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Background: Cellular heterogeneity with tumor microenvironment plays critical roles in tumorigenesis
and development. Global view of tumor-infiltrating immune and stromal cells at high resolution is greatly
needed in breast tumor.

Methods: portrayed the cellular heterogeneity map of a total of 64 cell types in 1092 breast tumor and
adjacent normal tissues using xCell, which digitally dissect tissue cellular heterogeneity based on gene
expression.

Results: Higher proportions of immune cells were enriched in tumor compared with normal tissues.
Immune inhibitory receptors (PD1, CTLA4, LAG3 and TIM3) were co-expressed on certain subtypes of T
cells in breast tumor, especially that PD1 and CTLA4 both positively correlated with CD8+ Tcm and CD8+
T cells. Furthermore, CD4+ Tem, CD8+ Tcm, CD8+ T-cells, CD8+ naive T-cells and B cells were favorable
whereas CD4+ naive T-cells were adverse prognostic factors for breast cancer patients. Moreover,
TDRD6 and TTK were promising targets for tumor vaccines which might activate T cells and B cells.
Meanwhile, Endothelial cells and fibroblasts were significantly lower in tumor tissues. Astrocytes and
mesangial cells were negatively correlated with T stage. Mesangial cells and keratinocytes were
favorable prognostic factors, whereas myocytes were adverse prognostic factors. A prognosis model with
high performance was built for breast cancer patients. Specifically, great cellular heterogeneity was
uncovered among different subtypes of breast cancer by Her2, ER, and PR status. Tri-negative patients
had the highest while luminal type patients had the smallest fraction of immune cells. Different cell might
have different or even opponent role in the prognosis of breast cancer patients.

Conclusions: Our analysis uncovered a unique cellular heterogeneity map of diverse immune and
stromal phenotypes within breast tumor microenvironment and novel potential therapeutic targets and
prediction biomarkers with prognostic utility.
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15 Abstract

16 Background: Cellular heterogeneity with tumor microenvironment plays critical roles in 

17 tumorigenesis and development. Global view of tumor-infiltrating immune and stromal 

18 cells at high resolution is greatly needed in breast tumor.

19 Methods: portrayed the cellular heterogeneity map of a total of 64 cell types in 1092 

20 breast tumor and adjacent normal tissues using xCell, which digitally dissect tissue 

21 cellular heterogeneity based on gene expression. 

22 Results: Higher proportions of immune cells were enriched in tumor compared with 

23 normal tissues. Immune inhibitory receptors (PD1, CTLA4, LAG3 and TIM3) were co-

24 expressed on certain subtypes of T cells in breast tumor, especially that PD1 and CTLA4 

25 both positively correlated with CD8+ Tcm and CD8+ T cells. Furthermore, CD4+ Tem, 

26 CD8+ Tcm, CD8+ T-cells, CD8+ naive T-cells and B cells were favorable whereas CD4+ 

27 naive T-cells were adverse prognostic factors for breast cancer patients. Moreover, 

28 TDRD6 and TTK were promising targets for tumor vaccines which might activate T cells 

29 and B cells. Meanwhile, Endothelial cells and fibroblasts were significantly lower in tumor 

30 tissues. Astrocytes and mesangial cells were negatively correlated with T stage. 

31 Mesangial cells and keratinocytes were favorable prognostic factors, whereas myocytes 

32 were adverse prognostic factors. A prognosis model with high performance was built for 

33 breast cancer patients. Specifically, great cellular heterogeneity was uncovered among 

34 different subtypes of breast cancer by Her2, ER, and PR status. Tri-negative patients had 

35 the highest while luminal type patients had the smallest fraction of immune cells. Different 
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36 cell might have different or even opponent role in the prognosis of breast cancer patients. 

37 Conclusions: Our analysis uncovered a unique cellular heterogeneity map of diverse 

38 immune and stromal phenotypes within breast tumor microenvironment and novel 

39 potential therapeutic targets and prediction biomarkers with prognostic utility. 

40

41
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44 Introduction

45 Breast cancer is one of the predominant type of tumors in women and despite great 

46 progress has been achieved in the early diagnosis and treatment recently, drug 

47 resistance and distal metastasis remain major causes of mortality (Cassetta & Pollard 

48 2017). Tumors are complex evolving environments, composed of not only malignant cells 

49 but also immune and stromal infiltrates. Growing evidence suggests that tumor 

50 microenvironment plays a fundamental role in the initiation to malignancy as well as 

51 resistance to therapy (Noy & Pollard 2014). Tumor-infiltrating cells can demonstrate either 

52 tumor suppressive or tumor-promoting effects, depending on the cancer type. For 

53 instance, regulatory T cells (Tregs) and tumor associated macrophages (TAMs) were 

54 reported to be associated with pro-tumor functions (De Palma & Lewis 2013; Nishikawa 

55 & Sakaguchi 2014; Noy & Pollard 2014), whereas CD8+ T cells were reported to be with 

56 improved clinical outcomes and response to immunotherapy (Tumeh et al. 2014). Basic 

57 research in cancer immunology paved the way for the development and approval of 

58 checkpoint blockers. These drugs, which augment T cell activity by blocking cytotoxic 

59 lymphocyte antigen-4 (CTLA4), programmed cell death protein 1 (PD1), or PD1 ligand 

60 (PDL1), show remarkable clinical effects.

