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Acrodont tooth implantation via severe ankylosis as an
adaptation of strong bite force
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Extant and extinct reptiles exhibit numerous combinations of tooth implantation and
attachment. Tooth implantation ranges from those possessing roots and lying within a
socket (thecodonty), to teeth lying against the lingual wall of the jawbone (pleurodonty), to
teeth without roots or sockets that are attached to the apex of the marginal jawbones
(acrodonty). Attachment may be ligamentous or via ankylosis (i.e., fusion). Adaptative
reasonings are proposed as an underlying driver for evolutionary changes in some forms of
tooth implantation and attachment. However, a substantiated adaptive hypothesis is
lacking for the state of acrodonty via severe ankylosis that is seen in several lineages of
Lepidosauria, a clade that is plesiomorphically pleurodont. We hypothesize that acrodonty
via severe ankylosis, as seen in Sphenodon punctatus and acrodontan lizards, is an
adaptation either resulting from or allowing for a stronger bite force. We use bite force
data gathered from the literature to show that those taxa possessing acrodont dentition
attached via severe ankylosis possess a stronger bite force than those taxa with
pleurodont dentition. Furthermore, we discuss the evolution of acrodonty and potential
behaviors related to strong bite force that influenced the evolution of acrodonty within
Rhynchocephalia, Acrodonta, and Trogonophidae. Implications for the evolution of different
forms of tooth implantation and attachment include ancient behavioral shifts.
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13 Abstract

14 Extant and extinct reptiles exhibit numerous combinations of tooth implantation and 

15 attachment. Tooth implantation ranges from those possessing roots and lying within a socket 

16 (thecodonty), to teeth lying against the lingual wall of the jawbone (pleurodonty), to teeth 

17 without roots or sockets that are attached to the apex of the marginal jawbones (acrodonty). 

18 Attachment may be ligamentous or via ankylosis (i.e., fusion). Adaptative reasonings are 

19 proposed as an underlying driver for evolutionary changes in some forms of tooth implantation 

20 and attachment. However, a substantiated adaptive hypothesis is lacking for the state of 

21 acrodonty via severe ankylosis that is seen in several lineages of Lepidosauria, a clade that is 

22 plesiomorphically pleurodont. We hypothesize that acrodonty via severe ankylosis, as seen in 
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23 Sphenodon punctatus and acrodontan lizards, is an adaptation either resulting from or allowing 

24 for a stronger bite force. We use bite force data gathered from the literature to show that those 

25 taxa possessing acrodont dentition attached via severe ankylosis possess a stronger bite force 

26 than those taxa with pleurodont dentition. Furthermore, we discuss the evolution of acrodonty 

27 and potential behaviors related to strong bite force that influenced the evolution of acrodonty 

28 within Rhynchocephalia, Acrodonta, and Trogonophidae. Implications for the evolution of 

29 different forms of tooth implantation and attachment include ancient behavioral shifts. 

30 Introduction

31 Acrodont tooth implantation, where the tooth rests at the summit of the tooth-bearing 

32 bone, evolved multiple times within Lepidosauria. It appears at least twice within squamate 

33 reptiles, as seen in acrodontan lizards (Romer, 1956) and trogonophid amphisbaenians (Gans, 

34 1960), and once within Rhynchocephalia (Jenkins et al., 2017). In Acrodonta and Sphenodon 

35 punctatus, the only living representative of Rhynchocephalia, the dentition is severely ankylosed 

36 (i.e., fused) to the adjacent bone. In those taxa, teeth and surrounding tissues have been 

37 investigated thoroughly via histological studies (Cooper & Poole, 1973; Smirina & Ananjeva, 

38 2007; Kieser et al., 2009, 2011; Haridy, 2018), CT data (Dosedělová et al., 2016), and 

39 developmental research (Buchtová et al., 2013). However, the evolution of acrodont tooth 

40 implantation is seldom discussed in an adaptive context.  

41 Smith (1958) suggested that acrodonty and thecodonty (i.e., where the tooth is implanted 

42 in a socket) are traits associated with anchoring permanent dentition. However, the fossil record 

43 shows that some reptiles possessing acrodont dentition replaced their teeth regularly (Gow, 1977; 

44 Haridy, LeBlanc & Reisz, 2018). Furthermore, it is unknown if acrodonty and severe ankylosis 

45 are truly associated with anchoring permanent dentition, or if those combined traits somehow 
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46 inhibit tooth replacement. While it is possible that thecodonty evolved to anchor permanent 

47 dentition in mammals, it is well known that toothed archosaurs, which also possess thecodont 

48 implantation, replace their teeth with some regularity (e.g., Edmund, 1962; D’Emic et al., 2019).

