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Grazing as one of the most important disturbance s affects the abundance, diversity and
community composition of arbuscular mycorrhizal (AM) fungi in ecosystems, but the AM
fungi in response to grazing in wetland ecosystems remain poorly documented. Here, we
examined AM fungi in roots and soil in grazing and non-grazing plots in Zoige wetland on
the Qinghai-Tibet plateau. Grazing significantly increased AM fungal spore density and
glomalin-related soil proteins, but had no significant effect on the extra radical hyphal
density of AM fungi. AM fungal richness was significantly lower in roots than in soil , but
not significantly influenced by grazing. AM fungal community composition was significantly
different between roots and soil, and was significantly influenced by grazing in soil but not
in roots. This finding may enhance our understanding of the AM fungi in response to
grazing in the wetland on the Qinghai-Tibet plateau.
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10 ABSTRACT

11

12 Grazing as one of the most important disturbances affects the abundance, diversity and 

13 community composition of arbuscular mycorrhizal (AM) fungi in ecosystems, but the AM fungi 

14 in response to grazing in wetland ecosystems remain poorly documented. Here, we examined 

15 AM fungi in roots and soil in grazing and non-grazing plots in Zoige wetland on the Qinghai-

16 Tibet plateau. Grazing significantly increased AM fungal spore density and glomalin-related soil 

17 proteins, but had no significant effect on the extra radical hyphal density of AM fungi. AM 

18 fungal richness was significantly lower in roots than in soil, but not significantly influenced by 

19 grazing. AM fungal community composition was significantly different between roots and soil, 

20 and was significantly influenced by grazing in soil but not in roots. This finding may enhance 

21 our understanding of the AM fungi in response to grazing in the wetland on the Qinghai-Tibet 

22 plateau.

23
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25 INTRODUCTION

26

27 Wetlands cover about 6% of the land surface on the earth and have high species diversity, 

28 including many endemic species (Junk et al., 2013). In China, wetlands account for 7% of the 

29 wetland on the world (Junk et al., 2013) and have about 225 families, 815 genera and 2,276 

30 species of higher plants (Yan & Zhang, 2005). Wetlands provide important ecological functions 

31 in water resource conservation and quality purification, climate regulation, substance circulation 

32 and regional ecological balance maintenance (Barbier, Acreman & Knowler, 1997; Li, 2001; 

33 Chmura et al., 2003; Green et al., 2017). Moreover, as an important carbon (C) pool, wetlands 

34 can reduce the impact of increased greenhouse gases on global climate change (Frolking et al., 

35 2011). However, wetland ecosystems have suffered severe degradations in recent decades due to 

36 global warming, intense resource exploitation, changes in hydrology and human disturbance 

37 (Xiang et al., 2009; Junk et al., 2013; Meng et al., 2016). For example, in human activities over-

38 grazing has affected biodiversity, productivity, community stability and soil C cycling in 

39 wetlands (Wang et al., 2012; Hoffmann et al., 2016; Zhou et al., 2017).

40 Arbuscular mycorrhizal (AM) fungi, as one of the key components of soil microorganisms, 

41 form symbiotic associations with most terrestrial plant species (Smith & Read, 2008). In the AM 

42 associations, plants provide C source for the growth and function of fungi, thereby affecting the 

43 community of AM fungi (Bonfante & Genre, 2010). On the contrary, AM fungi can increase the 

44 nutrient and water absorption of host plants, then affecting plant community and productivity 

45 (van der Heijden, Bardgett & van Straalen, 2008). Furthermore, glomalin-related soil protein 

46 (GRSP) produced by AM fungi can stably exist in soil and play an important role in soil C pool 

47 (Rillig, Field & Allen, 2001; Godbold et al., 2006). In addition, AM fungi can improve plants to 
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48 tolerate grazing and other stresses from the environment (Bennett & Bever, 2007; Sharifi, 

49 Ghorbanli & Ebrahimzadeh, 2007). Thus, revealing the AM fungi in response to grazing is of 

50 great importance for understanding the diversity maintenance and community stability of plants 

51 in ecosystems.