61 Understanding the cellular heterogeneity within the tumor microenvironment may 

62 discover predictive biomarkers and improve existing treatments or develop novel 

63 therapeutic strategies. Traditional approaches for dissecting the cellular heterogeneity, 

64 including flow cytometry and immunohistochemistry, were extremely difficult to apply to 
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65 solid tumors with limited throughput (Gentles et al. 2015). Advances in bioinformatics 

66 provide novel methods to dissect cellular heterogeneity based on gene expression 

67 profiles (Abbas et al. 2009; Newman et al. 2015; Rooney et al. 2015; Shen-Orr & Gaujoux 

68 2013), one representative method is CIBERSORT, which could provide an estimation of 

69 the abundances of 22 immune cell types (Newman et al. 2015). However, rare subsets 

70 of immune cells and stromal cells are ignored by CIBERSORT, which are now recognized 

71 to be important both in promoting and inhibiting of tumor growth, invasion, and metastasis 

72 (Galon et al. 2006; Hanahan & Coussens 2012). Recently, xCell has been reported to 

73 provide portrays of 64 cell types, including immune cells and stroma cells, within tissues 

74 (Aran et al. 2017a; Aran et al. 2017b). Here, we applied this novel approach to digitally 

75 portray the cellular heterogeneity map within breast tumor microenvironment, aiming to 

76 provide novel insights into potential interactions and uncover predictive biomarkers or 

77 therapeutic targets. 

78 Methods and materials

79 Data curation

80 RNA-seq data and matching clinical parameters of a total of 1,092 patients with 

81 breast cancer were downloaded from The Cancer Genome Atlas (TCGA) data portal 

82 (https://portal.gdc.cancer.gov/). 276 known Cancer/Testis (CT) genes was downloaded 

83 from CTDatabase (http://www.cta.lncc.br/). 

84 Bioinformatics analysis

85 xCell (http://xcell.ucsf.edu/) is a gene-signature based method for cell type 
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86 enrichment of up to 64 cell types, including immune and stroma cells at high resolution. 

87 Deconvolution of cellular heterogeneity within breast tumor microenvironment from RNA 

88 sequencing data was performed using xCell R package (Aran et al. 2017b) (Beta version) 

89 from GitHub in R (version 3.3.1). Tests for differences and correlations were performed 

90 accordingly. 

91 Survival analysis

92 In searching for survival associated genes, univariate and multivariate COX 

93 regression were then applied. To compare the ability of the prognostic predictors, 

94 survivalROC package (Version 1.0.3) in R, which allows for time dependent ROC curve 

95 estimation with censored data (Heagerty et al. 2000), was used to generate the area 

96 under the curve (AUC) of the receiver-operator characteristic (ROC) curve for each 

97 parameters. 

98 Statistical analysis

99 Differentially enriched cell types between different groups were compared with 

100 Student’s t-test (two groups) or One-way ANOVA analysis (Three groups). Correlation 

101 analysis were performed by Spearman method. The survival curves were compared using 

102 Kaplan-Meier method and log-rank test. All tests were two sided, and a P value of less 

103 than 0.05 was considered as statistical significance unless stated otherwise. Data were 

104 analyzed using R (version 3.4.4). 

105

106 Results
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107 64 cell types were characterized in 1092 breast cancer patients

108 A total of 1092 breast patients were enrolled in this study, among which 112 paired 

109 adjacent normal tissues were available. We portrayed the cellular heterogeneity in 1092 

110 breast tumor tissues and 112 normal tissues using xCell method. Generally, the 64 cell 

111 types were divided into four groups, including 34 immune cells, 13 stromal cells, 9 stem 

112 cells and 8 other cells (Table 1). Over half of the 64 cell types were immune cells, 

113 providing a full view of innate and adaptive immune status with detailed cell subtypes 

114 such as CD4+ naive cells, CD4+ T-cells, CD4+ Tcm and CD4+ Tem. Meanwhile, 

115 important stromal cells, such as fibroblast, osteoblast and pericyte were also included. 

116 Breast tumor tissues had higher fractions of immunes cells than normal tissues. 

117 We calculated the median fractions for each cell type in adjacent normal and breast 

118 tumor tissues, respectively. As results, the relative proportions of the 64 cells were quite 

119 different between breast tumor and normal tissues (Figure 1A), breast tumor tissue had 

120 higher fraction of immune cells with red to light blue labels whereas normal tissue had 

121 larger proportions of stem and stromal cells with blue to red labels (Figure 1A). 

