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ABSTRACT
Background. Cancer classification is of great importance to understanding its patho-
genesis, making diagnosis and developing treatment. The accumulation of extensive
omics data of abundant cancer cell line provide basis for large scale classification of
cancer with low cost. However, the reliability of cell lines as in vitro models of cancer
has been controversial.
Methods. In this study, we explore the classification on pan-cancer cell line with single
and integrated multiple omics data from the Cancer Cell Line Encyclopedia (CCLE)
database. The representative omics data of cancer, mRNA data, miRNA data, copy
number variation data, DNA methylation data and reverse-phase protein array data
were taken into the analysis. TumorMap web tool was used to illustrate the landscape of
molecular classification.The molecular classification of patient samples was compared
with cancer cell lines.
Results. Eighteen molecular clusters were identified using integrated multiple omics
clustering. Three pan-cancer clusters were found in integrated multiple omics cluster-
ing. By comparing with single omics clustering, we found that integrated clustering
could capture both shared and complementary information from each omics data.
Omics contribution analysis for clustering indicated that, although all the five omics
data were of value, mRNA and proteomics data were particular important. While
the classifications were generally consistent, samples from cancer patients were more
diverse than cancer cell lines.
Conclusions. The clustering analysis based on integrated omics data provides a novel
multi-dimensional map of cancer cell lines that can reflect the extent to pan-cancer cell
lines represent primary tumors, and an approach to evaluate the importance of omic
features in cancer classification.

Subjects Bioinformatics, Cell Biology, Oncology
Keywords Cancer cell lines, Classification, Multiple omics data, Pan-cancer, Oncology

INTRODUCTION
Disease classification provides key foundations for identification and treatment of diseases,
especially for complicated diseases such as cancer (Song, Merajver & Li, 2015). Traditional
classification of cancer was based on diseased organ, shared clinical symptoms and
histological type (Dozmorov, 2018; Ogino, Fuchs & Giovannucci, 2012; Song, Merajver &
Li, 2015). In recent years, the rapid development of high-throughput omics techniques and
the accumulation of omics data enhances deeper understanding of cancer classification and
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characterization in oncology research (Song, Merajver & Li, 2015). Molecular classification
based on omics data is nowbecoming important evidence for individual treatment of several
cancer subtypes (Koboldt et al., 2012; Tan et al., 2019). Several studies have systematically
characterized molecular classification of multiple cancer types based on The Cancer
Genome Atlas (TCGA) and other projects (Heim et al., 2014; International Cancer Genome
C et al., 2010). As early as 2014, Hoadley et al. (2014) reported an integrated analysis of
12 different cancers across six platforms, and redefined cancer types based on molecular
characteristics. In 2018, the group further identified 28 distinct molecular pan-cancer
subtypes arising from 33 cancers by integrating four types of omics data, providing a
supplementing classification system to anatomic taxonomy (Hoadley et al., 2018).

Due to the difficulties to collect clinical samples from cancer patients, cancer cell lines
had been still widely used as in vitro model for exploring cancer occurrence, development,
and treatments. In some cancer types, the classification analysis of cancer cell lines has been
proved to be a convenient way to characterize cancer sample subtypes. For example, five
subtypes of colorectal cancer were revealed by iterative clustering of 74 different colorectal
cancer cell lines, reflecting the consistency with the clinical classification of colorectal
cancer patients (Schlicker et al., 2012). On the other hand, however, the reliability of cell
lines as in vitro models of cancer samples has been doubted repeatedly. Previous studies
have shown that in some cancer types, existing cell lines do not fully represent all tumor
subtypes. For example, Domcke et al. (2013) compared the similarities and differences
between the high-grade serous ovarian carcinomas cell lines and the primary tumors that
they represent. They found that the most representative ovarian carcinomas cell lines were
rarely studied as in vitro models, while other ovarian cancer cell lines were commonly
used (Domcke et al., 2013). In addition, there is still lack of a comprehensive and complete
profiling of pan-cancer cell lines classification based on integrated multiple omics data.
Recently, Li et al. (2017) used reverse phase protein arrays data to divide about 650 cell
lines into 10 pan-cancer groups which contributed a molecular portrait of cancer cell lines
based on proteomics. Although great progresses have been made in the classification of
pan-cancer samples based on integrated multiple omics data, there has been no research
for providing an integrated molecular view of cancer cell lines based on multiple omics
data and few publications have attempted to compare the classification of pan-cancer cell
lines and patient samples.