52 Previous studies have demonstrated that the effect of grazing on AM fungi is depended on 

53 grazing intensity (García & Mendoza, 2012; Shi et al., 2017; Kusakabe et al., 2018; Yang et al., 

54 2019). For instance, the light and moderate grazing intensity positively influenced AM fungal 

55 spore density in grasslands in Jilin province, China (Ba et al., 2012) and in British Columbia, 

56 Canada (van der Heyde et al., 2017). In contrast, over-grazing negatively affected AM fungal 

57 spore density in a semi-arid grassland in China (Su & Guo, 2007). Moderate grazing intensity did 

58 not influence AM fungal extra radical hyphal density in an alpine meadow in China (Yang et al., 

59 2013a), but high grazing pressure negatively affected the extra radical hyphal density of AM 

60 fungi in a semi-arid grassland in China (Ren et al., 2018). Besides, moderate grazing had a 

61 neutral effect on AM fungal richness in a meadow in China (Ba et al., 2012). Moderate grazing 

62 significantly affected the community composition of AM fungi in soil and roots in grassland 

63 ecosystems (Bai et al., 2013; Yang et al., 2013a; Kusakabe et al., 2018). In contrast, others 

64 found that moderate grazing did not influence the community composition of AM fungi in roots 

65 in alpine meadow (Jiang et al., 2018) and in soil in mountain grassland (van der Heyde et al., 

66 2017) ecosystems. However, previous studies have mainly focused on semi-arid, arid, alpine and 

67 mountain grassland ecosystems (Epelde et al., 2017; Jiang et al., 2018; Kusakabe et al., 2018; 

68 Ren et al., 2018). So far, we know little about how grazing affects AM fungi in wetland 

69 ecosystems.

70 Zoige wetland is a typical representative of the alpine wetland ecosystem on the Qinghai-

PeerJ reviewing PDF | (2020:01:44750:0:2:NEW 14 Jan 2020)

Manuscript to be reviewed



71 Tibet plateau in China, and has high plant species diversity and an important C sink function 

72 (Guo et al., 2013). However, Zoige wetland has suffered severe ecosystem degradations since 

73 the 1970s, due to global warming, low precipitation and human disturbance, such as ditching for 

74 grassland enlargement, peat exploitation and over-grazing (Xiang et al., 2009; Guo et al., 2013; 

75 Wang et al., 2017). Previous studies have mainly focused on plant diversity, microbial 

76 community (archaea group), and ecosystem conservation and restoration in the Zoige Wetland 

77 (Wang, Bao & Yan, 2002; Zhang et al., 2008; Xiang et al., 2009). However, the grazing effect on 

78 AM fungi has never been studied.

79 In order to reveal the AM fungi in response to grazing in wetland ecosystem, we 

80 established non-grazing (natural) and moderate grazing plots in Zoige wetland on the Qinghai-

81 Tibet plateau. AM fungal spore density, extra radical hyphal density and GRSP content were 

82 examined in grazing and non-grazing plots. We examined the communities of AM fungi in roots 

83 and soil by Illumina MiSeq sequencing of 18S rDNA region. We hypothesize that: (H1) 

84 moderate grazing increases AM fungal spore density and GRSP content, but does not change the 

85 extra radical hyphal density of AM fungi, and (H2) moderate grazing changes the community 

86 composition of AM fungi but not richness in roots and soil in the Zoige wetland.

87

88 MATERIALS AND METHODS

89

90 Study site and sampling

91 The study was carried out in the centre of Zoige Swamp in the Zoige National Nature 

92 Reserve on the Qinghai-Tibet plateau (33°25'-34°80'N, 102°29'-102°59'E, 16,671 ha, 3365 m 

93 above sea level). The site has a plateau cold temperate humid monsoon climate, with a mean 
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94 annual temperature (MAT) of 1.1 °C, and a mean annual precipitation (MAP) of 660 mm. The 

95 site begins to freeze in late September and is completely thawed in mid-May (Wang, Bao & Yan, 

96 2002). The abundant plant species are Blysmus sinocompressus, Potentilla anserina, Carex 

97 enervis, Caltha scaposa, Elymus nutans and Leontopodium wilsonii in the site (Wang, Bao & 

98 Yan, 2002).

99 We established 20 plots (each 1 m × 1 m), > 20 m away from each other, in non-grazing 

100 (natural grass) and grazing area, respectively (Supplementary Fig. S1). The average species 

101 number and height of vegetation were 7.8 ± 0.495 (mean ± SE) and ca. 31 cm in the non-grazing 

102 plots and 5.4 ± 0.255 and ca. 7 cm in the grazing plots. This site was mainly grazed by yak. The 

103 grazing intensity in this study site was described as moderate (He et al., 2000). In July 2018, we 

104 randomly collected five soil cores (3 cm in diameter; 15 cm in depth; ca. 300 g) and mixed into 

105 one composite sample from each plot. A total of 40 samples were obtained, packed in an ice box 

106 and transported to our laboratory. Soil samples were sieved (1-mm sieve) to remove debris and 

107 roots. Subsoil samples were kept at −80 °C until the extraction of fungal hyphae and DNA, and 

108 the remaining subsoil samples were air dried and kept at 10 °C until the analysis of AM fungal 

109 spore density, GRSP content and soil properties. We manually collected the mixed roots (< 2 

110 mm in diameter) from each sample, washed with sterilized deionized water and kept at −80 °C 

111 until DNA extraction.

