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Tip-dating, a method of phylogenetic analysis in which fossils are included as terminals
and assigned an age, is becoming increasingly widely used in evolutionary studies. Current
implementations of tip-dating allow fossil ages to be assigned as a point estimate, or
incorporate uncertainty through the use of uniform tip age priors. However, the use of tip
age priors has the unwanted effect of decoupling the ages of fossils from the same fossil
site. Here | introduce a new Markov Chain Monte Carlo (MCMC) proposal, which allows
fossils from the same site to have linked ages, while still incorporating uncertainty in the
age of the fossil site itself. | also include an extension, allowing fossil sites to be ordered in
a stratigraphic column with age bounds applied only to the top and bottom of the
sequence. These MCMC proposals are implemented in a new open-source BEAST?2
package, palaeo. | test these new proposals on a dataset of early vertebrate fossils,
concentrating on the effects on two sites with multiple acanthodian fossil taxa but wide
age uncertainty, the Man On The Hill (MOTH) site from northern Canada, and the Turin Hill
site from Scotland, both from the Lochkovian (Early Devonian). The results show an
increased precision of age estimates when fossils have linked tip ages compared to when
ages are unlinked, and in this example leads to support for a younger age for the MOTH
site compared with the Turin Hill site. There is also a minor effect on the tree topology of
acanthodians. These new MCMC proposals should be widely applicable to studies that
employ tip-dating, particularly when the terminals are coded as individual specimens.
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Abstract

Tip-dating, a method of phylogenetic analysis in which fossils are included as terminals and
assigned an age, is becoming increasingly widely used in evolutionary studies. Current
implementations of tip-dating allow fossil ages to be assigned as a point estimate, or incorporate
uncertainty through the use of uniform tip age priors. However, the use of tip age priors has the
unwanted effect of decoupling the ages of fossils from the same fossil site. Here we introduce a
new Markov Chain Monte Carlo (MCMC) proposal, which allows fossils from the same site to
have linked ages, while still incorporating uncertainty in the age of the fossil site itself. We also
include an extension, allowing fossil sites to be ordered in a stratigraphic column with age
bounds applied only to the top and bottom of the sequence. These MCMC proposals are
implemented in a new open-source BEAST?2 package, palaeo. We test these new proposals on a
dataset of early vertebrate fossils, concentrating on the effects on two sites with multiple
acanthodian fossil taxa but wide age uncertainty, the Man On The Hill (MOTH) site from
northern Canada, and the Turin Hill site from Scotland, both of Lochkovian (Early Devonian)
age. The results show an increased precision of age estimates when fossils have linked tip ages
compared to when ages are unlinked, and in this example leads to support for a younger age for
the MOTH site compared with the Turin Hill site. There is also a minor effect on the tree
topology of acanthodians. These new MCMC proposals should be widely applicable to studies
that employ tip-dating, particularly when the terminals are coded as individual specimens.

Introduction

Tip-dating is increasingly used as a method to calibrate molecular phylogenies and to analyse
phylogenies with fossil taxa (Gavryushkina et al. 2017; Lee et al. 2014; Ronquist et al. 2012).
Central to tip-dating are the ages given to the individual fossil taxa (or tips). Often this has been
in the form of point estimates, but usually there is some uncertainty regarding the precise age of
a fossil. Simulations have shown that better performance is achieved when each fossil is given a
uniform tip-age prior across the range of uncertainty (Barido-Sottani et al. 2019).

Current implementations of tip-dating only allow tip-ages to vary independently from each other.
This has the undesired effect of separating the ages of fossil taxa from the same site. In reality, it
is frequently the case that a fossil site has a wide uncertainty regarding age, but it is known that
all the fossils from that site are of approximately the same age. A striking example, from the
empirical dataset used in this study, is the so-called “wonder block™ from the Man On The Hill
(MOTRH) site from the Lochkovian (419.2—410.8 million years) of northern Canada (Hanke &
Wilson 2006). This single block contains the acanthodians Obtusacanthus, Brochoadmones and
Lupopsyrus (Hanke & Wilson 2006), but these fossils can be separated by millions of years in a
tip-dated analysis in which age uncertainty is dealt with in the typical manner (King et al. 2017).

A second limitation is that a series of fossil sites can often be placed in chronological order,
despite the upper and lower bounds for the age uncertainty of these sites overlapping. For
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example, radiometric dates might be known only for the top and bottom of a geological
formation, and fossils known from several layers within this formation. Therefore, although the
total range of uncertainty for the age of each fossiliferous layer is the same, it is known in which
order the layers occur. In current implementations of tip-dating, it would be necessary to either
impose arbitrary age bounds to maintain the chronological order of the layers, or to allow the
layers to be sampled in the incorrect order.

In this study we introduce new MCMC proposals for the software BEAST2 (Bouckaert et al.
2019), which allow linking of tip ages for fossils from the same site, as well as the ordering of
fossil sites within a stratigraphic sequence. We test these proposals on a dataset of early
gnathostome fossils (King et al. 2017), focusing on two fossil sites with multiple taxa but wide
age uncertainty ranges: the Man On The Hill (MOTH) site from the Lochkovian (Early
Devonian) of Canada, and the Turin Hill (or Tillywhandland) site from the Lochkovian of
Scotland.