122 Unsupervised cluster analysis revealed that breast tumor tissues and adjacent normal 

123 tissues were generally clustered into different groups, meanwhile, immune cells were also 

124 largely clustered into several subgroups (Figure 1B), indicating that the cellular 

125 heterogeneity in tumor vs. normal tissues was much greater than that in individual 

126 sample. Accordingly, dimensionality reduction and visualization by t-Distributed 

127 Stochastic Neighbor Embedding (t-SNE) also suggested clear gap between tumor and 
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128 adjacent normal tissues (Figure 1C). Next, we compared the fractions of each cell type 

129 between breast tumor and normal tissues. As shown in Figure 1D-J, a number of cell 

130 types showed dramatic changes between the tumor and normal tissues. Generally, 

131 greater diversity was seen in immune cells compared with stem or stromal cells. For 

132 innate immune cells, neutrophils were significantly higher in normal tissue whereas 

133 eosinophils were higher in tumor tissues (Figure 1D). Meanwhile, difference of DC cells 

134 between normal and tumor tissues was not significant, but iDC was significantly lower 

135 whereas pDC and aDC was significantly higher in tumor tissues (Figure 1E). Same 

136 phenomenon was also seen in macrophages, which was macrophage M1 was higher 

137 while macrophage M2 was lower in tumor tissues (Figure 1F). For adaptive immune cells, 

138 CD4+ Tcm was significantly lower in tumor tissues, CD4+ Tem, CD8+ naïve T cells and 

139 CD8+ Tcm were significantly higher in tumor tissues (Figure 1G). Moreover, plasma cells, 

140 pro B cells, Tgd, Th1, Th2 cells and Tregs were also significantly higher in tumor tissues 

141 (Figure 1H and I). For stromal cells, representative cells such as endothelial cells and 

142 fibroblasts were significantly lower in tumor tissues (Figure 1J). 

143

144 Inhibitory receptors were co-expressed on certain subtypes of T cells

145 Inhibitory receptors expressed on T cells, including PD1, CTLA4, LAG3 and TIM3, 

146 often lead to T-cell exhaustion, providing tumors with potential to escape immune control 

147 (Huang et al. 2017; Nirschl & Drake 2013). Blockage of CTLA4 or PD1 with specific 

148 antibodies has shown significant promise in overcoming immune suppression and 
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149 mediate tumor regression (Brahmer et al. 2012; Callahan et al. 2010). 

150 We next investigated the potential correlations among these inhibitory receptors and 

151 CD4+/CD8+ T cells. In Figure 2A and B, heatmaps suggested that expression patterns 

152 of these inhibitory receptors were correlated with certain subsets of T cells with 

153 commonalities and differences between tumor (Figure 2A) and normal tissues (Figure 

154 2B). Correlation analyses also demonstrated that in tumor tissues, CD8+ T-cells, CD8+ 

155 Tcm, CD8+ naive T-cells, CD4+ memory T cells and CD4+ naïve T cells were all positively 

156 correlated with expressions of these inhibitory receptors, especially with PD1 and CTLA4 

157 expression (P<0.05, Figure 2C and E), whereas CD8+ Tem, CD4+ Tcm and CD4+ T-

158 cells were not strongly correlated with them (Figure 2C). However, in normal tissues, only 

159 a few T cells were significantly correlated with these inhibitory receptors, especially that 

160 TIM3 expression was negatively correlated with CD4+ Tcm (Figure 2D and G). More 

161 importantly, significant correlation among the expression of inhibitory receptors was also 

162 observed (Figure 2F and H). 

163

164 Cancer/testis genes TDRD6 and TTK were promising targets for breast cancer

165 Cancer/Testis (CT) genes are a cluster of tumor-associated proteins that are 

166 normally expressed in normal germ cells and diverse types of cancers, but not in usual 

167 somatic cells (Scanlan et al. 2002). Due to this limited expression process, the CT genes 

168 are considered striking points for cancer biomarkers and immunotherapy. 

169 We next focus on how antitumor immunity responses to antigens generated by 
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170 cancer/Testis (CT) genes. First, we examined 276 known CT genes, which was 

171 downloaded from CTDatabase, for association with immune components. We listed all 

172 the significant correlations between immune cells and CT genes with cutoff of P value 

173 less than 0.001 in Figure 3A. The majority of the adaptive immune cells were significantly 

174 correlated with CT genes. We noticed that T cells such as CD8+ T cells, and aDC, which 

175 belonged to adaptive and innate immune responses, were positively correlated with most 

176 of the CT genes (Figure 3A-C). Moreover, two CT genes, TDRD6 and TTK, were 

177 positively correlated with a number of immune cells, especially the CD4+/CD8+ T cells 

178 (Figure 3D and E), implying strong host immune reactions to these two cancer antigens.