112

113 Soil property analysis

114 Soil moisture was measured using oven-drying at 105 °C for 24 h. Soil pH was measured at 

115 a ratio of 1:2.5 (w/v, soil: water) with a glass electrode (Thermo Orion T20, Columbia, USA). 

116 Soil total nitrogen (N) and C were determined by CHNOS Elemental Analyser (Vario EL Ⅲ 
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117 Elementar Analysensysteme GmbH, Germany). Soil total phosphorus (P) was extracted using the 

118 HClO4-H2SO4 digestion method and determined with a spectrophotometer (UV-2550, Shimadzu, 

119 Japan). The soil properties analyzed are shown in Supplementary Table S1.

120

121 EE-GRSP and T-GRSP

122 Total GRSP (T-GRSP) and easily extracted GRSP (EE-GRSP) were measured according to 

123 Wright & Upadhyaya (1998) and the modification method of Janos et al. (2008). We extracted 

124 EE-GRSP from 0.1 g air dried soil using sodium citrate buffer (8 mL, 0.02 M, pH 7.0) at 121 °C 

125 for 90 min in an autoclave (Yamato SQ810C, China). We repeatedly extracted T-GRSP from 0.1 

126 g air dried soil using sodium citrate buffer (8 mL, 0.05 M, pH 8.0) at 121 °C for 90 min until no 

127 obvious color in the supernatant was observed. Supernatants were separated by centrifugation at 

128 6000 g for 15 min to remove the soil particles and saved in a plastic tube (4 °C). Then 0.5 mL of 

129 supernatant of EE-GRSP and T-GRSP was stained with 5 mL of Coomassie Brilliant Blue G-250 

130 and was read in a micro-plate reader (Biotek Synergy H4, Winooski, VT, USA) at 595 nm. The 

131 bovine serum albumin was used as a standard solution with Coomassie Brilliant Blue method 

132 and a standard curve was drawn to determine the content of EE-GRSP and T-GRSP.

133

134 AM fungal extra radical hyphal density and spore density

135 We extracted fungal hyphae from soil according to the membrane filter method (Rillig, 

136 Field & Allen, 1999). In total, 4.0 g of frozen soil from each sample was mixed with 12 mL 

137 sodium hexametaphosphate (35 g L-1) and 100 mL distilled deionized water in a flask, and then 

138 blended for 30 s, settled for 30 min and sieved (38-μm sieve). The fungal hyphae on the sieve 

139 were washed into a flask with 200 mL distilled water, and then 2 mL aliquot was filtered through 

PeerJ reviewing PDF | (2020:01:44750:0:2:NEW 14 Jan 2020)

Manuscript to be reviewed



140 a 25-µm Millipore filter. The fungal hyphae on the filter were stained with 1% acid fuchsine and 

141 distinguished into AM and non-AM fungi on the basis of morphological characteristics and 

142 staining color (Miller, Jastrow & Reinhardt, 1995). We measured the hyphal length of AM fungi 

143 according to the grid-line intersect method (Tennant, 1975). We extracted AM fungal spores 

144 from 20 g air dried soil from each sample according to the wet-sieving and decanting method 

145 (Daniels & Skipper, 1982) and counted the spore numbers under 40 × magnification (Nikon 80i, 

146 Japan).

147

148 DNA extraction, PCR and Illumina Miseq sequencing

149 We extracted DNA from 0.2 g frozen roots and soil using the PowerSoil® DNA isolation kit 

150 (MOBIO Laboratories, Inc., Carlsbad, USA) in accordance with the manufacturer’s instructions, 

151 and measured the DNA concentration using a NanoDrop 1000 Spectrophotometer (Thermo 

152 Scientific, Wilmington, USA). We amplified the fungal 18S rDNA region using a two-step PCR 

153 procedure. The first PCR using primers AML2 (Lee, Lee & Young, 2008) and GeoA2 

154 (Schwarzott & Schüßler, 2001) was conducted in a final 25 μL reaction mixture, including ca. 10 

155 ng of template DNA, 0.75 μM of each primer, 250 μM of each dNTP, 0.5 U KOD-plus-Neo 

156 polymerase (Toyobo, Tokyo, Japan), 1.5 mM MgSO4, and 2.5 μL 10 × buffer. The thermal 

157 cycling conditions were performed as follows: an initial denaturation at 95 °C for 5 min, 30 

158 cycles for denaturation at 94 °C for 1 min, annealing at 58 °C for 50 s and extension at 68 °C for 

159 1 min, and a final extension at 68 °C for 10 min. The products of the first amplification were 

160 diluted 100 times, and 1 μL of the diluted DNA template was used for the second amplification. 