Materials & Methods

Tip date MCMC proposals for fossil sites are implemented with new operators in BEAST?2,
available in the package palaeo (available at https://github.com/king-ben/palaeo). The package
includes an R function that generates xml code for these operators from tables of fossil site

occurrences.

The first operator, FossilSiteDateRandomWalker, an extension of
SampledNodeDateRandomWalker from the Sampled ancestors package (Gavryushkina et al.
2014), takes as input the list of taxa and the age bounds for the site. New proposals, consisting of
a random age within the upper and lower bounds, are applied to all taxa in the site
simultaneously. Each fossil site requires a separate operator. A second operator,
RelativeFossilSiteDateRandomWalker, allows the ordering of sites within a stratigraphic
sequence, while allowing overlapping upper and lower bounds. The additional inputs are fossil
sites that sit either above or below within the sequence. New proposals for fossil site ages will
never be older or younger than the age estimates for the sites occurring below or above it in a
sequence respectively. The upper and lower bounds for the proposals from this operator therefore
depend on the other sites in the sequence, and will change as the MCMC chain runs (Fig. 1A-B).

We tested the performance of these new MCMC proposals on the dataset of King et al. (2017), a
dataset that includes autapomorphies, which can be important for tip-dating (Matzke & Irmis
2018). We updated the BEAST?2 xml files, first with independent age priors for each fossil, using
the SampledNodeDateRandomWalker operator from the sampled ancestors package
(Gavryushkina et al. 2014), and second with the new MCMC proposals described here. Analyses
used an uncorrelated lognormal clock (Drummond et al. 2006), gamma distributed among-
character rate variation (Yang 1996), the Mkv model (Lewis 2001) and a sampled ancestor birth-
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death tree prior (Gavryushkina et al. 2014); for full details of the analysis, see King et al. (2017).
The analyses were run for 200,000,000 generations across four independent runs, with a 10%
burn-in, and convergence was confirmed using Tracer (Rambaut et al. 2014) and Rwty (Warren
et al. 2017). To test the effect of using a RelativeFossilSiteDateRandomWalker operator, we also
ran an analysis sampling from the prior only.

Post-processing of results was performed in R (R Core Team 2018), utilizing the packages ape
(Paradis et al. 2004), phytools (Revell 2012) and ggplot2 (Wickham 2016). We focused attention
on two sites in particular, the Man On The Hill site (MOTH) and Turin Hill. Both have wide age
uncertainty (Lochkovian, 419.2-410.8Million years), but contain several taxa: eight and five
acanthodians for this particular analysis. Full results and analysis scripts are available on the
github repository.

Results

As expected, implementation of the RelativeFossilSiteDateRandomWalker led to a non-uniform
effective prior on tip ages (Fig. 1C). The effective prior on age of the older fossil site was
concentrated in the older part of the age uncertainty range, while the converse was true for the
younger fossil site. However, values across the entire span were sampled for both sites.

When estimated independently (i.e. with SampledNodeDateRandomWalker), individual taxa
from the same fossil site could show widely variable dates within a single tree from the posterior
sample. Across the posterior sample, the age estimates for taxa from the Turin Hill site were
spread over an average range of 5.43 million years, while the range for MOTH was 6.55 million
years.

The FossilSiteDateRandomWalker operator resulted in increased precision of site age estimates
when compared with estimates for each taxon independently (Fig. 2A). The 95% highest
posterior density (HPD) interval spanned 4.79 million years for the MOTH site, whereas the
HPD intervals for individual MOTH taxa when given independent ages spanned between 5.53
and 7.92 million years. The HPD interval for the Turin hill site spanned 6.08 million years,
compared with between 7.36 and 7.77 million years for the individual taxa.

The analysis with linked ages within each fossil site supported a younger age for the MOTH site
compared to Turin Hill. The median age for MOTH was 412.36 million years (HPD 410.80—
415.59), whereas the median for Turin Hill was 416.47 million years (HPD 413.06-419.15).
MOTH was younger than Turin Hill in 97% of trees from the posterior sample.

Some support a younger age for MOTH than Turin Hill was also present in the analysis with

independent dates, although the effect was less strong. The age estimate for the two sites in each
sample from the posterior was calculated as the mean of the age estimates for the individual taxa.
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The median across the posterior sample of this estimate was 414.57 for MOTH and 415.40 for
Turin Hill. The mean age for MOTH taxa was younger than the mean for Turin Hill taxa in 76%
of trees from the posterior sample. Therefore, use of linked tip-dates amplifies support for a
younger age for MOTH. Notably the median age estimate for the MOTH site when tip ages were
linked was younger than the median age estimate for any of the individual MOTH taxa when tip
ages were independent (Fig. 2A). Conversely, the median age estimate for Turin Hill was older
than the estimates for any of its individual taxa (Fig. 2A).