In this study, we presented a systematic study on pan-cancer cell line classification
based on single and integrated multiple omics data from the Cancer Cell Line Encyclopedia
(CCLE) database (Ghandi et al., 2019). Our study seeks to provide amolecular classification
to show a novel multi-dimensional map of pan-cancer cell lines and to compare the
classification results obtained from our analysis with those of patient samples. The pan-
cancer cell lines from CCLE were clustered in terms of single and multiple omics data
using mRNA sequence data (mRNA), miRNA expression data (miRNA), copy number
variation data (CNV), DNA methylation data (METHY) and reverse-phase protein array
data (RPPA). Distinct molecular groups were identified by integrating five omics data.
By characterizing each group by functional and cell-of-origin enrichment analysis, we
confirmed significant molecular heterogeneity even among different cell lines of the same
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cancer type. Several pan-organ system clusters and a pan-squamousmorphology carcinoma
cluster were also found among these molecular groups. By comparing with single omics
clustering, we found that integrated multiple omics clustering could significantly capture
more information of omics data. Additionally, we quantified the contribution analysis of
each omics data for integrated clustering. The comparison of patient samples and cell lines
classification results reveals that the classification of patient samples are more diverse and
abundant than cancer cell lines.

MATERIALS & METHODS
Cancer cell lines and data pre-processing
Our study involved 1,019 cell lines from 31 previously established cancer types. ThemRNA,
miRNA, CNV, METHY and RPPA data were downloaded from the CCLE database for all
cell lines (https://portals.broadinstitute.org/ccle/data) (Ghandi et al., 2019). The number
of cancer cell lines and the cancer types involved were shown in Table 1.

For mRNA sequence data, we used RSEM values in gene level shared by CCLE database.
We used miRNA expression data from CCLE for miRNA analysis. For DNA methylation,
the promoter CpG data was used for clustering analysis. And reverse phase protein array
data was downloaded for protein analysis. In parallel, we downloaded segmented copy
number profiles from CCLE database for CNV analysis. This SNP6.0 arrays data was used
as the input data for Gistic2.0 software (Mermel et al., 2011). Before pre-processing the
data, we mapped segmented copy number to the chromosome arm level using Gistic2.0.
This copy number variation by the chromosome arm level was the input data of CNV
clustering analysis. Next, the following steps were performed to improve the dataset quality
for single omics clustering.
(1) For each omics dataset, cell lines with more than 20% features missing, and features

with more than 20% cell lines missing were filtered out.
(2) For each omics dataset, themissing data points were filled in using average imputations.
(3) For mRNA and miRNA data, log2 (x+ 1) (x is the value of mRNA and miRNA)

transformation were performed before feature selection.
(4) For mRNA and METHY data, only features in the top 5,000 in terms of variance were

selected. For miRNA, RPPA and CNV data, all features were considered.
For integrated multiple omics clustering, 670 cell lines from 24 cancer types with

complete five omics data were used after samples alignment and deletion of cancer types
with few number of cell lines.

Single and multiple omics clustering of cell lines
For single omics dataset, we performed hierarchical clustering with different methods
and distance measurements (Table 2). We used 30 clustering validity indices to select the
optimal clustering number using the R package ‘‘NbClust’’ (version 3.0) (Charrad et al.,
2014). The optimal parameters for function ‘‘NbClust’’ were set as follows: min.nc = 10,
max.nc = 30, method = ‘‘average’’.

The SimilarityNetwork Fusion andConsensus clustering algorithm (SNF-CC), amethod
combining Similarity Network Fusion (SNF) and Consensus clustering (CC) together to
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Table 1 The number of cancer cell lines of each type of omics data.

Tumor system Cancer type Abbreviation Number of
cell lines of
mRNA data

Number of
cell lines of
miRNA data

Number of
cell lines of
CNV data

Number of
cell lines of
METHY data

Number of
cell lines of
RPPA data

Acute lymphoblastic
leukemia

ALL 31 31 32 30 29

Chronic lymphoblastic
leukemia

CLL 4 4 4 2 4

Lymphoid neoplasm diffuse
large B-cell lymphoma

DLBC 39 39 40 37 37

Acute myeloid leukemia LAML 35 31 36 28 31
Chronic myeloid leukemia LCML 14 14 15 11 13

Hematopoietic
lymphatic
malignancies

Multiple myeloma MM 28 28 30 19 27
Bladder urothelial
carcinoma

BLCA 25 25 23 19 24

Kidney renal clear cell
carcinoma

KIRC 33 23 36 21 21Urologic
system
malignancies Prostate adenocarcinoma PARD 8 7 8 6 7

Breast invasive carcinoma BRCA 51 50 53 46 47
Cervical squamous cell
carcinoma and endocervical
adenocarcinoma

