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ABSTRACT
The life cycle of intracellular RNA mainly involves transcriptional production,
splicing maturation and degradation processes. Their dynamic changes are termed as
RNA life cycle dynamics (RLCD). It is still challenging for the accurate and robust
identification of RLCD under unknow the functional form of RLCD. By using the
pulse model, we developed an R package named pulseTD to identify RLCD by
integrating 4sU-seq and RNA-seq data, and it provides flexible functions to capture
continuous changes in RCLD rates. More importantly, it also can predict the trend
of RNA transcription and expression changes in future time points. The pulseTD
shows better accuracy and robustness than some other methods, and it is available on
the GitHub repository (https://github.com/bioWzz/pulseTD_0.2.0).

Subjects Bioinformatics, Computational Biology
Keywords 4sU-seq, RNA-seq, Pulse model, RNA life cycle dynamics

INTRODUCTION
The response of cell stimulation is mainly manifested in the transcription, processing and
degradation levels of RNA (Rabani et al., 2011; Thapar & Denmon, 2013). The dynamic
combination of these processes is known as RNA life cycle dynamics (RLCD), which
controls the gene expression and steady state of the cells (Zeisel et al., 2011). The cells
continuously produce new RNA (pre-RNA), which will be processed into mature RNA
(mRNA), and the mRNA is continuously degraded. The balance among transcription,
processing and degradation rates keep cells in a steady state. However, external
environmental interference, the changes in cell signal transduction and the activity
transcription factor may change the rates of transcription, processing and degradation,
which destroy the balance of RCLD in some cells. After a period of adjustment, cell volume
growth, protein activity changes, etc., the rates of transcription, processing and
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degradation again reach a new equilibrium, which makes the RCLD steady in some cells
again (Lopez-Maury, Marguerat & Bahler, 2008). Therefore, the identification of a
continuous pattern of changes in the rates of RLCD is crucial for cell homeostasis analysis.

Currently, experimental techniques based on short pulse labeling, such as 4-thiouridine
(4sU), provide the possibility to identify RLCD (De Pretis et al., 2015; Garibaldi,
Carranza & Hertel, 2017; Melvin et al., 1978; Rabani et al., 2014; Sabo et al., 2014).
Incorporation of thiol-containing nucleosides 4-thiouridine into nascent RNA of
eukaryotic cells within a few minutes allows for non-destructive metabolic labeling of
RNA. By sequencing the 4sU-labeled RNA (4sU-seq), it is possible to separate the newly
generated RNA (labeled RNA) from the originally existing RNA (unlabeled pre-RNA).
Rabani et al. (2011) proposed a dynamic model framework for calculating transcription
and degradation, without providing software implementation. Schwalb et al. (2012) used a
similar method to calculate the rates of transcription and degradation, but it lacks a
calculation of the processing rates. Rabani et al. (2014) used the model of the splicing
maturity process and analyzed it at the junction level. In 2015, based on the same model, a
novel framework INSPEcT (De Pretis et al., 2015) was proposed, which can calculate
the RLCD flexibly. In 2017, an R package of pulseR was developed based on a negative
binomial distribution model (Uvarovskii & Dieterich, 2017). Although these methods
identified transcriptional dynamic rates from different perspectives, they were limited to
the experimental measurement time. If the measurement time is short or the number
of time nodes is small, it is difficult to analyze the complete RNA life cycle. Therefore,
there is an urgent need to develop a tool with the function of predicting RCLD trends,
which is of great significance for RNA life cycle analysis. This function is convenient for
researchers to understand the complete process of some RCLDs in cells under external
stimulation, and even the complete process of cell changes which cannot be detected due
to experimental limitations, which extends the current capabilities of RNA life cycle
analysis tools.

Here, we developed an R package termed pulseTD that can serve as a powerful tool to
identify RNA RLCD based on the pulse model. It can adequately capture the trend of
RLCD, which is important to analyze the process of cells from homeostasis to new
homeostasis in cell-stimulated responses. More importantly, pulseTD shows better
performance in predicting RLCD and gene expression values than other methods.

