
State-space modeling of the dynamics of temporal
plant cover using visually determined class data
(#46532)

1

First submission

Guidance from your Editor

Please submit by 23 Mar 2020 for the benefit of the authors  (and your $200 publishing discount) .

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files
from the materials page.

1 Latex file(s)

https://peerj.com/submissions/46532/reviews/648851/materials/
kirvine
Sticky Note
Overall Comments:
I think this is a really nice addition to the literature on harnessing the beta distribution to model plant cover class datasets. It was cool to see Stan and posterior predictive checks used for an analysis. Most of my comments throughout are minor and only serve to connect this paper with the other developments in the literature. I also think the work here has a lot of potential to be extended and incorporated into the work we have ongoing, so I appreciated the opportunity to be made aware of this author's work as well. We have coded the model differently using Stan and also can reproduce our results using the brms pkg, which is great as brms pkg make it easier for other people to use for their data because it is written as a more typical lm ,glm model input.

Your parameterization is the same as what we do, but I think you need to verify some of my statements below.  See my specific notes, but I think crosswalking and using the same notation throughout would be helpful.

I encourage the author to consider my recent paper in Methods in Ecology and Evolution and an older one Irvine et al 2016 that was really the groundwork for Wright et al 2017 and Irvine et al 2019. 

KM Irvine, WJ Wright, EK Shanahan, TJ Rodhouse 2019. Cohesive framework for modelling plant cover class data. Methods in Ecology and Evolution 10 (10), 1749-1760

KM Irvine, TJ Rodhouse, IN Keren
2016. Extending ordinal regression with a latent zero-augmented beta distribution
Journal of Agricultural, Biological and Environmental Statistics 21 (4), 619-640

https://github.com/paul-buerkner/brms

Damgaard & Irvine. 2019.  Using the beta distribution to analyse plant cover data. J of Ecology. 



For assistance email peer.review@peerj.com
Structure and
Criteria

2

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review
When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.
Intro & background to show context.
Literature well referenced & relevant.
Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.
Figures are relevant, high quality, well
labelled & described.
Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.
Research question well defined, relevant
& meaningful. It is stated how the
research fills an identified knowledge gap.
Rigorous investigation performed to a
high technical & ethical standard.
Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.
All underlying data have been provided;
they are robust, statistically sound, &
controlled.

Speculation is welcome, but should be
identified as such.
Conclusions are well stated, linked to
original research question & limited to
supporting results.

mailto:peer.review@peerj.com
https://peerj.com/submissions/46532/reviews/648851/
https://peerj.com/submissions/46532/reviews/648851/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/


Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 – the current phrasing makes
comprehension difficult.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.



State-space modeling of the dynamics of temporal plant cover
using visually determined class data
Hiroki Itô Corresp. 1

1 Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo, Japan

Corresponding Author: Hiroki Itô
Email address: abies.firma@gmail.com

A lot of vegetation-related data have been collected as an ordered plant cover class that
can be determined visually. However, they are difficult to analyze numerically as they are
in an ordinal scale and have uncertainty in their classification. The author constructed a
state-space model to estimate unobserved plant cover proportions (ranging from zero to
one) from such cover class data. The model assumed that the data were measured
longitudinally, so that the autocorrelations in the time-series could be utilized to estimate
the unobserved cover proportion. The model also assumed that the quadrats where the
data were collected were arranged sequentially, so that the spatial autocorrelations also
could be utilized to estimate the proportion. Assuming a beta distribution as the probability
distribution of the cover proportion, the model was implemented with a regularized
incomplete beta function, which is the cumulative density function of the beta distribution.
A simulated dataset and a real dataset, with one-dimensional spatial structure and
longitudinal survey, were fit to the model, and the parameters were estimated using the
Markov chain Monte Carlo method. Then, the validity was examined using posterior
predictive checks. As a result of the fitting, the Markov chain successfully converged to the
stationary distribution, and the posterior predictive checks did not show large
discrepancies. For the simulated data, the estimated values were close to the values used
for the data generation. The estimated values for the real data also seemed to be
reasonable. These results suggest that the proposed state-space model was able to
successfully estimate the unobserved cover proportion. The present model is applicable to
similar types of plant cover class data, and has the possibility to be expanded, for
example, to incorporate a two-dimensional spatial structure and/or zero-inflation.
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ABSTRACT10