CESC 2 0 0 0 0

Ovarian carcinoma OV 47 49 49 43 47
Gynecologic
cancers

Uterine corpus endometrial
carcinoma

UCEC 28 28 28 22 28

Cholangiocarcinoma CHOL 8 8 0 7 8
Colon adenocarcinoma/rec-
tum adenocarcinoma

COAD/READ 59 58 57 52 57

Esophageal carcinoma ESCA 27 25 27 17 26
Liver hepatocellular
carcinoma

LIHC 25 25 26 19 23

Pancreatic adenocarcinoma PAAD 41 40 43 35 40

Digestive
system
tumors

Stomach adenocarcinoma STAD 37 37 38 32 37
Glioblastoma multiforme GBM 33 33 34 30 34
Brain lower grade glioma LGG 10 9 13 6 9
Medulloblastoma MB 4 4 4 4 4

Nervous
system
tumors

Neuroblastoma NB 16 16 17 14 16
Lung adenocarcinoma LUAD 76 73 70 62 74
Lung squamous cell
carcinoma

LUSC 26 25 23 15 21

Mesothelioma MESO 9 9 9 7 8
Thoracic
tumors

Small cell lung cancer SCLC 50 50 53 47 45
(continued on next page)
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Table 1 (continued)

Tumor system Cancer type Abbreviation Number of
cell lines of
mRNA data

Number of
cell lines of
miRNA data

Number of
cell lines of
CNV data

Number of
cell lines of
METHY data

Number of
cell lines of
RPPA data

Head and neck squamous
cell carcinoma

HNSC 33 33 32 31 32

Sarcoma SARC 37 38 31 31 37
Skin cutaneous melanoma SKCM 54 55 54 51 55

Others

Thyroid carcinoma THCA 11 12 12 11 12

Table 2 Methods andmeasurements for hierarchical clustering.

Omics data Method Distance measurement

mRNA ward.D 1-Pearson’s correlation coefficient
miRNA ward.D2 1-Pearson’s correlation coefficient
CNV ward.D2 Manhattan Distance
METHY ward.D 1-Pearson’s correlation coefficient
RPPA ward.D2 1-Pearson’s correlation coefficient

take advantage of both for cancer type identification, was applied to integrate multiple
omics data (Monti et al., 2003; Wang et al., 2014). The method was implemented by the
R package ‘‘CancerSubtypes’’ (version 1.8.0) (Xu et al., 2017). The optimal parameters
for function ‘‘ExecuteSNF.CC’’ from ‘‘CancerSubtypes’’ were set as follows: K = 20,
alpha = 0.5, t = 20, maxK = 30, pItem = 0.8, reps = 500. The silhouette coefficient, a
measurement of consistency of each object within clusters, also derived using the function
‘‘silhouette_SimilarityMatrix’’ from the R package ‘‘CancerSubtypes’’.

The function ‘‘pamr.listgenes’’ from the ‘‘pamr’’ R package (version 1.56.1) was used
to find the most suitable clustering features for the illustration of clustering by heatmap
(Tibshirani et al., 2002).

Dominant cancer type and functional enrichment analysis
A hypergeometric distribution was used to calculate the P-value for cancer types in each
cluster. Cancer types with a P-value <10−3 were chosen as the dominant types of each
cluster. The −lg(P-value) represents the enrichment score that cancer types gathered in
each cluster.

We explored the differential expressed genes (DEGs) among clusters using the R package
‘‘limma’’ (version 3.38.3) (Ritchie et al., 2015). Genes with adjusted P-value <0.05 were
selected, and were further screened according to |log2 fold-change|>1. Finally, the above
DEGs were fed into enrichment analysis with GO and KEGG terms using the R package
‘‘clusterProfiler’’ (version 3.10.1) (Yu et al., 2012). The significantly enriched pathways
were identified using false discovery rate <0.05.

Feature contribution of integrated multiple omics clustering
We used the normalized mutual information (NMI), which was a measure of the
interdependence between two random variables, to measure the contribution of each
omics type feature. The function ‘‘rankFeaturesByNMI’’ in the R package ‘‘SNFtool’’
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(version 2.3.0) were used to compute NMI (Liu et al., 2018a;Wang et al., 2014). Codes are
provided in Script S1.

Tumor maps of cancer cell lines
We used the TumorMap website to create pan-cancer cell lines maps from the above
integrated data. TumorMap is an interactive website for assisting in exploring high-
dimensional and complicated omics data (https://tumormap.ucsc.edu/) (Newton et al.,
2017). In TumorMap, samples are distributed on a hexagonal grid based on their similarity
and rendered using Google’s Map technology. The distances were used as input to generate
a 2D layout of the samples.We used features that NMI ranks top 20% to calculate Euclidean
similarity between each cell line. The Euclidean similarity is equal to 1/(1 + Euclidean
distance). All parameters in TumorMap were set default.

RESULTS
Clustering based on single omics data
We initially clustered cell lines based on each type of omics data, which were mRNA,
miRNA, CNV, METHY and RPPA data. The optimal clustering numbers were set to 10
(Fig. 1 and Fig. S1).

