgaris, V. germanica, Dolichovespula saxonica and Polistes sp. (Kaiser, 

146 1987).

147

148 Discussion

149

150 In a ten year span, only 3 nematodes have been collected from hornets in two distant localities in 

151 France. Nevertheless, numerous and very populous colonies of V. velutina are destroyed and dropped 
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152 from tree crowns each year in France. In spite of these huge numbers of destroyed nests, the rarity of 

153 records suggests that the infection of the hornet by these nematodes is exceptional. 

154 The development of the Pheromermis species is unique among the Mermithidae because a 

155 second host (paratenic or transport host) is required for life cycle completion (Poinar, Lane & Thomas, 

156 1976; Kaiser, 1987; Martin, 2004). The adult nematodes occur in water or saturated soils and the eggs 

157 are fully embryonated at oviposition. The eggs hatch in the gut of various aquatic or semi-aquatic 

158 insects and infective juvenile stages penetrate the gut wall to enter a quiescent state in the tissues of the 

159 paratenic hosts, even during host metamorphosis to adult form. Wasp larvae are probably infected 

160 when they are fed with adult paratenic hosts captured by worker wasps. The nematode larvae become 

161 active and start feeding on non-vital tissues of the developing wasp. This coincides with the period 

162 when social wasps are raising their sexual brood (Kaiser, 1987). As nematodes rarely kill their juvenile 

163 wasp hosts, the adult wasp emerges and the nematode matures in the abdomen of the wasp, rendering 

164 sexual individuals sterile or inactive. When the infected wasp visits water, the mature worm leaves its 

165 host, molts into the adult stage, mates and lay eggs, so completing the life cycle. It is not yet known 

166 whether the reproductive wasps normally visit wet areas in the fall before the queens enter hibernation 

167 or whether the mermithids cause hosts to seek water (Poinar, 1976).

168 Two hypotheses can be made to explain the presence of the nematode parasites in V. velutina 

169 adults. The parasite (1) may have been introduced in the new range by the invader itself, or (2) may 

170 have been acquired from the local fauna. The first hypothesis is unlikely because hornet queens 

171 parasitized at the time of their introduction would have died without descendants. Moreover, genetic 

172 data have shown that only very few hornet queens (or even a single one) have been introduced in 

173 France (Arca et al., 2015), therefore making the hypothesis of an introduced parasite even less possible. 

174 In addition, the exotic parasite would have had to adapt to one (or several) local insect species whose 

175 larvae are aquatic. The second hypothesis seems to be more likely. The invasive species was infested 

176 by an autochthonous nematode whose paratenic hosts are various aquatic insects and main hosts are 

177 autochthonous social wasps. Pheromermis species that attack social wasps in Europe have a wide range 

178 of hosts (Molloy, Vinikour & Anderson, 1999) and thus are more likely to infect a new host than more 

179 specific nematodes.

180 Known paratenic hosts of Pheromermis spp. attacking wasps include notably larvae of 

181 caddisflies (Trichoptera), stoneflies (Plecoptera), craneflies (Tipulidae) and mayflies (Ephemeroptera), 

182 as well as various Coleoptera larvae (Poinar, Lane & Thomas, 1976; Poinar, 1981; Molloy, Vinikour & 
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183 Anderson, 1999). In the course of an ongoing study, we collected more than 2000 prey flesh pellets at 

184 the time they were brought back to the nest by worker wasps. Their identification showed that 

185 caddisflies are part of the V. velutina prey spectrum but only in tiny proportions (0.2%) compared to 

186 other insect preys (unpublished data from the authors).

187 Local recruitment of natural enemies like mermithid nematodes obviously leads to the 

188 following question: are they able to control hornet populations? The fact that Pheromermis spp. kill 

189 their hosts makes these nematodes important as biological control agents of social wasps. However, 

190 Martin (2004) noted that contrary to the 50% ratio quoted by Poinar, Lane & Thomas (1976) and 

191 Moller et al. (1991), levels of infection vary from 0-7% in workers and males, and 8-35% in social 

192 wasp queens (Blackith & Stevenson, 1958; Kaiser, 1987). In 1893, all males in one large Vespula wasp 

193 nest were found infected (Fox-Wilson, 1946) by Gordius worms (Gordius belong to the 

194 Nematomorpha, a phylum distinct from the Nematodes to which mermithid belong, but with a similar 

195 life cycle). However, the dissections of thousands of adults from hundreds of Vespula and Vespa nests 

196 by various wasp researchers indicate that such extreme levels of infection are very rare (Martin, 2004). 

197 Our extensive survey (Rome et al., 2015) led to the same conclusion. 

198 The degree of infection in any nest also depends on the proximity of the wasp nest to an 

199 abundant source of the nematodes’ paratenic hosts (Rose, Harris & Glare, 1999; Martin, 2004). Kaiser 

200 (1987) found that 1/3 of Vespula nests were infected with Pheromermis when, and only when, they 

201 were within 200 m of water. Also, the rarity of potential paratenic hosts in V. velutina’s prey spectrum 

202 does not enable the nematode to greatly infest a colony, even if hornet workers generally fed several 

203 larvae with every flesh pellet brought back to the nest (Janet, 1903; Spradbery, 1973). Moreover, a 

204 high mortality of nestmates is not sufficient to ensure the total destruction of a colony, and even with 

205 75% mortality, recovery is possible (Gambino, Pierluisi & Poinar, 1992; Toft & Harris, 2004; Gouge, 

206 2005). The founder queen also cannot be infected since female sexual adults cannot over-winter. The 

207 maturing nematode, which eventually occupies all the gaster when the sexual stages emerge, severely 

208 interferes with the amount of fat deposited (Martin, 2004). Finally, unlike many entomopathogenic 

209 nematodes, Pheromermis spp. do not seem to serve as vectors for symbiotic insect-pathogenic bacteria 

210 (Poinar, 1979), whose presence may increase the virulence of the infection (Lacey et al., 2001).