A lot of vegetation-related data have been collected as an ordered plant cover class that can be determined

visually. However, they are difficult to analyze numerically as they are in an ordinal scale and have

uncertainty in their classification. The author constructed a state-space model to estimate unobserved

plant cover proportions (ranging from zero to one) from such cover class data. The model assumed that

the data were measured longitudinally, so that the autocorrelations in the time-series could be utilized to

estimate the unobserved cover proportion. The model also assumed that the quadrats where the data

were collected were arranged sequentially, so that the spatial autocorrelations also could be utilized to

estimate the proportion. Assuming a beta distribution as the probability distribution of the cover proportion,

the model was implemented with a regularized incomplete beta function, which is the cumulative density

function of the beta distribution. A simulated dataset and a real dataset, with one-dimensional spatial

structure and longitudinal survey, were fit to the model, and the parameters were estimated using the

Markov chain Monte Carlo method. Then, the validity was examined using posterior predictive checks.

As a result of the fitting, the Markov chain successfully converged to the stationary distribution, and the

posterior predictive checks did not show large discrepancies. For the simulated data, the estimated

values were close to the values used for the data generation. The estimated values for the real data

also seemed to be reasonable. These results suggest that the proposed state-space model was able

to successfully estimate the unobserved cover proportion. The present model is applicable to similar

types of plant cover class data, and has the possibility to be expanded, for example, to incorporate a

two-dimensional spatial structure and/or zero-inflation.
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INTRODUCTION30

There is a vast amount of historical data regarding plant abundance that were recorded as plant abundances31

in an ordered cover class, e.g., the Braun-Blanquet classification (Podani, 2006; Irvine and Rodhouse,32

2010; Damgaard, 2014), much of which was determined visually. In many cases, such data are difficult to33

treat numerically; they are typically recorded in an “ordinal scale” so that standard arithmetic operations,34

such as addition or subtraction, are not applicable (Dale, 1989; Podani, 2006). In addition, the uncertainty35

derived from the visual classification of such data tends to be ignored in analyses.36

However, attempts to estimate unobserved “true” plant cover (the proportion in a unit area) from the37

ordered class data have been developed along with progress in statistical methods in the field of ecology38

(Irvine and Rodhouse, 2010; Damgaard, 2014; Herpigny and Gosselin, 2015). Ordered class data are39

typically modeled using ordered logit (cumulative logit) models, but the interpretation of the models has40

been known to be rather complicated (Herpigny and Gosselin, 2015).41

However, some attempts have been made to model the plant cover proportion, assuming that this42

proportion follows the beta distribution (Chen et al., 2008; Damgaard, 2014). For example, Damgaard43

(2014) modeled the plant cover class as determined visually using the incomplete beta function based on44

the beta distributions of the plant cover, and then Herpigny and Gosselin (2015) incorporated zero-inflation,45

accounting for the excess zeros in the class data, into the model.46
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In recent decades, state-space models have been applied to many subjects in ecology, such as pop-47

ulation dynamics (Clark and Bjørnstad, 2004; Iijima et al., 2013), metapopulation dynamics (Harrison48

et al., 2011), and tree growth (Shimatani and Kubota, 2011; Hiura et al., 2019). The state-space model49

consists of two types of sub-model, the observation model and the system model; the former describes the50

relationships that exist between the observed data and unobserved systems, and the latter describes the51

processes in the unobserved latent system, such as the temporal changes of the system. Notably, this class52

of models has a hierarchical structure and can explicitly describe the observation processes and the latent53

system processes separately.54

The state-space model has also been used for dealing with time-series pin-point cover data (Damgaard,55

2012). However, cover class data treated in the present study typically have less information than that of56

the pin-point cover data. Few studies have applied state-space modeling to cover class data, but if the57

class data were collected longitudinally, we would be able to utilize the information; i.e., the value of the58

latent state at a survey occasion should be similar to those at temporally adjacent occasions. In addition, if59

the class data were surveyed in quadrats that are arranged sequentially, we could also utilize information60

from the spatial autocorrelation.61

In this study, a state-space model was constructed to estimate the unobserved proportion of plant cover62

from ordered class data using the incomplete beta function, combining information from temporal and63

spatial autocorrelations. This type of model would help to utilize visually determined plant cover data64

with temporal and spatial autocorrelation.65

METHODS66

Statistical model67

Model basis68

Beta distribution has been used to describe statistical variations in plant cover, because the distribution69

has a boundary from zero to one, and because it can describe various shapes (Chen et al., 2008; Eskelson70

et al., 2011; Damgaard, 2012, 2013, 2014; Herpigny and Gosselin, 2015; Wright et al., 2017; Takarabe71

and Iijima, 2019). In this approach, the proportion of cover p (0≤ p≤ 1) is assumed to follow the beta72

distribution:73

p∼ Beta(α,β ),

where α (> 0) and β (> 0) are the parameters. Another parameterization using the mean of the proportion74