161 The thermal cycling conditions for the second amplification were the same as first amplification, 

162 except that the primers NS31 (Simon, Lalonde & Bruns, 1992) and AMDGR (Sato et al., 2005) 

PeerJ reviewing PDF | (2020:01:44750:0:2:NEW 14 Jan 2020)

Manuscript to be reviewed



163 linked with 12-base barcode sequences were used. The size of amplified fragment was about 300 

164 base pairs (bp). We purified the PCR products using a PCR Product Gel Purification Kit (Omega 

165 Bio-Tek, USA), and pooled the purified PCR products with the same amount (100 ng) from each 

166 sample and adjusted the concentration to 10 ng μL-1. We constructed a sequencing library by 

167 addition of an Illumina sequencing adaptor (5’-

168 GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTC

169 TGCTTG-3’) to the products using the Illumina TruSeq DNA PCR-Free LT Library Prep Kit 

170 (Illumina, CA, USA) according to the manufacturer’s instructions. We sequenced the library by 

171 an Illumina MiSeq PE 250 platform using the paired-end (2 × 250 bp) option in the Chengdu 

172 Institute of Biology, Chinese Academy of Sciences, China.

173

174 Bioinformatics analysis

175 We filtered the raw sequences using Quantitative Insights into Microbial Ecology (QIIME) 

176 v.1.7.0 (Caporaso et al., 2010) to eliminate low-quality sequences, such as read length < 200 bp, 

177 no valid primer sequence or barcode sequence, containing ambiguous bases, or an average 

178 quality score < 20. We checked and deleted the potential chimeras against the MaarjAM database 

179 (Öpik et al., 2010) using the ‘chimera.uchime’ command in Mothur version 1.31.2 (Schloss et al., 

180 2009). High quality sequences were subjected to de-replication and de-singleton, and then 

181 clustered into operational taxonomic units (OTUs) at a 97% sequence similarity level using the 

182 cluster_otus command in USEARCH v8.0 (Edgar, 2013). Using a basic local alignment search 

183 tool (BLAST) (Altschul et al., 1990), we selected the most abundant sequence of each OTU and 

184 searched against the MaarjAM database and National Center for Biotechnology Information 

185 (NCBI) nt database. We identified OTUs as the AM fungi based on the closest BLAST hit 
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186 annotated as ‘Glomeromycotina’ and E values < e−50. Furthermore, we normalized the sequence 

187 number of each sample to the smallest sample size using the ‘sub.sample’ command in Mothur. 

188 We have submitted the representative sequence of each AM fungal OTU to the European 

189 Molecular Biology Laboratory (EMBL) database (accession no. LR736402-LR736557). The 

190 identified AM fungi are shown in Supplementary Table S2.

191

192 Statistical analysis

193 We conducted all statistical analyses in R version 3.3.2 (R Development Core Team, 2017). 

194 Tukey's honestly significant difference (HSD) test or Conover’s test was used to examine the 

195 significant difference of soil moisture, pH, total N, total C and total P in the grazing and non-

196 grazing plots at P < 0.05. One-way analysis of variance (ANOVA) was conducted to evaluate the 

197 effect of grazing on AM fungal spore density, extra radical hyphal density, T-GRSP and EE-

198 GRSP, and then Tukey’s HSD test was used to examine the significant difference between 

199 treatments at P < 0.05. Two-way ANOVA was conducted to evaluate the effect of grazing, 

200 sample type (soil and root) and their interaction on the OTU richness and the relative abundance 

201 of abundant OTUs (relative abundance > 1%) and orders of AM fungi, and then Tukey’s HSD 

202 test was used to examine the significant difference between treatments at P < 0.05. As these data 

203 (except for the relative abundance of OTU141) did not satisfy homogeneity of variance after log 

204 and square root transformation, nonparametric Kruskal–Wallis test was carried out, and then 

205 Conover’s test was conducted for comparisons between grazing and non-grazing treatments in 

206 soil and roots using the post-hoc.kruskal.conover.test function in the PMCMR package (Pohlert, 

207 2014).

208 The distance matrices of AM fungal community composition (Hellinger-transformed OTU 
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209 read data) in roots and soil were established by the Bray-Curtis method (Clarke, Somerfield & 

210 Chapman, 2006). Permutational multivariate analysis of variance (PerMANOVA) was 

211 conducted to examine the effect of sample type, grazing and their interaction on AM fungal 

212 community composition, using the ‘adonis’ function in the vegan with 999 permutations 

213 (Oksanen et al., 2013). Redundancy analysis (RDA) was conducted to reveal the significant 

214 correlation of AM fungal community composition and soil variables using the Monte Carlo 

215 permutation test with 999 permutations.