179

180 Cellular heterogeneity was correlated with clinic-pathology of breast cancer

181 Cellular heterogeneity is an important part of tumor microenvironment which plays 

182 critical roles in initiation and development of tumor. We asked whether there were certain 

183 cell types were significantly correlated with clinical parameters, including age, sex, T 

184 stage, N stage, M stage and TNM stage. As shown in Figure 4A, generally, a number of 

185 cell types were significantly correlated with clinical parameters, especially T stage and M 

186 stage. For T stage, astrocytes, mesangial cells, and mast cells were negatively correlated 

187 with T stage, whereas plasma cells were positively correlated with T stage (Figure 4B). 

188 For M stage, CD4+ Tcm, CD4+ Tem, mv endothelial cells, NKT, and MSC were all 

189 significantly higher in patients with distal metastasis (Figure 4C). For N stage, one 

190 representative cell type was CLP, patients with lymphnode metastasis had significantly 
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191 higher CLP (Figure 4D). For TNM stage, Th1 cells and MSC were both positively 

192 correlated with TNM stage (Figure 4E). Interestingly, we noticed that there were 12 male 

193 breast cancer patients, who tended to have higher proportion of CLP and NKT, compared 

194 with female breast cancer patients (Figure 4F). 

195

196 Prognostic model was built with survival associated cell types

197 Emerging evidence suggests that the amount of tumor infiltrating lymphocytes (TILs) 

198 of primary tumors consistently predicts favorable outcomes in a number of tumor types, 

199 including breast cancer. Therefore, survival analyses were performed aiming to find 

200 survival associated cell types within tumor microenvironment, which were shown in 

201 Figure 5A. Generally, immune cells were more intensively involved in patients overall 

202 survival, especially the CD4+ and CD8+ T cells (Figure 5A). Moreover, most T cells, 

203 including CD8+ T cells, CD8+ Tcm, CD8+ naïve T cells and CD4 Tem, were favorable 

204 prognostic factors, except that high CD4+ naïve T cells were associated with worse 

205 overall survival (Figure 5A-M). Furthermore, NKT, class switched memory B cells, NK 

206 cells, cDC and pDC were also significantly associated with overall survival (Figure 5A-

207 M). More importantly, a number of stromal cells were also prognostic factors. For 

208 example, mesangial cells and keratinocytes were favorable prognostic factors, whereas 

209 myocytes were adverse prognostic factors (Figure 5A-M). Multivariate COX regression 

210 revealed that CD8+ T cells, keratinocytes, NKT and Class switched memory B cells were 

211 independent prognostic factors. We then built a prognosis predictor with all these 
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212 significant prognosis factors, and the prediction model performed well in distinguishing 

213 good or poor survival of breast cancer patients with the highest AUC of ROC of 0.708 

214 compared to all the factors separately (Figure 5N and O).

215

216 Subtypes of breast cancer had diverse phenotypes of cellular heterogeneity

217 Emerging evidence suggests that the breast cancer transcriptome has a wide range 

218 of intratumoral heterogeneity, as well as genomic heterogeneity simply based on ER, PR 

219 and Her2, which is shaped by the tumor cells and immune cells in the surrounding 

220 microenvironment (Chung et al. 2017). We further explored the cellular heterogeneity 

221 among different subtypes of breast cancer by Her2, ER, and PR status. According the 

222 clinicopathological parameters provided by TCGA, 1,092 breast cancer patients were 

223 classified into five groups, which including 30 Her2+_HR- patients, 59 Her2+_HR+ 

224 patients, 426 Luminal type (Her2-_HR+) patients, 97 triple negative (Tri-negative) 

225 patients, and 480 unknown patients. As shown in Figure 6, the relative proportion of 

226 different cells varied a lot among these five subtypes. Tri-negative patients had the 

227 highest fraction of immune cells while luminal type patients had the smallest fraction of 

228 immune cells, especially the CD4+ and CD8+ T cells (Figure 6A and Supplementary 

229 Figure S1). Cluster analysis based on ImmuneScore and StromalScore and by heatmap 

230 showed that there might not be certain driven cell types to distinguish these five subtypes 

231 (Figure 6B-C). Furthermore, t-SNE cluster analysis highlighted that there was huge 

232 difference of tumor-infiltrating cells among these five subtypes (Figure 6D). Specifically, 
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233 B cells, T cells, macrophages, Th cells and stromal cells including keratinocytes were 

234 significantly differentially enriched in these subtypes (Figure 6E-F and Supplementary 

235 Figure S2). For example, Tri-negative breast cancer tissues had highest fractions of 

236 plasma cells, pro B cells, macrophages M1, Th1 and Th2 cells whereas lowest fraction of 

237 macrophages M2 cells (Figure 6E). Meanwhile, keratinocytes, sebocytes, pericytes were 