µ (0 < µ < 1) as a parameter is available,75

p∼ Beta

(

µ

δ
−µ,

(1−µ)(1−δ )

δ

)

,

where δ (0 < δ < 1) denotes the intra-quadrat correlation of the plant distribution Damgaard (2012,76

2013, 2014). However, the parameter δ can be regarded as that to control the variance or uncertainty77

of the observation of the cover proportion when δ is rather smaller (Fig. 1). In the case of µ = 0.5,78

the distribution stays unimodal when δ is smaller than 1/3. In contrast, when δ becomes larger, the79

distribution tends to become bimodal (zero and one), or unimodal at zero or one (depending on µ). In this80

parameterization set, the variance was given as δ µ(1−µ).81

The probability that p falls between x0 and x1 (0 ≤ x0,x1 ≤ 1, and x0 < x1) can be described as82

follows:83

Pr(x0 < p < x1|α,β ) = B(x1,α,β )−B(x0,α,β ),

or84

Pr(x0 < p < x1|µ,δ ) = B

(

x1,
µ

δ
−µ,

(1−µ)(1−δ )

δ

)

−B

(

x0,
µ

δ
−µ,

(1−µ)(1−δ )

δ

)

,
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Figure 1. Probability densities of beta distributions corresponding to the cover proportion with a fixed

mean (=0.6) and varying the value ofδ (0.01, 0.1, 0.2, and 0.4).

where B(x,α,β ) is the cumulative density function of beta distribution, identical to the regularized85

incomplete beta function Ix(α,β ). Note that B(0,α,β ) = 0 and B(1,α,β ) = 1.86

Fig. 2 shows changes in probabilities that each cover class is chosen according to the true proportion.87

When the value of δ is small, the chosen cover class would be rather precise. In contrast, the larger δ88

becomes, classes other than the correct one tend to be chosen more frequently.89
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Figure 2. Relationships between the plant cover proportion and the probability that the proportion is

classified to each class, with varying values of δ (0.01, 0.1, 0.2, and 0.4). Red dashed lines show cut

points (inner boundaries of the classes).

State-space model90

Observation model Assume that surveys on plant cover were conducted NT times in NQ quadrats. In91

the present study, quadrats were assumed to be arranged on a line.92

Cover class, Y , was defined as six classes corresponding with the proportion of plant cover as follows:93
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Y =







































1 if 0≤ cover≤ 0.01,

2 if 0.01 < cover≤ 0.1,

3 if 0.1 < cover≤ 0.25,

4 if 0.25 < cover≤ 0.5,

5 if 0.5 < cover≤ 0.75,

6 if 0.75 < cover≤ 1.

In reality, Y would be typically determined with visual measurements.94

In this study, estimating the cover proportion of a particular species was the primary purpose rather95

than the presence/absence of the species. Thus, for simplicity, the model did not distinguish the absence96

of the species (or more precisely, the absence of the detection of the species) from the smallest plant cover97

class. When the plant species richness of the area is the study purpose, both states should be modeled98

separately. In those cases, incorporating zero-inflation (Herpigny and Gosselin, 2015) and the correction99

of false-negative errors (Chen et al., 2009, 2013) into the model is required.100

The relationship between the observation Yt,q, cover class at time t ∈ {1,2, . . . ,NT} and in quadrat101

q ∈ {1,2, . . . ,NQ}, and pt,q, the proportion of plant cover at time t in quadrat q, was defined after102

Damgaard (2014) and Herpigny and Gosselin (2015) as follows:103

Pr(Yt,q = Y | pt,q,δ )

= B

(

dY ,
pt,q

δ
− pt,q,

(1− pt,q)(1−δ )

δ

)

−B

(

dY−1,
pt,q

δ
− pt,q,

(1− pt,q)(1−δ )

δ

)

.