216

217 RESULTS

218

219 EE-GRSP and T-GRSP contents

220 The EE-GRSP content was 28.96 ± 3.73 µg g-1 (mean ± SE) and 25.71 ± 2.26 µg g-1 in 

221 grazing and non-grazing treatments, respectively. The T-GRSP content was 96.7 ± 18.82 µg g-1 

222 and 71.87 ± 12.87 µg g-1 in grazing and non-grazing treatments, respectively. One-way ANOVA 

223 showed that grazing significantly influenced EE-GRSP (F1,38 = 9.907, P = 0.003) and T-GRSP 

224 (F1,38 = 23.57, P < 0.001). For example, EE-GRSP and T-GRSP contents were significantly 

225 lower in non-grazing than in grazing treatments (Fig. 1a and b).

226

227 AM fungal spore density and extra radical hyphal density

228 The spore density of AM fungi was 25.89 ± 12.17 g-1 (mean ± SE) and 15.03 ± 5.88 g-1 in 

229 grazing and non-grazing treatments, respectively. The extra radical hyphal density of AM fungi 

230 was 4.00 ± 2.51 m g-1 and 3.10 ± 1.56 m g-1 in grazing and non-grazing treatments, respectively. 

231 One-way ANOVA revealed that grazing significantly affected AM fungal spore density (F1,38 = 
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232 10.71, P = 0.002) but not extra radical hyphal density (F1,38 = 2.000, P = 0.165). For example, 

233 the spore density of AM fungi was significantly lower in non-grazing than in grazing treatments 

234 (Fig. 1c). No significant difference of the extra radical hyphal density of AM fungi in non-

235 grazing and grazing treatments was observed (Fig. 1d).

236

237 Identification of AM fungi

238 In total, 3,205,557 high-quality sequences were filtered from 3,335,816 raw sequences and 

239 clustered into 882 OTUs at a 97% sequence similarity level. Among 882 OTUs, 156 (2,919,706 

240 sequences) belonged to AM fungi. As the sequence number of AM fungi varied from 20,408 to 

241 48,572 in the 80 samples, the number of sequence was normalized to 20,408. The normalized 

242 dataset contained 156 AM fungal OTUs (1,632,640 sequences). Of the 156 AM fungal OTUs 

243 obtained, 154 were from soil, 152 from roots, and 150 shared both soil and roots. Among 156 

244 AM fungal OTUs, 153 were detected from more than three samples (frequency ≥ 3.75%) 

245 (Supplementary Fig. S2a). Furthermore, the 21 abundant AM fungal OTUs (relative abundance > 

246 1%) occupied 83.85% of the total sequences (Supplementary Fig. S2b). Among 156 AM fungal 

247 OTUs, 109 were identified to Glomerales (79.52% of sequences), 22 to Diversisporales (10.84%), 

248 21 to Archaeosporales (8.75%), and 4 to Paraglomerales (0.89%). In addition, the rarefaction 

249 curves indicated that the sample numbers were sufficient to detect the most AM fungi in this 

250 study (Supplementary Fig. S3).

251

252 AM fungal OTU richness

253 AM fungal OTU richness in grazing and non-grazing treatments was 123.70 ± 2.96 (mean ± 

254 SE) and 122.85 ± 3.01 in soil, and 117.55 ± 2.26 and 118.00 ± 4.38 in roots, respectively. 
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255 Kruskal–Wallis test revealed that AM fungal OTU richness was influenced by sample type (root 

256 and soil; χ2 = 35.01, P < 0.001), but not by grazing (χ2 = 0.045, P = 0.832). For example, AM 

257 fungal OTU richness was significantly lower in roots than in soil in both grazing and non-

258 grazing treatments (Fig. 2). However, no significant difference of AM fungal OTU richness 

259 between grazing and non-grazing treatments in roots and soil was observed (Fig. 2).

260

261 AM fungal community

262 Two-way ANOVA and Kruskal–Wallis tests revealed that grazing had significant effect on 

263 the relative abundance of abundant AM fungal OTU13 and OTU141 (Glomerales), and sample 

264 type had significant effect on the relative abundance of abundant AM fungal OTU4, OTU5, 

265 OTU7, OTU12, OTU14, OTU15, OTU18, OTU25 and OTU141 (Glomerales), OTU8 and 

266 OTU17 (Diversisporales) and OTU23 (Archaeosporales) (Fig. 3). For example, the relative 

267 abundance of OTU5, OTU8, OTU15, OTU17, OTU23, OTU25 and OTU141 was significantly 

268 lower in roots than in soil, and that of OTU141 was significantly lower in non-grazing treatment 

269 than in grazing treatment (Fig. 3; Supplementary Table S3). By contrast, the relative abundance 

270 of OTU4, OTU7, OTU12, OTU14 and OTU18 was significantly lower in soil than in roots (Fig. 