MATERIALS AND METHODS
Description of the GEO dataset
The 4sU-seq experimental datasets were obtained from GEO database (https://www.ncbi.
nlm.nih.gov/geo/). The first dataset was an RNA-seq dataset from mouse DC (GSE56977).
RNA was sampled from mouse DC every 15 min for the first 3 h (total 13 samples) of
their response to LPS, followed by a short (10 min) metabolic marker pulse(4sU) before the
sampling time point (Rabani et al., 2014). The samples of GSE59717 dataset were the
infection of primary human foreskin fibroblasts with a wild-type simplex virus strain
17 with a multiplicity of infection of 10 (Rutkowski et al., 2015).
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The algorithm flow of pulseTD model
The rates of RLCD within 24 h of the pulse state were evaluated, which represented a
complete RNA life cycle, and the mode of oscillation was discharged (La Manno et al.,
2018). We assumed that the rates of transcription, processing and degradation conforms to
the functional form of the pulse model in the pulse state. Expression value data of
pre-mRNA and mRNA at any time point could be obtained by 4su-seq and RNA-seq.
The parameters were estimated by using an optimization algorithm. Next, we introduced
the principles of the model and the use of the software. After that we created simulation
data and evaluate performance.

First, we used the R package (GenomicAlignments, GenomicFeatures, etc.) to analyze
RNA-seq and 4sU-seq bam files, in order to quantify intronic (reads alignment to the
intron region) and exonic (reads alignment to the exon region) in Reads Per Kilobase
of exon model per Million mapped reads (RPKM), Transcripts Per Kilobase of exon model
per Million mapped reads (TPM) or Fragments Per Kilobase of exon model per Million
mapped fragments (FPKM) of each gene. Some methods (min–max normalization, log
normalization) had been added to standardize expression profile data before evaluating
RLCD. In the cell life cycle, transcription continuously generates new pre-mRNA
expressed by P tð Þ. Processing converts newly generated pre-RNA into mature mRNA
expressed byM tð Þ. Finally, mRNA is targeted for degradation (Moore & Proudfoot, 2009).
The equation according with the process of RLCD as follows:

P
� ¼ a� g

M
� ¼ g� b

(
(1.1)

Among them, a;b;g represent the expression level of synthesized, degraded and
processed RNA per unit time, respectively. Since the labeling time (tL) is very short during
the 4sU experimental, we assumed that RNA was not degraded during experimental
labeling time. The total labeled RNA expression level TL tð Þ can be expressed as:

T
�
L ¼ a
b ¼ 0

�
(1.2)

The transcription level of intracellular RNA was in a steady state without being
stimulated by outside world. When some factors (transient pulse stimulation) disrupted
the equilibrium, the rates of genes at different stages were changed to cushion the stimulus.
After a period of time, most cells returned to a steady state due to some factors such
as cell morphology and stress. As mentioned above, the change in gene expression values
was mainly the result of the combination of transcription, processing and degradation.
Therefore, external stimulus conditions, pulse stimuli directly affected RLCD. To this
end, we hypothesized that the three processes of gene expression were transcription a,
processing g, degradation b and a ¼ b, g ¼ a in steady state, which were broken when
the external stimulus pulse was stimulated. After a period of time, it reached steady state
again, and a0 ¼ b0, g0 ¼ a0. The functional form of a;b;g needed to be determined.
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In this case, the rates of transcription, processing and degradation changed from
g�a�b to g0�a0�b0, which could be considered as a process of RNA from a steady
state to a new steady state under pulsed stimulation. So, we used the pulse model f xð Þ
(Chechik & Koller, 2009) to represent functional form of a;b;g:

fu xð Þ ¼ 1
h1

h0 þ h1 � h0ð Þ 1

1þ e�b x�t1ð Þ

� �
h2 þ h1 � h2ð Þ 1

1þ eb x�t2ð Þ

� �
(1.3)

The u is the parameter vector represented by h0; h1; h2; t1; t2;bð Þ. h0; h1; h2 represent
the initial state rates value, the peak time rates value and the new steady state rates value.
t1; t2 are the maximum time for the first and second rise or fall changes, and b is the slope
of the both transitions.