In the hierarchical clustering result of 901 cell lines by mRNA (Fig. 1A, Table S1 and
Fig. S1A), we found that one cluster was mainly formed from a single type of cancer
(C7 [SKCM]). Additionally, hematopoietic lymphatic malignancies were separated into
two clusters, (C6 [ALL-DLBC-MM] and C9 [LAML-LCML]). Cancer cell lines with
histological similarity or proximity tended to group together. These include C2: pan-
gastrointestinal [COAD/READ-STAD], C4: nervous system tumors [GBM-LGG and some
SARC whose features were the same as them] and C8: pan-gynecological [OV-UCEC
and other SARC cell lines]. KEGG enrichment analysis indicated that C1 was enriched in
human cytomegalovirus infection, transcriptional misregulation in cancer, proteoglycans
in cancer, TNF signaling pathway and NF-kappa B signaling pathway (Figs. S2A and S2B).
Meanwhile, the cell lines in C1 were enriched in GO terms including reproductive system
development and morphogenesis of embryonic epithelium (Figs. S2C–S2H).

In the clustering result of miRNA data of 879 cell lines (Fig. 1B, Table S2 and Fig.
S1B), five clusters predominately contained a single cancer type (C2 [COAD/READ], C5
[STAD], C6 [HNSC], C8 [SKCM] and C10 [NB]). And tumors of the hematopoietic
lymphatic system were distributed in two clusters (C4 [ALL-DLBC-LAML-LCML-MM]
and C9 [ALL-DLBC-LAML]). The significant signature of these two clusters were high
expression of has-miR-142-5p and has-miR-142-3p, which played an important role in
lineage differentiation of hematopoietic cells (Sharma, 2017).

CNV data sorted at the chromosome arm-level for 897 cell lines were divided into 10
clusters through hierarchical clustering, four clusters mainly formed from a single cancer
type (C3 [GBM], C5 [SKCM], C7 [PAAD] and C8 [SCLC]) (Fig. 1C, Table S3 and Fig.
S1C). C8 was characterized by the deletion of chr3p and chr17p and the amplification
of chr3q. This characterization had been reported in previous studies (Carter et al., 2017;
George et al., 2015; Peifer et al., 2012). C1 and C10 were enriched for ALL, DLBC, LAML
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Figure 1 Cluster labels of single omics clustering. (A) mRNA. (B) miRNA. (C) CNV. (D) METHY.
(E) RPPA. A hypergeometric distribution was used to calculate the P-value for cancer types in each clus-
ter. The rows represent clusters, and the columns represent cancer types. The values represent the−lg(P-
value) of cancer types. Cancer types with−lg(P-value) > 3 in each cluster were defined as dominant can-
cer types. All the blank cells mean the instances of P-value= 0.

Full-size DOI: 10.7717/peerj.9440/fig-1
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and LCML. We observed fewer alterations in C1 but more alterations in C10. For example,
C10 was characterized by chr8, chr19 and chr6 copy number increase.

Among the unsupervised clustering result of 755 cell lines using METHY data (Fig. 1D,
Table S4 and Fig. S1D), there was one cluster that virtually consisted of one cancer type (C7
[SKCM]). Meanwhile, hematopoietic lymphatic malignancies were still enriched in two
clusters (C3 [DLBC-MM] and C6 [ALL-LAML-LCML]). Cancer cell lines originating from
same organ often gathered in the same cluster, such as C2 [COAD/READ-STAD-PAAD],
a group of digestive system cancers whose common features were the high expression
of CNKSR1, FOLH1, ADGRG1, SMAD7, LRATD1 and MVP (Haffner et al., 2009; Ji et
al., 2018; Kobayashi et al., 2006; Quadri et al., 2017; Slattery et al., 2010; Teng et al., 2017).
Additionally, squamous morphology cancer cell lines aggregated by METHY patterns (C10
[ESCA-HNSC]), particularly in terms of ARHGDIB and SEPTIN9 loss (Bennett et al.,
2008).

In hierarchical clustering of RPPA data from 854 cell lines (Fig. 1E, Table S5 and Fig.
S1E), C4 [SKCM], C8[LUAD] and C10 [BRCA] mostly contained one cancer type. The
characteristics of C10 in this analysis had high level of ER, GATA3, AR, ERBB2, FASN,
PREX1, CDH1 and CLDN7, and low level of CAV1 (Barrio-Real et al., 2016; Neve et al.,
2006; Taherian-Fard, Srihari & Ragan, 2015). Hematopoietic lymphatic malignancies were
enriched in one cluster (C3 [ALL-DLBC-LAML-LCML-MM]). Consistent with METHY
analysis, a pan-gastrointestinal carcinoma cluster with COAD/READ-STAD was gathered
in C2, which had high level of CDH1, CLDN7 and TYRO3, and a low level of CAV1
(Burgermeister et al., 2007; Di Bartolomeo et al., 2016; Qin & Qian, 2018). In addition, C7
was an enrichment cluster of squamous morphology cancer cell lines, mostly made of
HNSC and ESCA and was characterized by high level of CDH1, CLDN7 and CAV1 (Ando
et al., 2007; Bello et al., 2008; Shah et al., 2009).