271 3; Supplementary Table S3). In the grazing treatment, the relative abundance of OTU5, OTU8, 

272 OTU15, OTU17, OTU23 and OTU141 was significantly higher in soil than in roots, while that 

273 of OTU4, OTU7, OTU14 and OTU18 was significantly lower in soil than in roots (Fig. 3; 

274 Supplementary Table S3). In the non-grazing treatment, the relative abundance of OTU5, OTU8, 

275 OTU17, OTU23 and OTU141 was significantly higher in soil than in roots, while that of OTU4, 

276 OTU7, OTU12, OTU14 and OTU18 was significantly lower in soil than in roots (Fig. 3; 

277 Supplementary Table S3). Besides, the relative abundance of soil OTU13 and OTU141 was 
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278 significantly lower in non-grazing treatment than in grazing treatment (Fig. 3; Supplementary 

279 Table S3).

280 Kruskal–Wallis test revealed that sample type but not grazing significantly influenced the 

281 relative abundance of Glomerales, Diversisporales and Archaeosporales, but not on 

282 Paraglomerales (Fig. 4). The relative abundance of Glomerales was significantly lower in soil 

283 than in roots; by contrast, the relative abundance of Diversisporales and Archaeosporales was 

284 significantly lower in roots than in soil, regardless of non-grazing and grazing treatments (Fig. 4). 

285

286 The PerMANOVA demonstrated that the community composition of AM fungi was 

287 significantly influenced by sample type (soil and root; F = 15.49, R2 = 0.149, P = 0.001) and 

288 grazing (F = 2.617, R2 = 0.025, P = 0.008). Furthermore, the community composition of AM 

289 fungi was significantly influenced by grazing in soil (F = 2.639, R2 = 0.055, P = 0.001), but not 

290 in roots (F = 0.998, R2 = 0.025, P = 0.419). Furthermore, RDA showed that the community 

291 composition of AM fungi in soil and roots was significantly correlated with soil pH, moisture, 

292 total C, total N and total P (Fig. 5).

293

294 DISCUSSION

295

296 We found that grazing had positive effect on AM fungal spore density, EE-GRSP and T-

297 GRSP, in consistent with some previous studies (Hammer & Rillig, 2011; Yang et al., 2013a; 

298 van der Heyde et al., 2017). Previous findings suggest that moderate removal of aboveground 

299 biomass may increase the allocation of C to the roots and exudation from roots to soil (Eom, 

300 Wilson & Hartnett, 2001; Hamilton et al., 2008; Soka & Ritchie, 2018), which could be 
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301 beneficial for the sporulation of AM fungi (Ba et al., 2012; van der Heyde et al., 2017). 

302 Furthermore, since about 80% of GRSP is produced by the AM fungi, grazing increased AM 

303 fungal spore density, resulting in increasing GRSP content in soil (Driver, Holben & Rillig, 

304 2005). However, grazing did not significantly influence AM fungal extra radical hyphal density, 

305 as reported in a previous study (García & Mendoza, 2012). Although moderate grazing may 

306 increase C allocation to the roots, this increase may be ephemeral (van der Heyde et al., 2019) 

307 and not be sufficient to promote the growth of AM fungal hyphae.

308 AM fungal richness was significantly lower in roots than in soil, as previous studies 

309 reported in alpine and meadow ecosystems (Hempel, Renker & Buscot, 2007; Liu et al., 2012; 

310 Yang et al., 2013a). This may be due to the seasonal nature of AM fungal communities (Clark, 

311 Rillig & Nowak, 2009; Liu et al., 2009; Martínez-García et al., 2011). Furthermore, the currently 

312 and formerly active propagules of AM fungi could remain in soil, but only currently active AM 

313 fungi could occur in the roots (Liu et al., 2009; Martínez-García et al., 2011). However, we 

314 found that grazing did not significantly influence AM fungal richness in roots and soil. Similarly, 

315 a previous study showed that moderate grazing could maintain the AM fungal diversity 

316 (Dudinszky et al., 2019). In general, AM fungi have low specificity (Smith & Read, 2008), thus 

317 AM fungal richness may not be influenced by the low plant species diversity caused by moderate 

318 grazing, as some studies found that AM fungal richness was not related to plant species diversity 

319 (Wolf et al., 2003; Xiang et al., 2014). 