Taking into account the effects of existing RNA, we first estimated the global
normalization factors in the model. We assumed that real mRNA R levels were composed
of the labeled mRNA S and pre-existing mRNA N :

R ¼ Sþ N (1.4)

Make the total mRNA observations proportional to S and N , and the scale factors were
bothw. At the same time, we assumed that the labeled mRNA observations included two
parts, labeled S and unlabeled N , with scale factors of w1 and w2, respectively. Then:

w Sþ Nð Þ ¼ OT ¼ TðtÞ
w1Sþ w2N ¼ OL ¼ TLðtÞ

�
(1.5)

Three scale factors are constant in one sample, and OT ;OL represent observations for
total RNA and labeled RNA, respectively. According to formula (1.5):

w1 � w2ð ÞSþ w2

w
OT ¼ OL (1.6)

Here PðtÞ, TðtÞ and TLðtÞ are represented as a linear combination of pulse function
integrals. According to formula (1.1~1.6):

P tð Þ ¼ P 0ð Þ þ Rt
0
fua tð Þdt � Rt

0
fuc tð Þdt

T tð Þ ¼ T 0ð Þ þ Rt
0
fua tð Þdt � Rt

0
fub tð Þdt

TL tð Þ ¼ w2

w
T tð Þ þ w1 � w2ð Þ Rt

t�tL

fua tð Þdt

8>>>>>>><
>>>>>>>:

(1.7)

Where P tð Þ;T tð Þ;TL tð Þ are the observation data of the measurement time node, tL is the
labeled time, ux ¼ hx0; h

x
1; h

x
2; t

x
1 ; t

x
2 ;b

x
� �

, so the parameter vector X ¼ ua; ug; ub
� �

. The
total objective function is

J Xð Þ ¼ 1
2

Xtend
j¼0

P̂j � NPj
� �2 þ T̂ j � NTj

� �2 þ T̂Lj � NTLj

� �2
(1.8)
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Among them P̂; T̂; T̂L are the model prediction value and NP;NT;NTL are the
standardized observation data. Therefore, a;b;g can be solved by the following
constrained optimization problem:

X ¼ argminJ Xð Þ

s:t: X . 0;

ha0�hb0�hg0 ;

ha2�hb2�hg2 ;

First, we evaluated the global normalization factor using a gradient descent method with
random initialization parameters. We minimized the objective function by using the
nlminb method, which was available in the stats R packages. The best fit result was chosen
from the results of 100 (default) random initial values. At the same time, the chi-square test
of goodness of fit was used to verify the statistical validity of pulseTD.

The interpretability of the model output
Here, the rates of transcription, processing and degradation were defined as the expression
level of RNA transcribed, processed or degraded per unit time (unit: RNA/min or
RNA/hour). In order to increase the interpretability of pulseTD and make it easier
to compare with other tools, a conversion method was applied to pulseTD output.
Let g ¼ gkP and b ¼ bk T � Pð Þ at any time t. We assumed that the processing rates were
directly proportional to the pre-mRNA expression and the ratio was gk. Similarly,
degradation rates were directly proportional to mature mRNA expression value, the
ratio was bk. According to formula (1.1):

P
� ¼ a� gkP

T
� ¼ a� bk T � Pð Þ

(
(1.9)

This was similar to previous researches (De Pretis et al., 2015; Rabani et al., 2011, 2014;
Sun et al., 2012). a represents the transcription rates in units of mRNA/min. Where

P
�
and T

�
represent the derivatives of the functions P(t) and T(t) at time t, respectively.

And they are functions of time t. Here we used a; gk;bk to compare with other methods,
and it was easy to explain.

Generation of simulation data
To evaluate the effectiveness of the model, we generated simulation data for 1,000 genes by
randomly drawing from a specific distribution. Transcription, processing, and degradation
rates were first generated, as well as randomly generated scale factors. The simulation
expression value was then created based on the rates using Runge–Kutta method.