In this study, cut points dY were defined as {0.01,0.1,0.25,0.5,0.75} for Y ∈ {1,2, . . . ,5}, corresponding104

to the definition of Y . In addition, d0 and d6 were defined to be 0 and 1, respectively, so that B(d0,α,β ) = 0105

and B(d6,α,β ) = 1.106

The proportion of plant cover pt,q was defined by incorporating the latent state θt at time t ∈107

{1,2, . . . ,NT},108

pt,q = logit−1(θt + rt,q),

where rt,q denotes the spatial random effect incorporating spatial autocorrelation.109

System model The latent state θt at time t denotes the states related to the proportion of plant cover,110

and the expected proportion of plant cover at time t for the overall plots, φt , is given as111

φt = logit−1(θt).

The transition of the latent state θt was defined using second-order differences with normal error as112

follows:113

θt | θt−1,θt−2,σT ∼ Normal(2θt−1−θt−2,σ
2
T) for t ∈ {3,4, . . . ,NT},

where σT denotes the standard deviations.114

Priors of the latent states at time t ∈ {1,2} were defined as weakly informative (Gelman et al., 2017)115

but wide enough for the logit-scaled parameters (in case θ = 5, φ is 0.99),116

θt ∼ Normal(0,10) for t ∈ {1,2}.
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The spatial random effect rt,q at time t of quadrat q was defined as follows:117

rt,q− rt,q−1 | σR ∼ Normal(0,σ2
R) forq ∈ {2,3, . . . ,NQ}

rt,1 ∼ Normal(0,10),

where σR denotes the standard deviation among the spatial random effects. The value of the random effect118

rt,q was assumed to be affected by those of the adjacent quadrats. This formulation was equivalent to a119

process model of a state-space model with a first-order difference in the state changes. Then, the values120

were updated so that their sum should be zero for each survey time to avoid affecting the overall intercept121

and the identifiability of the model.122

rt,q← rt,q−
1

NQ

NQ

∑
j=1

rt, j.

Priors for standard deviation parameters σR and σT were defined as weakly informative but wide123

enough for the changes in the logit-scaled parameters as follows:124

σ ∼ HalfNormal(0,10).

Application to simulated data125

Generation of simulated data126

Assume that there were NT = 10 quadrats that settled sequentially, and plant cover classes were surveyed127

for NQ = 15 times in each quadrat. A simulated dataset was generated according to this assumption. In128

the simulated data, the parameter θt , which denotes the latent state at time t, was generated following the129

relationship below:130

θ1 =−6

θt ∼ Normal(θt−1 +0.3,0.52) for t ∈ {2,3, . . . ,NT}.

The latent state θt(t ∈ {2,3, . . . ,NT}) was randomly generated following the above normal distribution.131

Note that the first-order difference was used in this data generation, for simplicity, while the second-order132

difference was adopted in the model defined above. The spatial random effects rq(1 ∈ {2,3, . . . ,NQ})133

were also generated randomly, with the assumption of following the above normal distribution. In this134

simulation, the spatial random effects were assumed to be invariant through time.135

r1 = 0

rq ∼ Normal(rq−1,0.5
2).

Proportions of plant cover p were generated according to the model defined in the previous subsection:136

pt,q = logit−1(θt + rq).

Then, the plant cover classes were generated with an uncertainty δ . In this simulation, the value of δ was137

set to 0.05. The cover classes adopted in this simulated data were as follows: 1 (for proportion 0–0.01,138

including 0), 2 (0.01–0.1), 3 (0.1–0.25), 4 (0.25–0.5), 5 (0.5–0.75), and 6 (0.75–1). The generated data139

are shown in Fig. 3, and the cover proportion averaged for each time is shown in Fig. 5 (black curve)140

as well as the class data (black dots). The data generation code is available at the GitHub repository141

(https://github.com/ito4303/ssmcover).142
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Figure 3. Simulated data that were generated for 10 sequential quadrats and 15 survey times. Classes

denoted as follows, 1: 0–0.01 (including 0), 2: 0.01–0.1, 3: 0.1–0.25, 4: 0.25–0.5, 5: 0.5–0.75. Class 6

(0.75–1) was absent from these data.