320 The community composition of AM fungi significantly differed between roots and soil in 

321 this study, as previous studies reported in grassland (Yang et al., 2013a), farmland (Liu et al., 

322 2016) and temperate (Saks et al., 2014) and subtropical forest (Maitra et al., 2019) ecosystems. 

323 This may be explained by the difference in AM fungal abundance in roots and soil (Hempel, 
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324 Renker & Buscot, 2007; Varela-Cervero et al., 2015; Maitra et al., 2019). Indeed, our result 

325 found that some AM fungi were abundant in roots and soil, respectively. In addition, AM fungal 

326 phenology may produce different communities in soil and roots (Pringle & Bever, 2002; Liu et 

327 al., 2012).

328 Grazing significantly affected the AM fungal community composition in soil, in consistent 

329 with some previous studies reported in desert steppe and grassland ecosystems (Murray, Frank 

330 & Gehring, 2010; Bai et al., 2013). Grazing may influence the AM fungal community 

331 composition by changing soil properties through animal trampling and fecal deposition 

332 (McNaughton, Banyikwa & McNaughton, 1997; Yang et al., 2013b; Liu et al., 2015; Yang et al., 

333 2019). For example, animal trampling may make the soil tight and alter soil bulk density 

334 (Kobayashi, Hori & Nomoto, 1997; Kauffman, Thorpe & Brookshire, 2004; Byrnes et al., 2018), 

335 thereby influencing AM fungal community (Yang et al., 2018). Moreover, dung and urine 

336 produced by animals, as soil fertilization, may decrease soil pH and increase soil nutrients as 

337 shown in this and previous studies (McNaughton, Banyikwa & McNaughton, 1997; Kohler et al., 

338 2005), thus altering AM fungal community composition. Indeed, our result showed that the 

339 community composition of AM fungi was significantly related to soil pH, moisture, total C, total 

340 N and total P, as previous studies reported in semi-arid, alpine and temperate grassland and 

341 subtropical forest ecosystems (Zheng et al.,2014; Gao et al., 2016; Zhang et al., 2016; 

342 Goldmann et al., 2019; Maitra et al., 2019). However, the AM fungal community composition in 

343 roots was not significantly influenced by grazing, as previous studies reported in semi-arid and 

344 alpine grassland ecosystems (González et al., 2018; Jiang et al., 2018). It is possible that 

345 moderate grazing does not much change the allocation of carbohydrates to roots, thereby without 

346 altering AM fungal community. Furthermore, although grazing may alter the AM fungal function, 
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347 it does not necessarily alter the community in roots (González et al., 2018).

348

349 CONCLUSIONS

350 In conclusion, we examined the AM fungi in response to grazing in the Zoige wetland on 

351 the Qinghai-Tibet plateau for the first time. AM fungal spore density and GRSP content 

352 positively responded to grazing. The extra radical hyphal density and OTU richness of AM fungi 

353 had neutral response to grazing. The community composition of AM fungi significantly differed 

354 between roots and soil, and was significantly influenced by grazing in soil but not in roots. This 

355 finding may enhance our understanding of the AM fungi in response to grazing in the wetland 

356 ecosystem on the Qinghai-Tibet Plateau.
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647 Figure legend

648

649 Fig. 1. Easily extracted glomalin-related soil protein (EE-GRSP, a), total extracted GRSP (T-

650 GRSP, b), spore density (c) and extra radical hyphal (ERH) density (d) of arbuscular mycorrhizal 

651 (AM) fungi in grazing and non-grazing treatments. One-way ANOVA showed the effect of 

652 grazing on AM fungal variables. Data are means ± SE (n = 20). Bars with different letters denote 

653 significant difference in grazing and non-grazing treatments according to Tukey’s HSD test at P 

654 < 0.05.

655

656 Fig. 2. The operational taxonomic unit (OTU) richness of arbuscular mycorrhizal (AM) fungi in 

657 soil and roots in grazing and non-grazing treatments. Kruskal-Wallis test showed the effect of 

658 grazing and sample type (soil and root) on the OTU richness. Data are means ± SE (n = 20). Bars 

659 with different letters denote significant difference in grazing and non-grazing treatments 

660 according to Conover’s test at P < 0.05.