Interestingly, some cancer types, such as SKCM, were individually classified in all five
omics data, whereas some cancer types such as SCLC and BRCAwere clustered individually
only in one or two omics data. This result indicates that exposed information of each omics
data is different at molecular level. According to investigation, SKCM is a paradigm of
invasive cancer characterized by the highest mutational frequency among all cancer types
and a large accumulation of changes in transcriptome (Cancer Genome Atlas N, 2015;
Lawrence et al., 2013). Compared to other cancer cell lines, there are a large number of
special molecular characteristics in SKCM cell lines. For example, we found that the levels
of miR-188-3p and miR-514 were increased significantly, whereas in other cell lines, the
levels of the two miRNA were decreased. At the CNV level, amplification of chr7 was found
in most SKCM cell lines. It is generally known that several common mutations of SKCM,
are on the chromosome 7 (Hayward et al., 2017). Moreover, pan-cancer clusters could be
found based on mRNA, METHY and RPPA, but were not individually clustered in miRNA
and CNV. This phenomenon was consistent with feature contributions of integrated
multiple omics clustering, and was related to the fact that the characteristic information
from mRNA, METHY and RPPA dataset were more representative.
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Integrated clustering based on multiple omics data
By using SNF-CC, we integrated all five of omics datasets (mRNA, miRNA, CNV, METHY
and RPPA) across 670 cell lines and identified 18 clusters (Fig. 2A, Table S6 and Fig. S3).

For these 18 clusters, 12 of them were dominated by a single cancer type (C1 [SCLC],
C2[GBM], C4 [ALL], C6 [SARC], C7 [BRCA], C8 [ALL], C10 [MM], C12 [DLBC], C14
[LAML], C15 [SKCM], C16 [NB] and C17 [KIRC]) (Figs. 2A and 2B, Fig. S4). And each
clusters also mixed with few amounts of other cancer types. Except SKCM, C15 also
contained one glioblastoma multiforme cell line (LN229) with low level of VHL and high
expression of has-miR-146a, has-miR-29b and has-miR-188-3p (Aurich, Fleming & Thiele,
2017). It is notable that although SARC is the dominant cancer types in C6, the proportion
within the cluster is relatively low.

There were six clusters that dominated by two cancer types (C3 [PAAD-LUAD], C5
[HNSC-ESCA], C9 [LAML-LCML], C11 [COAD/READ-STAD], C13 [LUAD-LIHC] and
C18 [OV-UCEC]) (Figs. 2A and 2B, Fig. S4). On the one hand, the proportion of two
dominant cancer types were almost equal in C3, C13 and C18. And C3 was characterized
by high level of CDH1. On the other hand, in C5, C9 and C11, one of the two dominant
cancer type was over 50%. And C9 had high levels of VAV1 and STAT5A and low level of
CTNNB1 (Bertagnolo et al., 2011; Harir et al., 2007; Ysebaert et al., 2006).

Three pan-cancer clusters influenced by organ of origin or cell morphology
pattern were obtained. These clusters included pan-gastrointestinal cluster (C11
[COAD/READ-STAD]), pan-gynecological cluster (C18 [OV-UCEC]) and pan-squamous
morphology carcinoma cluster (C5 [HNSC-ESCA]). For pan-gastrointestinal cluster
(C11 [COAD/READ-STAD]), KEGG enrichment analysis results showed that these cell
lines shared down-regulated in cytokine-cytokine receptor interaction and TNF signaling
pathway (Figs. 3A and 3B and File S1). And cell lines in C11 had high levels of protein
binding involved in heterotypic cell–cell adhesion, SNARE binding and G-protein beta-
subunit binding in GO terms (Figs. 3C–3H and File S1). Meanwhile, pan-squamous
morphology carcinoma cell lines (C5 [HNSC-ESCA]) were characterized by up-regulated
of nicotine addiction and cell adhesion molecules pathway. And these cell lines had high
levels of CAV1, EGFR and ITGA2 (Ando et al., 2007; Song et al., 2015).