First of all, based on previous researches, we knew that the half-life of RNA was
considered to follow a normal distribution (Friedel et al., 2009). Next, we determined the
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distribution of the transcription rates based on the mean (m) and variance (s) of the
observations. And the transcription rates were randomly extracted t from the normal
distribution N m;s2ð Þ. We had expected to determine the degradation rates in the same
way. However, the degradation rates and the transcription rate were dependent.
To simulate this dependency, we evaluated the correlation between transcription and
degradation rates at any time based on the pearson correlation coefficient, which was kt .
Therefore, the degradation rates approximately obeyed the N m=kt; s=ktð Þ2� �

distribution.
Similarly, processing rates were randomly drawn in the same way. Finally, we also
randomly generated global scale factors, which were used to simulate existing and newly
generated RNA.

After determining all rates, we used the fourth-order Runge–Kutta method of the R
package (deSolve) to evaluate the expression levels of pre-mRNA, mature mRNA and
labeled RNA as a simulation data set. Among them, the initial value of the expression value
was randomly selected from the distribution of the observed data.

In general, we determined the rate distribution based on the experimental data and
generated simulated data parameters based on the mean and variance of the rate. Here,
the time range of the experimental analysis was 0–180 min, sampling was performed every
15 min, and the 4sU marking was performed 10 min before sampling. Finally, we got a
simulation data set of 1,000 genes.

RESULTS
Software framework and description
The pulseTD combines the pulse model to predict the steady state of the RLCD.
We defined the rates of transcription processing and degradation as a pulse function which
had 6 parameters, a total of 18 parameters. To standardize RNA expression levels,
additional global scale factors needed to be evaluated. For the evaluation of each gene,
100 random initializations were required. We used a multi-threaded approach to
reduce runtime. The software supports different ways to evaluate expression levels such as
counts, RPKM, TPM, FPKM. The workflow of pulseTD software is as follows (Fig. 1):
(i) The RNA-seq and 4sU-seq data are aligned to the reference genome, and the results are
used as the input files of the software. Expression values of pre-RNA, mRNA and
labeled-RNA can be calculated in the form of RPKM, corresponding to the R function
named extimateExpression. (ii) Subsequently, the expression profile is used to optimize the
parameters of the pulse model. This is an optimization problem with six parameters, which
are determined by MSE (minimizing the mean square error). The extimateParams
function can estimate the pulse parameters of the transcription, processing and
degradation rates. (iii) The parameters can be re-estimated using the correctionParams
function because of the influence of random initial values. (iv) Next, transcriptional
dynamic rates are solved flexibly, including the rates of transcription, processing and
degradation, or the steady state rates are predicted. Complete guide reference
documentation.
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Compared with other methods
Several published studies had revealed RNA RLCD from different perspectives.
We compared the following common software tools: INSPEcT (De Pretis et al., 2015),
DRiLL (Rabani et al., 2014), DTA (Schwalb et al., 2012) and pulseR (Uvarovskii &
Dieterich, 2017). pulseTD, INSPEcT and DRiLL provide evaluation functions for gene
expression and processing rates, except for DTA and pulseR. The encoding of DRiLL is
MATLAB, which requires a linux system and has a large operational limit. In terms of
model, pulseTD directly applies the pulse model to different stages of RLCD, making
the calculation of RLCD continuous. Although the pulse model was also used in INSPEcT
and DRiLL, the purpose was to fit the expression pattern. Most importantly, pulseTD has
the ability to predict RLCD (Table 1). Overall, pulseTD improves accuracy between
biological repetitions and enhances the performance of evaluating low expression data.
At the same time, it adds the ability to predict steady state. The assumption that the

Figure 1 Flowwork corresponding software function. Full-size DOI: 10.7717/peerj.9371/fig-1
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transcription rate is constant within the 4sU labeling time is abandoned in the solution
process, and dynamic rates and gene expression values can be predicted at some future
time points.