49 There are a suite of traits commonly associated with acrodont tooth implantation. 

50 Reduced tooth counts, severe tooth wear, and a loss of the alveolar foramen are also commonly 

51 associated with acrodont tooth implantation (Augé, 1997; Zaher & Rieppel, 1999; Haridy, 2018).  

52 A slowing or lack of tooth replacement, called monophyodonty, is also commonly associated 

53 with acrodont tooth implantation (Smith, 1958; Cooper et al., 1970). Even with monophyodont 

54 dentition, additional teeth are typically still added to the posterior end of the tooth row 

55 throughout ontogeny, as is the plesiomorphic condition within Reptilia (Robinson, 1976; Gow, 

56 1977; Rieppel, 1992; Reynoso, 2003). Severe ankylosis accompanies acrodonty in acrodontan 

57 squamates and in Sphenodon punctatus. Typically, ankylosis is severe in those taxa and  the 

58 tooth and bone lose identity from one another (Fig. 1). Herein, we call those combined traits 

59 acrodonty via severe ankylosis (AVSA). AVSA caused some to erroneously propose that S. 

60 punctatus lacks teeth entirely, instead possessing a serrated jawbone (Mlot, 1997). On the 

61 contrary, severe wear may obscure the anterior dentition in older, acrodont, monophyodont 

62 lepidosaurs, causing them to appear to be absent.

63 The ancestral state of tooth implantation and attachment in the reptile line involved a 

64 tooth set in a shallow socket (i.e., subthecodonty) attached via ankylosis. However, reptiles have 

65 since explored all forms of tooth implantation (acrodonty, pleurodonty, and thecodonty) and 

66 attachment (ankylosis and gomphosis) in varying combinations (Bertin et al., 2018). Adaptive 

67 interpretations are frequently used to explain why reptiles may stray from the ancestral state. For 

68 example, dentine infoldings, called plicidentine, evolved independently multiple times within 
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69 Reptilia, and it is interpreted to be a mechanism to strengthen tooth attachment in kinetic-feeding 

70 predators (Maxwell, Caldwell & Lamoureux, 2011). Even the loss of teeth seems to be a 

71 response to the evolution of other adaptive structures, like the keratinous beak in birds and turtles 

72 (Davit-Béal, Tucker & Sire, 2009). The evolution of AVSA as seen in acrodontans and 

73 Sphenodon punctatus lacks any adaptive hypothesis. Here we suggest that AVSA is an 

74 adaptation associated with strong bite force.

75 Anecdotal evidence suggests that acrodont taxa possess a strong bite force: S. punctatus 

76 is said to possess a powerful, painful, and ‘vice-like’ bite (Robb, 1977; Daugherty and Cree, 

77 1990), and one of the authors (KMJ) notes from personal experience that the veiled chameleon, 

78 Chamaeleo calyptratus, also possesses a painful bite and is reluctant to release its victim. Bite-

79 force analyses also indicate agamids have a stronger bite than S. punctatus, relative to body size 

80 (Schaerlaeken et al., 2008; Jones and Lappin, 2009).  The literature concerning bite force in 

81 lepidosaurs is numerous and implies a multitude of benefits for increased bite force. For instance, 

82 increase bite force is thought to improve prey capture and handling, particularly for the 

83 consumption of hard-bodied prey (Herrel et al., 1999; Herrel et al., 2001; Verwaijen, Van 

84 Damme & Herrel, 2002; Meyers et al., 2018). High bite force may also aid in territory defense 

85 and dominance (Herrel, Meyers & Vanhooydonck, 2001; Lailvaux et al., 2004; Huyghe et al., 

86 2005; Husak et al., 2006; Jones & Lappin, 2009), and mating success (Lappin & Husak, 2005; 

87 Husak et al., 2009; Herrel et al., 2010). Higher bite force in lizards is often accompanied by 

88 skeletal correlates in the cranium and increased mass of the adductor musculature compared to 

89 those with lower bite force (Herrel, McBrayer & Larson, 2007; Fabre et al., 2014).