We also observed two clusters with the same cancer type dispersed. For instance, cell lines
from ALL were divided into two clusters, C4 and C8, despite the common characteristics
such as Human T-cell leukemia virus 1 infection, Th17 cell differentiation, and TNF
signaling pathway. The ALL cell lines in C8 were enriched in KEGG terms including
up-regulated in ECM-receptor interaction, down-regulated in antigen processing and
presentation pathway, while the ALL cell lines in C4 had low level of cellular senescence
(Figs. 3A, 3B and File S1). GO enrichment analysis results showed that the ALL cell lines
in C8 had low level of cell–cell junction and high levels of calcium channel activity, while
the ALL cell lines in C4 were down-regulated in growth factor receptor binding and sulfur
compound binding (Figs. 3C–3H and File S1). At other four omics levels, the features
of these two clusters were different as well. For example, the levels of PTEN (a tumor
suppressor gene), LCK and Syk (two immune-related genes) and has-miR-151-5p (related
to tumor invasion and metastasis) was completely inconsistent.
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Figure 2 Classification of pan-cancer cell lines based on integrated multiple omics data. (A) Data inte-
grated analysis of SNF-CC. Types of cancer cell line are color-coded as shown in the right. The first track
represents cell lines of TCGA disease. The second track represents the SNF-CC group. A bar graph was
used to show cancer types and the proportion of cell lines in each cluster. The dominant cancer types of
each cluster were marked on the top of the bar graph. (B) Clusters composition. Pie charts show the can-
cer type composition within clusters and the proportion of the membership. The y-coordinate of each pie
center reflected the dominant cancer types proportion. The x-coordinate was determined by the number
of cell lines in each cluster. (C) The contributions of feature (top 20% NMI) from each omics data.

Full-size DOI: 10.7717/peerj.9440/fig-2
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Figure 3 KEGG and GO enrichment analyses from integrated multiple omics clustering. (A) KEGG
enrichment heatmap of down-regulated genes. (B) KEGG enrichment heatmap of up-regulated genes. (C)
GO biological process enrichment heatmap of down-regulated genes. (D) GO biological process enrich-
ment heatmap of up-regulated genes. (E) GO cellular component enrichment heatmap of down-regulated
genes. (F) GO cellular component enrichment heatmap of up-regulated genes. (G) GO molecular function
enrichment heatmap of down-regulated genes. (H) GO molecular function enrichment heatmap of up-
regulated genes. Deeper red color signifies greater enrichment score in A-H.

Full-size DOI: 10.7717/peerj.9440/fig-3
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Table 3 The percentages of the top 20%NMI features from each omics data.

mRNA miRNA CNV METHY RPPA

The top 20% NMI features 5626 67 1 7691 69
All features 18,996 654 40 47,362 214
Percentage 29.62% 10.24% 2.50% 16.24% 32.24%

Integrated multiple omics clustering provided a global view of cancer types because it
could capture both shared and complementary information from each omics data. Several
cancer types which mixed together in one single omics data were divided in other single
omics data or integrated omics data. For example, BRCA and SCLC were mixed together
based onmiRNA data, but they were separated into two distinctmolecular clusters based on
integrated omics data. Besides, in single omics clustering, three pan-organ system clusters
were only found based on mRNA data and the pan-squamous morphology carcinoma
cluster was only found based on METHY and RPPA data. But pan-gastrointestinal
cluster, pan-gynecological cluster and pan-squamous morphology carcinoma clusters
were simultaneously identified by integrated multiple omics clustering.

The relative contribution of each omics data to the integrated clustering was computed
based on the NMI value. On the basis of the top 20% statistical features from the five
omics data, we found that RPPA and mRNA contributed 32.24% and 29.62% respectively,
followed by METHY (16.24%) (Fig. 2C and Table 3). This result demonstrated that
mRNA and proteomics data were particular important for cancer molecular classification.
Meanwhile, more information was showed based on mRNA and RPPA data than other
omics data in single omics clustering. For instance, pan-organ system clusters were
identified based on mRNA and RPPA data, but not in miRNA and CNV. This results
indicated that mRNA and proteomics data could be preferred if multiple omics data were
not able to be measured simultaneously.

The comparison of classification between cancer samples and
cell lines
We compared the classification results of 19 cancer types shared by cancer cell lines from
CCLE and patient samples from TCGA (Hoadley et al., 2018). Clusters of patient samples
and cell lines were divided into three types respectively, namely clusters dominated by single
cancer type, pan-cancer clusters and clusters mixed with other cancer types (Table 4).

For hematopoietic lymphatic malignancies, the classification of cancer cell lines is
more abundant than patient samples. For example, some LAML cell lines were clustered
together in a group, while others were mixed with LCML cell lines into another group
(LAML-LCML) in our findings. For patient samples, there is only one LAML group
(Hoadley et al., 2018). The classification of DLBC cell lines was consistent with patient
samples. Just like hematopoietic malignancies, the SARC patient samples were clustered
individually into a group. However, for cell lines, except gathering in a single group, a few
other SARC cell lines were mixed with GBM.

For most solid tumors, the classification of patient samples is generally more abundant
and diverse than the corresponding cell lines. In general, patient samples with same cancer
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Table 4 The comparison of classification between cancer samples and cell lines.