Performance analysis
The efficacy of pulseTD was evaluated on the simulation dataset. We calculated the
Pearson correlation coefficient (PCC) for pulseTD between real and simulated
transcriptional dynamic rates, and found that the PCC values for transcription, processing
and degradation rates were 0.95, 0.95 and 0.77, respectively (Figs. 2A–2C). The PCCs
for the transcription, processing, and degradation rates of INSPEcT were 0.94, 0.87 and
0.42, respectively. However, the rates of RCLD evaluated by INSPEcT were less than
the true rates (Figs. 2D–2F). The MSE between real and simulated RCLD rates were
calculated using pulseTD, INSPEcT and curve-fitting methods. The results showed that the
MSE value of pulseTD was <0.1 (Fig. 3). These results suggested that pulseTD was accurate
in assessing the RCLD rates.

To eliminate the bias of simulation data, simulation data produced by INSPEcT was
used to evaluate the performance of pulseTD. We used the INSPEcT tool to generate two
biological replications dataset, which contained 10 time nodes. The correlation of total
RNA expression dataset was 0.98. Then, we used pulseTD to evaluate the RCLD of the
biological replications, where the correlations of transcription, processing and degradation
rates were 0.97, 0.90 and 0.92 (Figs. 4A–4C). As a comparison, we used INSPEcT to
evaluate the RCLD of the simulation data. The correlations of transcription, processing,
and degradation rates were 0.98, 0.86 and 0.84 (Figs. 4D–4F). In general, pulseTD had
shown good performance in different simulation data.

The robustness of pulseTD was tested using two biologically repeated gene expression
datasets from GEO (GSE59717). The PCC values of transcription, processing, and
degradation rates between replications were 0.95, and the RCLD rates distribution also
showed high consistency (Figs. 5A–5C). This reflected high robustness of pulseTD.
For comparison, the PCC values of INSPEcT were calculated using the same data, they
were 0.92, 0.93 and 0.84 (Figs. 5D–5F). The PCC for its degradation rates was low,
which might be due to more outliers, during the evaluation process. And its density
distribution produced a large deviation. pulseTD showed higher stability in biological

Table 1 Detailed description of the software function.

pulseTD INSPEcT DRiLL DTA pulseR

Code language R R MATLAB R R

Gene expression 1 1 1 0 0

Processing rates 1 1 1 0 ?

Prediction 1 0 0 0 0

Continuity 1 0 0 0 0

Note:
1, means available; 0, means unavailable; ?, representative unknown.
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replicate data. At the same time, in order to judge the impact of expression levels of
gene on software performance, we calculated the mean expression levels of the total exons,
total introns and labeled exons of each gene during the detection time and ranked the
mean. The first 1/3 genes were considered to be low expression, and the last 1/3 genes were
considered to be high expression. Both of them were used to evaluate RCLD. The PCC
value of degradation rates and processing rates obtained by INSPECT were 0.58 and 0.68,
but the PCC value of pulseTD remained stable. This showed that pulseTD had a higher
tolerance for poor quality data and the evaluation results were more stable. We also
explored the effects of pre-RNA, total RNA and labeled RNA expression levels on model
optimization. The correlation of the transcription, processing and degradation rates of
each gene was calculated between the two biological replicate data sets. At the same time,
we sorted them according to the mean expression levels of the total exons, total introns
and labeled exons, respectively. We found that the number of genes with an average
correlation greater than 0.5 was 96.21% and overall showed a high correlation
(Figs. 6A–6C). This indicated the expression levels of total RNA, pre-RNA and labeled
RNA had little effect on the optimization of the model.

Figure 2 pulseTD and INSPEcT accuracy analysis and comparison. (A–C) Scatter plots of the cor-
relation between the RLCD rates and the true rates evaluated by pulseTD, which represent the tran-
scription, processing and degradation rates, respectively. The x-axis and y-axis are the logarithm of the
simulated and real rates values. The color is closer to yellow, and the density of scatter is larger.
(D–F) Scatter plots of the correlation between the RLCD rates and the true rates evaluated by INSPEcT,
which represent the transcription, processing, and degradation rates, respectively. The x-axis and y-axis
are the logarithm of the simulated and real rates values. The color is closer to yellow, and the density of
scatter is larger. Full-size DOI: 10.7717/peerj.9371/fig-2
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Figure 3 Compare RCLD errors between different software. The bar chart with error comparison of
different methods, including pulseTD, INSPEcT, second-order (poly2), third-order (poly3) and
fourth-order (poly4) polynomials. The y-axis is the error value of the RCLD, and a is the transcription
rates, β is the degradation rates, and γ is the processing rates.