211 The possible use of Pheromermis spp. as a biological control agent against social wasps was 

212 tested with a simulation model (Martin, 2004) which predicted that the production of sexual individuals 

213 would be reduced in colonies undergoing early and high levels of infection. However, even highly 
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214 infected (80%) colonies can still produce some reproductive offspring, indicating that they are resilient 

215 to infection. Moreover, an increase of the infestation level raises the larva/worker ratio so that less fed 

216 larvae produce sexual females of lesser quality, with fewer over-wintering and nest founding successes 

217 (Harris & Beggs, 1995). The low quality of some sexual females may inadvertently permit a greater 

218 founding success via density-dependent compensation: the healthy females are less numerous but they 

219 experience lower mortality due to weaker competition for fat storage (Harris & Beggs, 1995) and 

220 reduced nest usurpation in the spring (Martin, 1991, 2004; Archer, 2012). 

221 The reduction of usurpation disputes which lead to the death of a high number of founder 

222 queens (Spradbery, 1991; Archer, 2012) also explains why conopid flies would not be efficient control 

223 agents even if they were able to directly attack adult queens. Thus, the local recruitment of Conops 

224 vesicularis as a parasitoid of Vespa velutina in France (Darrouzet, Gévar & Dupont, 2015) would not 

225 make it a potential control agent of the invasive hornet. Moreover, conopids mainly fly in summer 

226 from June to September (Schmid-Hempel et al., 1990) and are thus more likely to attack foraging 

227 workers than mother queens, which do not leave the nest after their first workers emerge in June 

228 (Matsuura & Yamane, 1990; Rome et al., 2015).

229 Many parasites of social wasps, such as the ichneumonids Sphecophaga spp. (Donovan et al., 

230 2002; Beggs et al., 2008), the stylops Xenos spp. (Matsuura & Yamane, 1990), or the conopid flies like 

231 C. vesicularis, attack only single individuals within the colony. By contrast, other parasites such as 

232 Varroa destructor mites can kill a bee colony of more than 30,000 individuals by transmitting viral 

233 pathogens as they move between bees within a colony (Sumpter & Martin, 2004). Infection levels of 

234 parasites which attack only single individuals need to be very high (>50%) to kill or significantly 

235 reduce the productivity of social wasp colonies (Matsuura & Yamane, 1990; Barlow, Beggs & Barron, 

236 2002), because their populations have high reproductive efficiency and undergo density-dependent 

237 compensation in spring (Martin, 1991, 2004). 

238 On the other hand, the introduction of an alternative (invading) host, rather than diluting the 

239 effects of a parasite, may act as a reservoir for infection, a factor exacerbated by high densities of the 

240 invading hosts. The arrival of an alternative host could thus favor the multiplication of the native 

241 parasite, resulting in reduced population growth of susceptible hosts (Holt & Lawton, 1993). Such 

242 indirect host competition can lead to the extinction of the most parasitized host (Prenter et al., 2004; 

243 Dunn, 2009). Nematodes are considered to have limited effects on social wasps (Gouge, 2005) whereas 

244 conopid flies which rarely attack social wasps (Spradbery, 1973; Matsuura & Yamane, 1990) can 
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245 locally be extremely destructive to bumblebee colonies in Europe (Schmid-Hempel, 2001). The 

246 negative effects of parasitoids on their hosts are however not always clear-cut and immediately visible. 

247 Parasite effects often depend on host condition and may only be expressed when the host population is 

248 in poor condition (Schmid-Hempel, 2001), a threat which nowadays may apply more to bumblebees 

249 whose populations are more susceptible to decline (Gillespie, 2010) than those of social wasps.

250

251

252
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1
Current distribution of Vespa velutina.

Distribution of the invasive yellow-legged Asian hornet Vespa velutina in Europe in 2014.

Black spot: first occurrence of V. velutina in Europe. Red spots: localities where the

nematodes have been found.
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2
Mermithid Nematode from Vespa velutina.

Photographs of a postparasitic juvenile of the mermithid nematode (MNHN JL50) from Vespa

velutina, collected in Dompierre-sur-Besbre, France. A, whole worm; B, head; C, tail.

PeerJ reviewing PDF | (2015:03:4262:0:0:NEW 4 Mar 2015)

Reviewing Manuscript



PeerJ reviewing PDF | (2015:03:4262:0:0:NEW 4 Mar 2015)

Reviewing Manuscript



3
Molecular analysis.

Maximum-likelihood 18S tree showing the relationships of the parasite infecting Vespa

velutina (red) with other mermithids. When available, the main host insects are indicated

after the parasite name. The bootstrap support values are indicated at the node.
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Table 1(on next page)

Primers used.

Primer pairs used in this study with their annealing temperatures. The 18S was amplified in

two overlapping fragments.
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2

Gene Primers Annealing T Reference

18S 18S-1F TACCTGGTTGATCCTGCCAGTAG 51 Giribet et al., 1996

18S-5R CTTGCAAAGCTGCTTTCGC

18S-3F GTTCGATTCCGGAGAGGGA 51

18S-Bi GAGTCTCGTTCGTTATCGGA

28S 28S-C1 ACCCGCTGAATTTAAGCAT 55 Dayrat et al., 2001

28S-D2 TCCGTGTTTCAAGACGGG

COI AnCO1-F ATTTGGTCTTTGATCTGGTATGG 48 Cross et al., 2006

AnCO1-R TGGCAGAAATAACATCCAAACTAG

LCO1490 GGTCAACAAATCATAAAGATATTGG 48 Folmer et al., 1994

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA

3
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