238 high whereas MSC cells were low in Tri-negative breast cancer (Figure 6F). Lastly, 

239 survival analyses uncovered rich and interesting findings among these five subtypes 

240 (Figure 7). Each subtype of breast cancer had its unique pattern of survival associated 

241 tumor-infiltrating cells and different type of cell might have different or even opponent 

242 roles in the prognosis of breast cancer patients. Notably, keratinocytes and neurons were 

243 favorable and adverse prognosis factors in luminal type patients, respectively (Figure 

244 7A). However, keratinocytes and neurons predicted worse and better overall survival in 

245 Tri-negative patients, respectively (Figure 7D). Taken together, these diversity of cellular 

246 heterogeneity among different subtypes of breast cancer suggested that the tumor-

247 infiltrating cells within tumor microenvironment had essential roles in shaping the 

248 intratumor heterogeneity of breast cancer. 

249

250 Discussion

251 Distinct tumor-infiltrating cell types were observed within tumor microenvironment, 

252 and the abundance and activation status of those cell types draw great attention to 

253 researchers and are being explored by novel bioinformatic techniques. Tumor-infiltrating 
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254 cells are now recognized to play important roles in the regulation of tumor proliferation, 

255 metastasis and invasion (Galon et al. 2006; Hanahan & Coussens 2012). With rapid 

256 accumulation of high-throughput data and evolution of bioinformatics algorithms, it is now 

257 possible to digitally dissect interactions tumors cells and tumor-infiltrating cells, including 

258 immune cells and stromal cells (Aran et al. 2017b; Hackl et al. 2016). Utilizing this high-

259 throughput approach could provide novel insights into complexity of tumor 

260 microenvironment and innovations to breast cancer treatment and prognosis. 

261 In this study, we portrayed the landscape of cellular heterogeneity within breast tumor 

262 and normal tissues by digital deconvolution using xCell approach. A total of 64 cell types 

263 were characterized with more than 30 immune cell types at high resolution, which were 

264 also the most studied set of cell types especially the tumor-infiltrating lymphocytes (TILs). 

265 Huge differences between breast tumor tissues and adjacent normal tissues were 

266 discovered with polarized enrichment of certain cell types. We focused on immune cell 

267 types, especially the CD4+/CD8+ T cells. Our results demonstrated that expression of 

268 inhibitory receptors (including PD1, CTLA4, LAG3 and TIM3) were positively correlated 

269 and were correlated with certain types of T cells, especially with CD8+ Tcm and CD8+ T 

270 cells, especially in tumor tissues. Furthermore, CD4+ Tem, CD8+ Tcm, CD8+ T-cells, 

271 CD8+ naive T-cells and B cells were associated with better prognosis whereas CD4+ 

272 naive T-cells were adverse prognostic factor for breast cancer patients. Moreover, active 

273 immune responses to tumor antigens were widely generated by innate and adaptive 

274 immune cells, including T cells, B cells and DC, while TDRD6 and TTK were promising 
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275 targets for cancer vaccines which could activated a number of immune cells, especially T 

276 cells and B cells. Meanwhile, stromal cells were also widely involved in the development 

277 of breast cancer. Endothelial cells and fibroblasts were significantly lower in tumor 

278 tissues. Astrocytes and mesangial cells were negatively correlated with T stage. 

279 Mesangial cells and keratinocytes were favorable prognostic factors, whereas myocytes 

280 were adverse prognostic factors. Taken together, we built a prognosis predictor with 

281 survival associated cell types and the prediction model performed well in distinguishing 

282 good or poor overall survival of breast cancer patients. Last but not least, cellular 

283 heterogeneity was also profiled in different subtypes of breast cancer based on Her2, ER 

284 and PR status. Five subtypes of breast cancer demonstrated diver phenotypes and 

285 different cell might had different or even opponent roles in each subtype of breast cancer. 

286 Immunotherapies, especially the immune checkpoint blockers as well as therapeutic 

287 vaccines and engineered T cells, are being intensively investigated nowadays 

288 (Schumacher & Schreiber 2015), one important issue is how tumor cells interact with 

289 immune cells. The investigation of tumor-immune cell interaction poses considerable 

290 challenges, since the development of cancer and the immune surveillance by innate and 

291 adaptive immune cells with plasticity ad memory are both evolving ecosystems. The 

292 complex interplay between solid tumors and host immunity has been widely studied but 

293 remains incompletely understood. In multiple tumor types, tumor infiltrating lymphocytes 

294 (TILs) have been associated with clinical outcomes (Anagnostou & Brahmer 2015; 

295 Schoenfeld 2015). For example, CD8+ TILs have been shown to be favorable prognostic 
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296 in melanoma, colorectal, ovarian, and non-small cell lung cancer. In selected tumors, it 

297 has been demonstrated that these CD8+ TILs are able to specially kill tumor cells (Yee 

298 et al. 2002). When comes to immunity in breast cancer which remains largely unstudied, 

299 only a few preliminary evaluations about prognosis value of CD4+/CD8+ T lymphocytes 

300 has been reported. Presence of TILs has been shown to be potentially predictive and 

301 prognostic in specific breast cancer subtypes. Specially in patients with human epidermal 

302 growth factor receptor 2 positive and triple-negative breast cancer. Large adjuvant studies 

303 have shown that higher levels of TILs in primary biopsies are associated with improved 

304 overall survival and fewer recurrences, regardless of therapy (Adams et al. 2014; Dieci et 

305 al. 2015; Loi et al. 2013).