Full-size DOI: 10.7717/peerj.9371/fig-3

Figure 4 Accuracy analysis and comparison based on the simulation data generated by INSPEcT.
(A–F) Scatter plots of the correlation. The x-axis is the logarithm of replication-1, the y-axis is the
logarithm of replication-2. The color is closer to yellow, and the density of scatter is larger. (A–C) is using
pulseTD software and (D–F) is using INSPEcT software. Full-size DOI: 10.7717/peerj.9371/fig-4
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Figure 5 The correlation of biological duplicate data. (A–F) Scatter plots of the correlation. The x-axis
is the replication 1, the y-axis is the replication 2. (A–C) is using pulseTD software and (D–F) is using
INSPEcT software. Full-size DOI: 10.7717/peerj.9371/fig-5

Figure 6 Influence of gene expression level on model optimization. (A–C) Heat maps of total RNA,
pre-RNA and labeled RNA, respectively. (A) A heat map of expression levels. (B) The respective cor-
relation of transcription, processing and degradation rates between two biological replicates. (C) A scatter
plot of the mean correlation of transcription, processing, and degradation rates.

Full-size DOI: 10.7717/peerj.9371/fig-6
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Predict RLCD at unknown time nodes
The pulseTD can predict dynamic transcription rates and gene expression because of its
pulsed model characteristics. To evaluate prediction effectiveness, we divided the GEO
(GSE56977) dataset into two parts. We selected the first 5, 7, 9 and 11 time points from 13
measurement time points as training samples (Assuming they are experimental
measurement data) to estimate the rates of RCLD and used the remaining time points (test
samples) for prediction. We estimated and predicted the rates of RCLD based on the
training samples by using pulseTD and some other methods. Then, the MSE values
between the predicted results and the test samples were calculated to evaluate the
prediction performance. The results showed that pulseTD had the lower average MES
values of RLCD rates than other methods (Figs. 7A–7C). These results showed that
pulseTD had good prediction capabilities. We also found that as the training time points
increase, the MSE values gradually decreased. When estimating RLCD, we recommend
increasing the number of measurement time points in the experiment in order to have
more accurate predictions.

CONCLUSIONS
In the field of bioinformatics, it is important to accurately identify the rates of RLCD and
predict transcriptional stability. Few programs can identify the rates of RLCD, and none
can provide predictions of the dynamic rates and steady state of RLCD. Here we use 4sU-
seq and RNA-seq technology to analyze and predict RLCD. In summary, based on the
pulse model, combined with the biological significance of RNA life cycle, we developed the
R package named pulseTD. It only needs the alignment files of 4sU-seq and RNA-seq to
calculate the expression value and the pulse model parameters in a simple manner. Here,
we recommend using min–max normalization when comparing experiments with

Figure 7 Comparison of the efficacy of different models for predicting the RCLD. (A–C) Box plots for
the comparison of prediction errors of different methods, including pulseTD, INSPEcT, second-order
(poly2), third-order (poly3) and fourth-order (poly4) polynomials. The smaller the error value, the
higher the accuracy of the prediction. The y-axis is the negative logarithm of the mean square error
between the predicted and true values, and 5, 7, 9 and 11 in the legend represent the number of
experimental measurement time points, respectively. Full-size DOI: 10.7717/peerj.9371/fig-7
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different conditions to remove the dimension and logarithmic normalization when
analyzing single experimental data to narrow the range of values. It can easily evaluate the
RLCD at any time points. More importantly, it can predict the trend and the steady state of
transcriptional dynamic rates. It has better accuracy and robustness than other methods.
You can get source code on GitHub (https://github.com/bioWzz/pulseTD_0.2.0).
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