90 We hypothesize that taxa possessing acrodont dentition also possess a higher bite force, 

91 compared to those with pleurodont dentition, relative to body size. Furthermore, we suggest that 
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92 AVSA as seen in Acrodonta and Sphenodon punctatus protects teeth from the risk of breakage 

93 during strong biting and allows for effective feeding in older individuals with severely worn 

94 dentition. In order to test our hypothesis, we compared bite force among lepidosaurian taxa. We 

95 found that size-normalized bite force was significantly greater in acrodont lepidosaurs than 

96 pleurodont lepidosaurs. Furthermore, we discuss the evolution of AVSA within an adaptive 

97 context in response to high bite force. 

98 Materials & Methods

99 To assess the relationship between bite force and tooth implantation, we collected data 

100 from thirty-eight peer-reviewed papers that record lepidosaurian bite force data (Supplementary 

101 Files). Publications that do not record metrics used in these statistical analyses and were 

102 excluded. The metrics recorded are the means of snout-vent length (SVL), head depth (HD), and 

103 bite force (BF). SVL, HD, and BF were all log-transformed and inspected for normality, 

104 following previous studies (Erickson et al., 2004; Wroe et al., 2005; Sellers et al., 2017). 

105 We focused on the relationship between SVL and BF, as SVL is the most commonly 

106 reported measure of size in reptiles. However, many squamate reptiles possess elongate body 

107 forms that are not necessarily correlated to cranial allometry, and thus may not strongly correlate 

108 with bite force. Because of this, we also standardized by head depth in separate analyses. 

109 Multiple studies evaluating lepidosaur bite force suggest that head depth is a good predictor of 

110 bite force because it accommodates the adductor muscles (Herrel, de Grauw & Lemos-Espinal, 

111 2001; Lappin, Hamilton & Sullivan, 2006; McBrayer & Anderson, 2007; Herrel et al., 2010). 

112 Tooth implantation was assessed by the authors.

113 To examine differences in bite force between acrodont and pleurodont taxa, analyses of 

114 covariance (ANCOVA) were performed using both size variables (SVL and HD) as covariates. 
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115 To further compare bite force across taxa of significantly different body masses, we calculated 

116 normalized bite force (NBF) as the residuals of a linear regression fit to (1) bite force and SVL or 

117 (2) bite force and HD. We refer to these values as SVL-NBF and HD-NBF, respectively. 

118 Differences in NBF between tooth implantation groups were then assessed using one-sided 

119 Kolmogorov–Smirnov (KS) and Mann-Whitney U (MWU) tests. Given unequal sample sizes, 

120 we also tested jackknife variants of the two tests (1000 replicates) which generated the same 

121 results.

122 Results

123 Bite force is higher in acrodont taxa than in pleurodont taxa when size standardized (Fig. 

124 2). Raw bite force values ranged from 0.3 to 409.3 Newtons. SVL ranged 13.0-389.0 mm, and 

125 HD ranged 1.2-55.5 mm. SVL NBF ranged -2.14 to 1.76, whereas HD NBF ranged -2.85 to 3.93 

126 (Table 1). ANCOVAs indicate significant differences between tooth implantation type groups 

127 after accounting for SVL and HD (Table 2). According to both KS and MWU tests acrodont 

128 SVL-NBF and HD-NBF values were significantly greater than pleurodonts (Table 2). 

129 Linear regressions of bite force, SVL, and HD, indicate that the three variables are 

130 significantly and positively correlated (p-value < 0.05). Given strong, linear log-log relationships 

131 amongst the three values, data were log-transformed for all analyses. This relationship was 

132 stronger between bite force and SVL (p-value << 0.05, Adj R-square = 0.729), compared to bite 

133 force and HD (p-value << 0.05, Adj R-square = 0.337). Given this, we focus on the relationship 

134 between SVL and bite force for the remainder of this paper.

135 To evaluate the proportion of the lepidosaurian tree that has been examined in terms of 

136 bite force, we tallied all known publications to the best of our knowledge that record 

137 lepidosaurian bite force (Fig. 3; Supplementary Files). This includes those publications that were 
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138 not included in the initial analyses that compare bite force between acrodont and pleurodont taxa. 