Fitting to the model143

The generated data were fit to the Bayesian state-space model defined in the above subsection, and the144

posterior distributions of each parameter were estimated using the Markov chain Monte Carlo (MCMC)145

method. The model was implemented using Stan version 2.21.0 (Carpenter et al., 2017) with the re-146

parameterization of the model for the stability and efficiency of the Hamiltonian Monte Carlo algorithm,147

which was adopted in the Stan software. The Stan model code is also available at the GitHub repository.148

Posterior samples were drawn from 1,000 iterations after 1,000 warm-up (burn-in) iterations from each149

of 4 chains, and the posterior distributions of the parameters were estimated. Then, posterior predictive150

checks were conducted to evaluate the fitting to the model using the ‘bayesplot’ package (Gabry et al.,151

2019) in the statistical software R version 3.6.2 (R Core Team, 2019). In the posterior predictive check, the152

data drawn from the posterior predictive distribution that was calculated with the model were compared to153

the observed data (Gabry et al., 2019). If there are considerable discrepancies between them, it indicates154

that the model poorly explains the observed data.155

Application to real data156

Real data to be fitted to the model were taken from the long-term vegetation monitoring following a157

catastrophic windthrow (Itô et al., 2018). The data were collected from the period of 1957 to 2017 in the158

headwater region of the Ishikari River, Hokkaido, northern Japan. Six plots were settled in the region in159

1955. Quadrats sized two meters × two meters were settled sequentially, and the number was 15–25 for160

each plot. The visually determined cover classes were recorded for species that occurred in each quadrat.161

The classes used in the surveys were as follows: + (proportion: 0–0.01, excluding zero), 1 (0.01–0.1),162

2 (0.1–0.25), 3 (0.25–0.5), 4 (0.5–0.75), and 5 (0.75–1). Species that were not detected (i.e., the cover163

was 0) did not appear in the dataset. However, in the analysis, the notation was changed to be identical to164

the simulated data shown above for the sake of simplicity in numerical treatments so that the absence165

(more precisely, non-detection) was combined to the class 1 (0–0.01, including zero). The dataset is also166

available at the GitHub repository since it was published under the license CC BY 4.0.167

From this dataset, cover classes of a species of dwarf bamboo, Sasa senanensis, in the shrub layer of a168

plot (No. 27) was used as the real data to be fit to the Bayesian state-space model. The data had a wide169

range in the cover class measurements and were suitable for model evaluation. The plot (No. 27) had 19170

quadrats, and the survey was conducted 20 times (in 1957–1968, 1972, 1976, 1980, 1984, 1988, 2002,171

2009, and 2017). Though the measurements were not conducted in all years during the period, the latent172

state could be estimated using the state-space model. Fig. 4 shows the changes in cover classes.173

The posterior distributions were estimated using the MCMC method. Stan was also used for the174

estimation, and the posterior samples were drawn from 2,000 iterations after 2,000 warm-up (burn-in)175

iterations from each of 4 chains. Then, the posterior predictive checks were conducted using the ‘bayesplot’176

package.177
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Figure 4. Changes in plant cover classes of Sasa senanensis following a catastrophic windthrow.

Classes are denoted as follows, 0: 0, 1: 0–0.01 (excluding 0), 2: 0.01–0.1, 3: 0.1–0.25, 4: 0.25–0.5, 5:

0.5–0.75, 6 0.75–1. Class 0 and 1 were combined in the model fitting.

RESULTS178

Simulated data179

Gelman-Rubin statistics, R̂, (Gelman and Rubin, 1992; Brooks and Gelman, 1998) were smaller than180

1.1 for all the parameters, suggesting that the Markov chain successfully converged to the stationary181

distribution.182

Table 1. Summary of the posteriors of the parameters δ , σR, and σT for the simulated data.

Parameter Mean Percentile R̂

2.5% 50% 97.5%

δ 0.06 0.03 0.06 0.09 1.00

σR 0.34 0.08 0.34 0.62 1.01

σT 0.75 0.32 0.71 1.43 1.00

Table 1 shows the summary of the posteriors for the parameters δ , σT, and σR. The posterior means183

(and 95% credible intervals) of these parameters were estimated as 0.06 (0.03–0.09) for δ , 0.34 (0.08–184

0.62) for σR, and 0.75 (0.32–1.43) for σT (Table 1). The values used for the data generation were 0.05,185

0.5, and 0.5, respectively.186

Fig. 5 shows the overall cover proportion (φ = logit−1(θ)) calculated from the posterior median187

(the red line) and the 95% credible intervals (the red region). The posterior predictive check showed no188

conflicts between the observed value and the predicted distribution for each time. Fig. 6 shows the result189

at time 15.190

Real data191

R̂ values were smaller than 1.1 for all parameters, and the Markov chain seemed to converge to the192

stationary distribution.193

Table 2. Summary of the posteriors of the parameters δ , σR, and σT for the real data.