306 In our study, we provided detailed information about immune cells in breast cancer 

307 with numerous novel findings. Firstly, inhibitory receptors were expressed on certain 

308 types of T cells, on which CD8+ T cells and CD8+ Tcm were preferred; secondly, Co-

309 expression of PD1, CTLA4, LAG3 and TIM3 were more commonly observed in tumor 

310 tissues compared with normal tissues, which might be an explanation of limited effects of 

311 single immune checkpoint inhibitor and the basis of combinatorial strategies. Ongoing 

312 clinical trials of Simultaneous inhibition of PD1 and CTLA4 (Wolchok et al. 2013) or TIM3 

313 (Fourcade et al. 2010) in advanced melanoma patients have shown enhanced efficacy. 

314 Lastly, not all T cells were protective factors, CD8+ naive T cells rather than CD4+ naive 

315 T cells were favorable prognostic factor for breast cancer patients overall survival. Taken 

316 together, these results suggested that upregulated co-expression of multiple immune 
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317 inhibitory receptors might contribute to immune suppression and more attention should 

318 be paid to subtypes of T cells when using immune checkpoint blockers, since immune 

319 cells were highly conditional and might play different or even opposing roles in responses 

320 to tumor cells.

321 Growing evidence suggests that not only immune cells, but also tumor cell-extrinsic 

322 factors, including fibroblasts, endothelial cells, adipocytes with in tumor 

323 microenvironment, have important roles in inhibiting apoptosis, enabling immune evasion, 

324 and promoting proliferation, angiogenesis, invasion and metastasis (Whiteside 2008). In 

325 our analysis, endothelial cells were significantly higher in adjacent normal tissues (Figure 

326 1J), moreover, breast cancer patients with metastasis had higher fraction of mv 

327 endothelial cells (Figure 4C) and high level of mv endothelial cells were significantly 

328 associated with worse overall survival (Figure 5A). Recent study showed that endothelial 

329 cells could promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 

330 signaling (Zhang et al. 2018), and presence of endothelial cells significantly enhanced the 

331 angiogenic activity of breast cancer cells (Buchanan et al. 2012). These results suggest 

332 that our analysis was largely reliable, and in-depth study of the clinical relevance of these 

333 cell types might provide novel insights into the initiation and progression of breast cancer. 

334 This was a descriptive analysis of potential roles different tumor-infiltrating cells and 

335 the major limitation was that in-depth analysis and experimental validations were greatly 

336 needed in the future since a lot of 64 types of cells were profiled in this study. 

337 In summary, our study, for the first time, revealed the landscape of cellular 
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338 heterogeneity at high resolution and provided novel insights into cell interactions within 

339 tumor microenvironment in breast cancer. Development of future therapeutic and 

340 predictive strategies should focus on subtypes of immune cells and stromal cells. 
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449 Table 1. Descriptions of 64 cell types in this study.

Full name Abbreviations Group

Activated dendritic cells aDC Immune

B-cells / Immune

Basophils / Immune

CD4+ naive T-cells / Immune

CD4+ T-cells / Immune

Central memory CD4+ T Cell CD4+ Tcm Immune

Effector memory CD4+ T cell CD4+ Tem Immune

CD8+ naive T-cells / Immune

CD8+ T-cells / Immune

Central memory CD8+ T Cell CD8+ Tcm Immune

Effector memory CD8+ T cell CD8+ Tem Immune

Conventional dendritic cells cDC Immune

Class-switched memory B-cells / Immune

Dendritic cells DC Immune

Eosinophils / Immune

Immature dendritic cells iDC Immune

Macrophages / Immune

Inflammatory (M1) macrophages Macrophages M1 Immune

Reparative (M2) macrophages Macrophages M2 Immune

Mast cells / Immune

Memory B-cells / Immune

Monocytes / Immune

naive B-cells / Immune

Neutrophils / Immune

Nature killer cells NK cells Immune

Natural killer T cells NKT Immune

Plasmacytoid dendritic cells pDC Immune

Plasma cells / Immune

pro B-cells / Immune

Gamma delta T cells Tgd cells Immune

Regulatory T cells Tregs Immune

Type 1 T helper (Th1) cells Th1 cells Immune

Type 2 T helper (Th2) cells Th2 cells Immune

CD4+ memory T-cells / Immune

Astrocytes / Others

Epithelial cells / Others

Hepatocytes / Others

Keratinocytes / Others
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Full name Abbreviations Group