139 Species of seventeen lepidosaurian families were found to be represented, including four 

140 acrodont families and 13 pleurodont families. Dactyloidae was represented by the most species 

141 (n = 49), while the families of Sphenodontidae, Varanidae, and Trogonophidae were only 

142 represented by one species each (n = 1).

143 Discussion

144 Thus far, anatomical research related to biteforce in lepidosaurian reptiles has focused 

145 primarily on cranial musculature and skeletal dimensions, namely head depth, length, and width. 

146 However, teeth are more intimately associated with biting and oral processing than the 

147 aforementioned elements. Dental morphology is often adapted for diet, with generalists 

148 possessing a more generalized dentition and specialists possessing more unique tooth 

149 morphologies. For example, large bulbous molariform teeth are seen in some durophagous 

150 lizards (Estes and Williams, 1984). This is a stray from most iguanian and gekkotan lizards that 

151 possess simple columnar teeth with one to three small cusps. It should come as no surprise that 

152 tooth implantation and attachment is also shaped by oral processing capabilities. However, there 

153 is still the question of whether (1) AVSA developed due to strong bite force, or if (2) strong bite 

154 force evolved in response to AVSA.

155 In the first scenario, AVSA is a response to increased bite force. This concept must take 

156 into account the morphology of a typical pleurodont tooth versus a tooth that is influenced by 

157 AVSA. A typical pleurodont tooth, like that of geckos and non-acrodontan iguanians, is roughly 

158 cylindrical, and possesses a tooth base that is much less wide than it is tall. Unworn teeth in 

159 acrodontans and Sphenodon punctatus are comparatively much shorter and possess a wide tooth 

160 base that is strongly adhered to the jaw. Under higher bite forces and larger amounts of oral 
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161 processing, a pleurodont tooth would be more susceptible to breakage. While pleurodont teeth 

162 are regularly replaced, high rates of breakage would still be detrimental to the animal’s feeding 

163 capability. An acrodont tooth with a wide base and firm attachment is better suited to withstand 

164 higher bite forces without breakage. However that is not to say that breakage could not occur in 

165 taxa possessing AVSA. The extremely strong adherence of teeth can result in the occasional 

166 breakage of both tooth and bone in those taxa (Dosedělová et al., 2016).

167 In the second scenario, strong bite force is a response to AVSA. Lepidosaurs possessing 

168 AVSA are monophyodont and exhibit severe wear, particularly in the anterior dentition as seen 

169 in older individuals. Although those individuals have extremely worn teeth, they still manage to 

170 capture and consume prey. This is particularly the case for Sphenodon punctatus, which is 

171 known to capture and saw small birds with their teeth using propalinal jaw movement (Cartland-

172 Shaw et al., 1998). If dentition is severely worn due to a lack of replacement, increased bite force 

173 would be crucial in allowing the jaws to clamp tightly onto prey. Thus, older individuals with 

174 few functional teeth can still forage and consume as needed. If strong bite force in S. punctatus 

175 and Acrodonta evolved as a mechanism to aid in territory defense or increased mating success, 

176 an older animal may still be successful even though it possesses severely worn teeth. At this 

177 time, we cannot favor one hypothesis over another. It is also possible that different lineages 

178 acquired AVSA under either scenario.

179 Of the taxa that were examined in previous publications, fewer species of lepidosaurs 

180 with acrodont tooth implantation have been studied in regard to bite force in comparison to those 

181 with pleurodont implantation (Fig. 3). Of the pleurodont taxa, 49 species of Anolis lizards 

182 (Dactyloidae) were the subjects of 20 publications that record bite force alone. Those taxa make 

183 up the largest proportion of pleurodont taxa analyzed here. The large number of Anolis-based 
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184 studies is partly because they are speciose and represent a particularly important model taxon for 

185 ecological studies in the Americas. Conversely, only 16 unique species of acrodont lepidosaurs 

186 belonging to four separate families are the subject of 17 publications that record bite force. A 

187 larger sampling of acrodont taxa need to be examined in order to lend further support to the 

188 hypothesis that acrodont taxa possess a stronger bite force than pleurodont taxa. While this is 

189 impossible for Sphenodon punctatus, which is the only living representative of Sphenodontidae, 

190 a larger sampling of different species of acrodontan lizards and trogonophid amphisbaenians may 

191 be subjected to bite force analyses. Representatives of 16 families of squamate lizards have been 

192 subjected to bite force analyses, which leaves a large portion of the squamate line understudied. 