Parameter Mean Percentile R̂

2.5% 50% 97.5%

δ 0.14 0.05 0.13 0.25 1.00

σR 3.21 2.51 3.20 3.91 1.00

σT 0.05 0.01 0.04 0.12 1.00
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Figure 5. Estimated values of the cover proportion with simulated cover class data. Black curve: mean

cover proportions that were used to generate cover class simulated data (averaged within each time).

Black dots: cover classes in the simulated data (dots are on the medians of the classes and are jittered

vertically). Red curve: estimated overall cover proportion. Red region: 95% credible intervals of the

estimated cover proportion.

Table 2 shows a summary of the posteriors of the parameters δ , σT, and σR. The posterior means (and194

95% credible intervals) of these parameters were estimated at 0.14 (0.05–0.25) for δ , 3.21 (2.51–3.91) for195

σR, and 0.05 (0.01–0.12) for σT (Table 2).196

Fig. 7 shows the estimated overall cover proportion for each year. The posterior predictive check197

showed no conflicts between the observed values and the predicted distribution for each year. Fig. 8 shows198

the result in 2017.199

DISCUSSION200

For the simulated data, the posterior means (and medians) for the three major parameters did not differ201

much from the values that were used in the data generation (Table 1). The estimated curve of the plant202

cover proportion was similar to that which generated the simulated data (Fig. 5). The result of the posterior203

predictive check (Fig. 6) also suggests little discrepancy between the fitted model and the simulated data.204

The differences between the posterior means and the original values in parameters σR and σT may be at205

least partially due to variations in the randomly generated data. However, the slightly smaller value of206

σR may be attributable to small variations of cover classes among quadrats in the first several surveys207

(Figure 3). Over the period, the small value of θt overwhelmed the value of rt . In addition, the small208

variations in the period would affect the narrow credible intervals of the posteriors (Fig. 5). Also, the209

assumption of the second-order differences in the system model rather than the first order used in the data210

generation may have affected the difference in σT.211

For the real data, the value of σR was large (Table 2), although the range was smaller than the prior212

(HalfNormal(0,10)). This is likely due to the somewhat more considerable variation in the measurements213

among the adjacent quadrats (Fig. 4). The estimated curve of the plant cover proportion seems to be214

reasonable when comparing the measured cover classes (Fig. 7). The result of the posterior predictive215

check (Fig. 8) also suggests few discrepancies between the fitted model and the real data. The credible216

intervals were wider in the later period than those in the earlier period. This may be because of less217

information due to sparse survey intervals in the later period rather than variations in the measurements.218

The estimated posterior mean of δ , or the uncertainty of the observation, seems understandable since the219

class data were visually determined (Fig. 2). However, the large variations in cover classes within a year220

may have increased the value.221

The state-space modeling seems to have successfully estimated the changes in the latent states in the222

years that the surveys were not conducted. These results suggest that the present model is applicable to223

this type of plant cover class data.224

Though the model proposed in this study is rather simple, more elaborate models can be constructed.225
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Figure 6. Rootogram showing the posterior predictive check for the Bayesian estimation of the

simulated data. The bars show the measurements for each cover class observed at time 15; the curve

shows the expected value of the posterior predictive distribution, and the dark region shows the 90%

credible intervals at time 15.

For example, the one-dimensional structure of the present model can be expanded to two dimensions. To226

incorporate a two-dimensional spatial autocorrelation, conditional autoregressive (CAR) models can be227

utilized, and they are available in Stan (Joseph, 2016; Morris et al., 2019)228

Another possible expansion is to incorporate zero-inflation. Herpigny and Gosselin (2015) has already229

provided modeling of plant cover classes with zero-inflation. When incorporating this, false-negative230

errors should be considered (Chen et al., 2009, 2013).231

CONCLUSION232

State-space modeling for plant cover class data can successfully estimate the unobserved cover proportion233

by utilizing spatial and temporal autocorrelations that are contained within the data. The present model234

can be applicable to similar types of plant cover class data, and then can be expanded to incorporate235

two-dimensional field data and/or zero-inflation.236
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Figure 8. Rootogram showing the posterior predictive check for the Bayesian estimation of the real data.

The bars show the measurements for each cover class observed in the year 2017; the curve shows the

expected value of the posterior predictive distribution, and the dark region shows the 90% credible

intervals in 2017.
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