Classification of cancer samples in TCGA Classification of cell lines in CCLE

Cancer types Number of
clusters dominated
by single cancer type

Number of
pan-cancer
clusters

Number of
clusters mixed with
other cancer types

Number of
clusters dominated
by single cancer type

Number of
pan-cancer
clusters

Number of
clusters mixed with
other cancer types

DLBC 1 0 0 1 0 0
LAML 1 0 0 1 0 1
BLCA 0 0 1 0 0 1
KIRC 0 1 0 1 0 0
BRCA 3 0 1 1 0 0
OV 1 0 0 0 1 0
UCEC 1 0 0 0 1 0
COAD/READ 0 2 0 0 1 0
ESCA 0 2 0 0 1 0
LIHC 1 0 0 0 0 1
PAAD 0 0 1 0 0 1
STAD 1 1 1 0 1 0
GBM 0 1 0 1 0 0
LUAD 1 0 0 0 0 2
LUSC 0 1 0 0 0 1
HNSC 0 2 0 0 1 0
SARC 0 0 1 1 0 1
SKCM 0 0 1 1 0 0
THCA 1 0 0 0 0 1

type can be divided intomultiple groups, while cell lines with same cancer type are clustered
in one group. For example, the samples of breast cancer were classified into three subgroups
(chr8q amp, HER2 amp and Luminal). In addition, there were a large number of BRCA
samples gathered with other cancer types in a mixed cluster. Except a few of BRCA cell lines
weremixed in a pan-gynecological cluster, whereas almost all BRCA cell lines were clustered
in a single group. And there are similar clustering results in gastrointestinal cancer and
squamous cell carcinoma. There were two pan-gastrointestinal groups and a single gastric
cancer group in patient samples (Hoadley et al., 2018). While most colorectal and gastric
cancer cell lines were clustered in a pan-gastrointestinal cluster without forming a STAD
group in the classification result of cell lines. Most patient samples of ESCA were divided
into a pan-squamous morphology carcinoma group and a pan-gastrointestinal group,
while in our study, most ESCA and HNSC cell lines were clustered in a pan-squamous
morphology carcinoma cluster. This indicates that not all molecular subtypes of patient
samples can be represented by current panels of cancer cell lines.

On the other hand, while the number of clustering groups were same, the types of
clusters were different in cell lines and patient samples of some cancer types. For example,
there is a pan-kidney group in the classification of patient samples. But this cluster was
not in our results because there is only one cell line associated with kidney cancer, renal
clear cell carcinoma (KIRC), in the CCLE database (Hoadley et al., 2018; Ricketts et al.,
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2018). Although there was no pan-kidney cluster in our research, the KIRC cell lines were
clustered individually in our clustering results. And the patient samples of OV and UCEC
were gathered in different clusters, while cell lines of the two cancer types were clustered
together in a pan-gynecological group. GBM patient samples were clustered with LGG
to form a pan-cancer group, however due to lacking LGG cell lines, GBM cell lines were
clustered individually. The classification of patient samples in some cancer types, such as
LIHC, LUSC and THCA, the clusters they formed were dominated by single cancer type
(Hoadley et al., 2018). However, the clusters formed by these three types of cancer cell lines
were mixed with large number of other cancer types.

In general, due to the larger numbers of patients and the greater heterogeneity in TCGA
samples, the classification results of patient samples are more diverse and abundant than
cancer cell lines. It is clear that the existing cancer cell lines do not fully represent all the
molecular types of corresponding patient samples. However, in some cancer types, the
classification of patient samples and cell lines were consistent. This shows that cancer cell
lines can represent primary samples to some extent.

The TumorMap landscape of pan-cancer cell lines
We used TumorMap web tool to visualize the landscape of pan-cancer cell lines. The
same layout and four different color schemes (SNF-CC cluster, TCGA disease, Pan-organ
system and histology) were used to reveal that most cancer cell lines gathered based on
organ systems and histopathological similarity (Fig. 4). More nuance within a cancer type
were apparent. The SARC was widely distributed and separated into three parts. Most
of them enriched in C6 (SARC), while others were fell into C2 (GBM) characterized by
amplification of chr7p and C16 (NB) characterized by chr17q amplification (Figs. 4A and
4B). Additionally, major cell lines from STAD were assembled in C11 (COAD/READ-
STAD), but few gathered in C18 (OV-UCEC) and C13 (LUAD-LIHC). Pan-organ system
clusters and pan-squamous morphology carcinoma cluster reported previously were
shown on the map (Fig. 4C) (Berger et al., 2018; Campbell et al., 2018; Liu et al., 2018b). We
found that cell lines within C11 (COAD/READ-STAD) and C5 (HNSC-ESCA) were tightly
gathered, while cell lines within C18 (OV-UCEC)were relatively dispersed. The TumorMap
landscape showed that cancer cell lines with similar histology characterization tended to get
together, even though histological information were not used during calculating similarities
(Fig. 4D). The hematopoietic lymphatic malignancies were remote from other cancer types
on the map. This result underscored that the molecular characteristics of hematopoietic
lymphatic malignancies were different from other cancer types (Fig. 4D). Moreover, C15
(SKCM) and C17 (KIRC) were also far away from other solid tumor groups on the map.