193 This is particularly the case for particularly snakes, for which we could find no bite-force 

194 research.

195 Can AVSA be reversed?

196 The transition from pleurodont to acrodont tooth implantation occurred independently 

197 several times within Lepidosauria, but only in Acrodonta and Rhynchocephalia is the ankylosing 

198 so extreme that the tooth-bone boundary is difficult to detect upon initial inspection. Stem 

199 Acrodonta do not possess the extensive ankylosis and apical tooth implantation that is seen in the 

200 crown group, although the roots of the teeth are much shorter than most other iguanians (Simões 

201 et al., 2015). All crown acrodontans possess some degree of acrodont tooth implantation 

202 accompanied by severe ankylosis. Within that clade, AVSA may be a fixed trait that lacks the 

203 plasticity to explore other forms of tooth implantation and attachment. It is also possible that 

204 there has been no selective pressure acted upon tooth implantation and attachment within 

205 Acrodonta that would drive members of the clade away from AVSA since it initially evolved. 
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206 While this may imply a potentially adaptive circumstance to the initial evolution of this trait, it 

207 cannot be excluded that this trait may not longer act as an adaptation in extant Acrodonta.

208 AVSA is persistent within Rhynchocephalia, but several transitions in tooth implantation 

209 and attachment occurred from an initially acrodont state (Jenkins et al., 2017). Ankylosphenodon 

210 pachyostosus possesses ‘ankylothecodont’ dentition, in which the tooth has deeply implanted 

211 roots, but is nonetheless ankylosed to the surrounding bone (Reynoso, 2000). One genus, 

212 Sapheosaurus, potentially lacks marginal dentition, although it is unknown if this is due to 

213 extensive wear or if this taxon was truly edentulous (Cocude-Michel, 1963). The tooth plates 

214 seen in Oenosaurus muelheimensis also represent an interesting derivation from the typical tooth 

215 seen within Rhynchocephalia (Rauhut et al, 2012). Nonetheless, the tooth implantation seen in 

216 O. muelheimensis is acrodont, and tooth attachment is extensive. Although acrodonty is 

217 widespread within the clade, tooth implantation seems to be a more plastic trait within 

218 Rhynchocephalia than it is within Acrodonta.

219 Acrodonty in Amphisbaenia

220 Trogonophidae do not possess the severe ankylosing associated with AVSA, as seen in 

221 Gans (1960) and Gans and Montero (2008). The relatively lower bite force seen in T. wiegmanni 

222 compared to other acrodont taxa seen in our results was also likely impacted by the fact that T. 

223 wiegmanni is an elongate, serpentine-like form. Because of that, using SVL to standardize our 

224 results may not be meaningful in the case of this taxon. However, the other taxa examined in this 

225 study are not impacted by extremely elongate body plans. When bite-force is standardized by 

226 head depth, the same trend of greater acrodont bite force is more apparent for T. wiegmanni.

227 Trogonophidae is the only clade within Amphisbaenia to evolve acrodont tooth 

228 implantation. However, other amphisbaenians possess teeth with roots of varying lengths. 
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229 Overall, amphisbaenians possess shorter roots than seen in most iguanians and geckos. Tooth 

230 implantation in amphisbaenians is often described as ‘subacrodont’ or ‘subpleurodont’ to denote 

231 the stray from the ‘typical’ pleurodont tooth implantation seen in most other squamates (Estes, 

232 1975; Yatkola, 1976; Sullivan, 1985; Charig and Gans, 1990; Kearney, Maisano & Rowe, 2004; 

233 Gans and Montero, 2008; Longrich et al., 2015; Čerňanský, Klembara & Müller., 2016). The 

234 evolution of tooth implantation and attachment in Amphisbaenia has not been explored further, 

235 but the trend towards dentition with shorter roots is intriguing. Bite-force experiments conducted 

236 on amphisbaenians could address the evolution of acrodonty within the clade. Further research 

237 on this, and on the dental tissues of amphisbaenians, is certainly warranted to address the 

238 evolution of tooth implantation and attachment in Amphisbaenia. 