Melanocytes / Others

Mesangial cells / Others

Neurons / Others

Sebocytes / Others

Common lymphoid progenitor CLP Stem

Common myeloid progenitor CMP Stem

Granulocyte-macrophage progenitor GMP Stem

Hematopoietic stem cells HSC Stem

Megakaryocytes / Stem

Multipotent progenitors MPP Stem

Erythrocytes / Stem

Megakaryocyte-erythroid progenitor MEP Stem

Platelets / Stem

Adipocytes / Stromal

Chondrocytes / Stromal

Endothelial cells / Stromal

Fibroblasts / Stromal

Lymphatic endothelial cells ly Endothelial cells Stromal

Mesenchymal stem cells MSC Stromal

Microvascular endothelial cells mv Endothelial cells Stromal

Myocytes / Stromal

Osteoblast / Stromal

Pericytes / Stromal

Preadipocytes / Stromal

Skeletal muscle / Stromal

Smooth muscle / Stromal

450

451 Figure legends:

452 Figure 1. Differences of cellular heterogeneity between breast tumor tissue and 

453 normal tissues. A, Median fraction of 64 cell types in breast tumor and normal tissues. 

454 64 cell types were grouped into four groups: Immune, stem, stromal and other cells. B, 

455 Heatmap of fractions of 64 cell types in 1,092 breast tumor tissues and 112 adjacent 

456 normal tissues. C, Dimensionality reduction and visualization by t-Distributed Stochastic 
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457 Neighbor Embedding (t-SNE) clustering. D to H, Dot plots of fractions of certain cell types 

458 in breast tumor and normal tissues. Lines between dots indicated paired tissues from the 

459 same breast cancer patient. *, P<0.05. **, P<0.01. ***, P<0.001.

460

461 Figure 2. Expression patterns of inhibitory receptors on CD4+/CD8+ T cells. A and 

462 B, Heatmaps of expression of inhibitory receptors, including PD1, CTLA4, LAG3 and 

463 TIM3, and fractions of CD4+/CD8+ T cells in tumor tissues (A) and normal tissues (B). 

464 Data were transformed by rank. C and D, Clustered correlation matrixes among inhibitory 

465 receptors and CD4+/CD8+ T cells in tumor tissues (C) and normal tissues (D). E, Dot plot 

466 of correlations between PD1 expression and fractions of CD8+ Tcm in tumor tissues. F, 

467 Dot plot of correlations between PD1 expression and CTLA4 expression in tumor tissues. 

468 G, Dot plot of correlations between TIM3 expression and fractions of CD4+ Tcm in normal 

469 tissues. H. Dot plot of correlations between PD1 expression and LAG3 in normal tissues.

470

471 Figure 3. Correlations between cancer/testis genes and immune cells. A, Significant 

472 correlations between cancer/testis (CT) genes and immune cells. Scaled color dots 

473 represented significant correlations between CT genes and immune cells (P<0.001) and 

474 red dots represented positive correlations while blue dots represent negative correlations. 

475 B and C, CD8+ naïve T-cells and aDC were positively correlated with most of the CT 

476 genes. D and E, TDRD6 and TTK were positively correlated with a number of immune 

477 cells. 
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478

479 Figure 4. Involvement of cellular heterogeneity in clinic-pathology of ESCC. A, A 

480 number of cell types were significantly correlated with clinical parameters. B to F, 

481 Examples of significant correlations between different cell types and clinical parameters. 

482 *, P<0.05. **, P<0.01. ***, P<0.001.

483

484 Figure 5. Survival associated tumor-infiltrating cells in breast cancer. A, Forrest plot 

485 of hazard ratios of survival associated cell types. B to M, Kaplan-Meier curves of survival 

486 associated cell types. Red lines indicated high fraction while blue lines indicated low 

487 fraction of each cell types, respectively. N, Kaplan-Meier curves of predictor built with 

488 significant prognostic factors (P<0.01). O, ROC curves of prognostic predictors. 