661

662 Fig. 3. Relative abundance of arbuscular mycorrhizal (AM) fungal operational taxonomic units 

663 (OTUs) in soil and roots in grazing and non-grazing treatments. Two-way ANOVA and Kruskal-

664 Wallis tests showed the effect of grazing and sample type (soil and root) on the relative 

665 abundance of AM fungal OTUs (ns; P ≥ 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001). The rare 

666 AM fungal OTUs (< 1% of total AM fungal reads) and abundant AM fungal OTUs (> 1% of 

667 total AM fungal reads) that was not significantly affected by grazing and sample type were all 

668 assigned to “Others”. SN, soil non-grazing; SG, soil grazing; RN, root non-grazing; RG, root 

669 grazing.
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670

671 Fig. 4. Relative abundance of arbuscular mycorrhizal (AM) fungi at the order level in soil and 

672 roots in grazing and non-grazing treatments. Kruskal-Wallis test showed the effect of grazing 

673 and sample type (soil and root) on the relative abundance of AM fungal orders (ns; P ≥ 0.05, *** 

674 P < 0.001). Different letters are significantly different at P < 0.05, as indicated by Conover’s test. 

675 SN, soil non-grazing; SG, soil grazing; RN, root non-grazing; RG, root grazing.

676

677 Fig. 5. Redundancy analysis (RDA) biplots showing arbuscular mycorrhizal (AM) fungal 

678 community composition in soil and roots (a), soil (b) and roots (c). Significant soil variables 

679 were presented as vectors on the RDA biplot graphs using the ‘envfit’ (based on 999 

680 permutations) at P < 0.05. SN, soil non-grazing; SG, soil grazing; RN, root non-grazing; RG, 

681 root grazing; N, soil total nitrogen; C, soil total carbon; P, soil total phosphorus.
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Figure 1
Grazing significantly affected AM fungal biomass.

Fig. 1. Easily extracted glomalin-related soil protein (EE-GRSP, a), total extracted GRSP (T-
GRSP, b), spore density (c) and extra radical hyphal (ERH) density (d) of arbuscular
mycorrhizal (AM) fungi in grazing and non-grazing treatments. One-way ANOVA showed the
effect of grazing on AM fungal variables. Data are means ± SE (n = 20). Bars with different
letters denote significant difference in grazing and non-grazing treatments according to
Tukey’s HSD test at P < 0.05.
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Figure 2
Grazing did not significantly affected AM fungal richness.

Fig. 2. The operational taxonomic unit (OTU) richness of arbuscular mycorrhizal (AM) fungi in
soil and roots in grazing and non-grazing treatments. Kruskal-Wallis test showed the effect of
grazing and sample type (soil and root) on the OTU richness. Data are means ± SE (n = 20).
Bars with different letters denote significant difference in grazing and non-grazing treatments
according to Conover’s test at P < 0.05.
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Figure 3
Relative abundance of arbuscular mycorrhizal (AM) fungal operational taxonomic units
(OTUs) in soil and roots in grazing and non-grazing treatments.

Fig. 3. Relative abundance of arbuscular mycorrhizal (AM) fungal operational taxonomic
units (OTUs) in soil and roots in grazing and non-grazing treatments. Two-way ANOVA and
Kruskal-Wallis tests showed the effect of grazing and sample type (soil and root) on the
relative abundance of AM fungal OTUs (ns; P ≥ 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001).
The rare AM fungal OTUs (< 1% of total AM fungal reads) and abundant AM fungal OTUs (>
1% of total AM fungal reads) that was not significantly affected by grazing and sample type
were all assigned to “Others”. SN, soil non-grazing; SG, soil grazing; RN, root non-grazing;
RG, root grazing.
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Figure 4
Relative abundance of arbuscular mycorrhizal (AM) fungi at the order level in soil and
roots in grazing and non-grazing treatments.

Fig. 4. Relative abundance of arbuscular mycorrhizal (AM) fungi at the order level in soil and
roots in grazing and non-grazing treatments. Kruskal-Wallis test showed the effect of grazing
and sample type (soil and root) on the relative abundance of AM fungal orders (ns; P ≥ 0.05,
*** P < 0.001). Different letters are significantly different at P < 0.05, as indicated by
Conover’s test. SN, soil non-grazing; SG, soil grazing; RN, root non-grazing; RG, root grazing.
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Figure 5
Redundancy analysis (RDA) biplots showing arbuscular mycorrhizal (AM) fungal
community composition.

Fig. 5. Redundancy analysis (RDA) biplots showing arbuscular mycorrhizal (AM) fungal
community composition in soil and roots (a), soil (b) and roots (c). Significant soil variables
were presented as vectors on the RDA biplot graphs using the ‘envfit’ (based on 999
permutations) at P < 0.05. SN, soil non-grazing; SG, soil grazing; RN, root non-grazing; RG,
root grazing; N, soil total nitrogen; C, soil total carbon; P, soil total phosphorus.
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