239 Conclusions

240 Acrodonty via severe ankylosis seen in Sphenodon punctatus and acrodontan squamates 

241 is likely an adaptation shaped by strong bite forces. The appearance of AVSA within those 

242 lineages, as well as extinct lineages, has implications for the early evolution of this trait. This 

243 may be informative of the early evolution of rhynchocephalian and acrodontan behavioral shifts, 

244 such as increased territoriality or dietary shifts. Within Amphisbaenia, a range of tooth 

245 implantation states exist, grading from pleurodonty to acrodonty. Further research on the dental 

246 changes taking place within this clade may suggest a new hypothesis for the evolution of 

247 acrodonty or lend support to the hypothesis presented here. While large portions of the squamate 

248 line have been subjected to bite force analyses, a much larger portion of the lineage has not, 

249 particularly snakes. Greater variation in bite force may exist among the clade, with subsequent 

250 implications for dental evolution in terms of tooth implantation, attachment, and morphology. A 
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251 greater understanding of the evolution of dentition, particularly tooth implantation and 

252 attachment, will inform us of changes in behavior in ancient reptiles lineages.
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424 Figure Legend

425 Figure 1: Acrodont tooth implantation via severe ankylosis as seen in two acrodontan 

426 lizards (A & B) and a rhynchocephalian (C).  A) the chameleon Fercifer oustaleti YPM R 

427 1214, B) the agamid Agama agama YPM R 17936, and C) the rhynchocephalian Sphenodon 

428 punctatus YPM R 10647. D) Pleurodont tooth implantation as seen in Ctenosaura sp. YPM R 

429 11060. 

430 Figure 2: Acrodont vs. Pleurodont bite force. [Left panel] Log-transformed SVL and HD 

431 (mm) versus log bite force (N). Grey line represents a linear regression. [Right panel] SVL- and 

432 HD-normalized bite force distributions. 

433 Figure 3: Number of species analyzed for bite force by family, colored by tooth 

434 implantation. 
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Figure 1
Acrodont tooth implantation via severe ankylosis as seen in two acrodontan lizards (A &
B) and a rhynchocephalian (C).

A) the chameleon Fercifer oustaleti YPM R 1214, B) the agamid Agama agama YPM R 17936,
and C) the rhynchocephalian Sphenodon punctatus YPM R 10647. D) Pleurodont tooth
implantation as seen in Ctenosaura sp. YPM R 11060.
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Figure 2
Acrodont vs. Pleurodont bite force.

[Left panel] Log-transformed SVL and HD (mm) versus log bite force (N). Grey line represents
a linear regression. [Right panel] SVL- and HD-normalized bite force distributions.
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Figure 3
Number of species analyzed for bite force by family, colored by tooth implantation.
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Table 1(on next page)

Summary statistics. SVL = snout-vent length. HD = head depth. NBF = normalized bite
force
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1 Table 

2 1: 

3 Summ

4 ary 

5 statisti

6 cs. SVL = snout-vent length. HD = head depth. NBF = normalized bite force

SVL (mm) HD (mm) Raw bite force (N) SVL NBF HD NBF

Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD

All 13.00 389.00 100.91 71.15 1.22 55.50 9.93 7.12 0.30 409.35 34.46 65.21 -2.17 1.76 0.00 0.72 -2.85 3.93 0.00 1.03

Acrodont 45.34 250.00 125.22 71.33 4.00 33.40 12.19 8.96 5.08 238.30 52.20 65.40 -2.17 1.30 0.26 1.00 -0.38 1.28 0.51 0.51

Pleurodont 13.00 389.00 97.27 70.65 1.22 55.50 9.67 6.87 0.30 409.35 31.81 64.99 -1.52 1.76 -0.04 0.67 -2.85 3.93 -0.06 1.06
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Table 2(on next page)

Summary of statistical test results describing differences between bite force of taxa
with different tooth implantation.

ANCOVAs tested covariation and raw bite force values. KS and MWU tests compared
distributions of NBF values.
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1

2 Table 2: Summary of statistical test results describing differences between bite force of taxa with 

3 different tooth implantation. ANCOVAs tested covariation and raw bite force values. KS and 

4 MWU tests compared distributions of NBF values.

Variable Test Test statistic P-value Jackknife 

mean p-value 

(10000 

replicates)

SVL (logged) ANCOVA 4.32 0.041

KS 0.38258 0.003748 0.0483

MWU 2160 0.003064 0.0313

Head depth 

(logged)

ANCOVA 4.21 0.042

KS 0.4803 0.002 0.0344

MWU 1461 0.001303 0.0246

5
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