489

490 Figure 6. Differences of cellular heterogeneity among different subtypes of breast 

491 cancer. A, Median fraction of 64 cell types in five subtypes of breast tumor. 1,092 breast 

492 cancer patients were classified into five groups, which including 30 Her2+_HR- patients, 

493 59 Her2+_HR+ patients, 426 Luminal type (Her2-_HR+) patients, 97 triple negative (Tri-

494 negative) patients, and 480 unknown patients. B, Cluster analysis by ImmuneScore and 

495 StromalScore, which were calculated by summing up the fractions of immune and stromal 

496 cells, respectively. C, Dimensionality reduction and visualization by t-Distributed 

497 Stochastic Neighbor Embedding (t-SNE) clustering. D, Heatmap of fractions of 64 cell 

498 types in five subtypes of breast cancer. E and F, Box plots with dots of fractions of certain 

PeerJ reviewing PDF | (2019:11:43594:0:1:NEW 3 Dec 2019)

Manuscript to be reviewed



499 cell types in five subtypes of breast cancer. *, P<0.05. **, P<0.01. ***, P<0.001, ****, 

500 P<0.0001.

501

502 Figure 7. Survival associated tumor-infiltrating cells in five subtypes of breast 

503 cancer. A to E, Forrest plots of hazard ratios of survival associated cell types in five 

504 subtypes of breast cancer. 

505

506 Supplementary Figure S1. Median fractions of 64 types of cells in five subtypes of 

507 breast cancer. 

508

509 Supplementary Figure S2. Diverse differences of 64 types of cells among the five 

510 subtypes of breast cancer. 

511

512

513
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Figure 1
Differences of cellular heterogeneity between breast tumor tissue and normal tissues.

A, Median fraction of 64 cell types in breast tumor and normal tissues. 64 cell types were
grouped into four groups: Immune, stem, stromal and other cells. B, Heatmap of fractions of
64 cell types in 1,092 breast tumor tissues and 112 adjacent normal tissues. C,
Dimensionality reduction and visualization by t-Distributed Stochastic Neighbor Embedding
(t-SNE) clustering. D to H, Dot plots of fractions of certain cell types in breast tumor and
normal tissues. Lines between dots indicated paired tissues from the same breast cancer
patient. *, P<0.05. **, P<0.01. ***, P<0.001.
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Figure 2
Expression patterns of inhibitory receptors on CD4+/CD8+ T cells.

A and B, Heatmaps of expression of inhibitory receptors, including PD1, CTLA4, LAG3 and
TIM3, and fractions of CD4+/CD8+ T cells in tumor tissues (A) and normal tissues (B). Data
were transformed by rank. C and D, Clustered correlation matrixes among inhibitory
receptors and CD4+/CD8+ T cells in tumor tissues (C) and normal tissues (D). E, Dot plot of
correlations between PD1 expression and fractions of CD8+ Tcm in tumor tissues. F, Dot plot
of correlations between PD1 expression and CTLA4 expression in tumor tissues. G, Dot plot of
correlations between TIM3 expression and fractions of CD4+ Tcm in normal tissues. H. Dot
plot of correlations between PD1 expression and LAG3 in normal tissues.
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Figure 3
Correlations between cancer/testis genes and immune cells

A, Significant correlations between cancer/testis (CT) genes and immune cells. Scaled color
dots represented significant correlations between CT genes and immune cells (P<0.001) and
red dots represented positive correlations while blue dots represent negative correlations. B
and C, CD8+ naïve T-cells and aDC were positively correlated with most of the CT genes. D
and E, TDRD6 and TTK were positively correlated with a number of immune cells.
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Figure 4
Involvement of cellular heterogeneity in clinic-pathology of ESCC

A, A number of cell types were significantly correlated with clinical parameters. B to F,
Examples of significant correlations between different cell types and clinical parameters. *,
P<0.05. **, P<0.01. ***, P<0.001.
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Figure 5
Survival associated tumor-infiltrating cells in breast cancer.

A, Forrest plot of hazard ratios of survival associated cell types. B to M, Kaplan-Meier curves
of survival associated cell types. Red lines indicated high fraction while blue lines indicated
low fraction of each cell types, respectively. N, Kaplan-Meier curves of predictor built with
significant prognostic factors (P<0.01). O, ROC curves of prognostic predictors.
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Figure 6
Differences of cellular heterogeneity among different subtypes of breast cancer.

A, Median fraction of 64 cell types in five subtypes of breast tumor. 1,092 breast cancer
patients were classified into five groups, which including 30 Her2+_HR- patients, 59
Her2+_HR+ patients, 426 Luminal type (Her2-_HR+) patients, 97 triple negative (Tri-
negative) patients, and 480 unknown patients. B, Cluster analysis by ImmuneScore and
StromalScore, which were calculated by summing up the fractions of immune and stromal
cells, respectively. C, Dimensionality reduction and visualization by t-Distributed Stochastic
Neighbor Embedding (t-SNE) clustering. D, Heatmap of fractions of 64 cell types in five
subtypes of breast cancer. E and F, Box plots with dots of fractions of certain cell types in five
subtypes of breast cancer. *, P<0.05. **, P<0.01. ***, P<0.001, ****, P<0.0001.
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Figure 7
Survival associated tumor-infiltrating cells in five subtypes of breast cancer.

A to E, Forrest plots of hazard ratios of survival associated cell types in five subtypes of
breast cancer.
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