We downloaded the drug susceptibility data for 24 anticancer drugs across 504 cell lines
in CCLE database. We used TumorMap web tool to analyze the relationship between the
drug susceptibility and the pan-cancer clustering. We divided the analysis results into four
types and chose the representative drugs as examples (Fig. S5).
(1) These anticancer drugs have a strong effect on almost all cancer cell lines. For example,

LUAD-LIHC (C13), GBM (C2), SARC (C6), DLBC (C12), SKCM (C15), OV-UCEC
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(C18) and HNSC-ESCA (C5) cell lines are sensitive to Paclitaxel, a broad-spectrum
anticancer drug (Fig. S5A).

(2) Almost all cell lines are not sensitive to these drugs, for example, L-685458, a gamma-
secretase inhibitor (Fig. S5B).

(3) Only one cell line or few cell lines are sensitive to these anticancer drugs. For example,
as a BRAF inhibitor, PLX4720 has an obvious effect on some SKCM (C15) cell lines,
but has no effect on other cell lines (Fig. S5C).

(4) These anticancer drugs have a strong effect on many cancer cell lines, but have a weak
effect on others. For example, RAF256 is a dual inhibitor of mutant BRAF and vascular
endothelial growth factor receptor 2. This drug can inhibit proliferation of SKCM
(C15), GBM (C2), LUAD-LIHC (C13), OV-UCEC (C18) and some COAD/READ-
STAD (C11) cell lines (Fig. S5D).

DISCUSSION
In this research, we provide a pan-cancer cell lines classification based on single andmultiple
omics data. First, unsupervised hierarchical clustering was performed using five omics data
from CCLE database, involving 31 cancer types and more than 1,000 cell lines, with each
omics data showing different characterization. Next, we analyzed integrated multiple omics
data of pan-cancer cell lines using SNF-CCmethod and ultimately clustered 24 cancer types
into 18 groups. Moreover, we analyzed dominant cancer types and functional enrichment
of each clusters. Then, the relative contribution of each omics data were calculated. We
compared the classification of cancer cell lines and patient samples. Finally, we used
TumorMap web tool to illustrate the landscape of cancer cell line clusters.

Our study showed that clusters were strongly influenced by organ system and cell of
origin. Three pan-cancer cell line clusters: pan-gastrointestinal group, pan-gynecological
group and pan-squamous morphology carcinoma group were identified by integrated
multiple omics clustering simultaneously (Berger et al., 2018; Campbell et al., 2018; Liu
et al., 2018b). Common functional mechanism and multiple omics characterization in
the same pan-cancer clusters may contribute to potential clinical application value. The
clusters obtained by integrated clustering provided reference about treating the same
disease with different therapies. On one hand, one cancer type with different molecular
features gathered in different clusters. Although these cell lines belong to same cancer type,
the treatment therapies based on molecular characterizations may be different. On the
other hand, the treatment of a cluster containing multiple cancer types may be the same.
The comprehensive analysis about cancer classification could be used to elucidate potential
disease mechanism and provide additional guidance for molecular treatments.

Cancer cell lines have been commonly used as in vitro models of tumors in biomedical
research, however, the reliability has been doubted. The comparison of molecular
classification between cancer cell lines and patient samples from TCGA provided a valuable
insight into the reliability of cell lines as samples. While the overall classification of cell
lines and samples were quite similar, samples from cancer patients were generally more
diverse and abundant than cell lines. In some types of cancer, the number of molecular
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groups in patient samples were more than the corresponding cancer types of cell lines,
while in others, the molecular classification of patient samples matched the corresponding
molecular groups of cell lines. Our study provides researchers with a widely comparison of
pan-cancer cell lines and primary samples.

We also presented thatmRNA and proteomics data weremore strongly grouped in terms
of classification by cancer type than other omics data. This is meaningful for biologists and
oncologists choosing what types of omics data they need for their particular analysis.
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CONCLUSIONS
In summary, we provide a novel multi-dimensional landscape of cancer cell lines, and
an approach to evaluate the importance of omic features in cancer classification. This
research is crucial for treating same cancer with different therapies based on molecular
characteristics. The comparison of molecular classification between pan-cancer cell lines
and patient samples represents a valuable resource for the reliability of available cell
lines as model of tumors. With the lower cost of omics analyses and the development of
high-throughput omics technologies, integrated more omics data for cancer classification
could be applied in clinical diagnosis and guide personalized treatment.
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