Use of linked tip-dates had a minor effect on tree topology (Fig. 2B—C). The 50% majority-rule
consensus tree for the analysis with independent tip dates showed the MOTH taxon Cassidiceps
resolved as the sister group to a clade consisting of Mesacanthus, Promesacanthus,
Cheiracanthus, Homalacanthus and Acanthodes (Fig. 2B). When tip-dates within fossil sites are
linked, this node collapses into a polytomy (Fig. 2C).

Discussion

The results show that linking tip-ages from fossil sites can lead to an increase in the precision of
age estimates when compared with independent tip dates. This may have important implications
for the use of Bayesian phylogenetic estimation of fossil ages (Drummond & Stadler 2016), in
cases where a fossil site has uncertain dates but multiple taxa. For example, in an analysis
estimating the age of fossil sites containing phiomorph rodent fossils, the estimated ages for
fossils within a single site were sometimes different (Sallam & Seiffert 2016). The use of linked
tip-dates should therefore increase the accuracy and precision of such estimates. In theory,
further extensions to these tip-date operators could even allow the use of multiple trees (i.e.
several groups analysed simultaneously), with dates for fossil sites linked across the trees, to
further increase precision.

The age estimates for the MOTH and Turin Hill sites should for now be treated with caution. The
younger age estimate for the MOTH site is likely driven by the similarities of some taxa with
chondrichthyans (Hanke & Wilson 2004; Hanke & Wilson 2010), and others with diplacanthid
acanthodians (Hanke & Davis 2008; Hanke et al. 2001). The earliest chondrichthyan fossil for
which good morphological data is known is Doliodus (Miller et al. 2003), of Emsian (late Early
Devonian) or early Eifelian (early Middle Devonian) age. Diplacanthid acanthodians are mainly
found in the Middle Devonian (Burrow et al. 2016). However, the presumed poor sampling of
early chondrichthyans in the fossil record (Coates et al. 2018), combined with the sparsity of
morphological characters that can be coded for even the best-preserved acanthodian fossils,
means that this result should be considered preliminary.

Linking tip-dates can affect the phylogenetic position of fossils. The affected taxon, Cassidiceps,

from the MOTH site, has the oldest age estimate of the MOTH acanthodians when tip dates are
allowed to vary independently (Fig. 2A). Enforcing all MOTH taxa to have the same age
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therefore leads to a larger difference in the sampled age for Cassidiceps, leading to increased
sampling in a more nested position (Fig. 2C). Relative to other MOTH acanthodians, the
morphology of Cassidiceps is relatively poorly known (Gagnier & Wilson 1996), which is likely
to further increase the relative influence of tip age priors on its phylogenetic position.

The effect of the stratigraphic sequence operator on the effective tip date prior (Fig. 1C) is
desirable. For example, for the younger fossil layer to be close to the maximum age bound for
the stratigraphic sequence (e.g. fig. 1B) would require both fossil layers to occur very close
together, implying highly heterogeneous sedimentation rates. While this is possible, it is
appropriate to assign a low prior probability to this scenario. Further refinements to tip age priors
could be added, such as applying non-uniform tip-age priors (in addition to the operators), based
on the relative position of a layer in a sequence and an assumption of uniform sedimentation
rates. The combined effect of the tree prior, operators and tip age priors on the effective prior
density on tip dates would need to be analysed by sampling from the prior, as for node age
calibrations (Heled & Drummond 2012).

The MCMC proposals presented here are particularly relevant for specimen-level phylogenetic
datasets (e.g. Cau 2017; Tschopp et al. 2015). Even when phylogenetic datasets are not strictly
specimen-based, taxa are often scored based on a single specimen or specimens from a single
fossil site (as is the case for the phylogenetic dataset utilised here). Simulations have shown that
tip-dating works best when fossil terminals are assigned ages based on the specimens from which
the morphological data were coded (Piischel et al. 2020). The new methods presented here
should therefore be widely applicable to phylogenetic analyses of palacontological data. This
includes the use of “clock-less” tip-dating to timescale trees, without the use of morphological
data (paleotree R package v. 3.3.25 reference manual; Bapst 2012). In cases where
morphological data for individual tips are taken from fossils covering a wide stratigraphic range,
models that explicitly take stratigraphic ranges (as opposed to uncertainty) into account would be
more appropriate (Stadler et al. 2018), although these are not yet implemented in phylogenetic
software.

Conclusions

This study introduces new MCMC proposals implemented in BEAST2 designed to deal with
stratigraphic age uncertainty of fossils by linking the ages of fossils from the same site, as well as
correctly ordering fossil sites within a sequence. When used on an empirical dataset, the use of
these new proposals leads to increased precision of site age estimates and minor effects on tree
topology. The MCMC proposals presented here should be widely applicable to studies that
employ tip-dating, particularly for specimen-level datasets.
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Figure 1

An MCMC proposal enforcing the correct ordering of fossil sites within a sequence, but
allowing overlapping uncertainty bounds

(A-B) The blue lines represented the sampled ages of two fossil sites (light blue: younger
site, dark blue:older site) . The range of possible values for new proposals at a particular
point in the Markov chain (part A and B represent different points in the chain) depends on
the current value of the other site in the sequence. Arrows indicate the possible range of new
proposals. (C) Implementation of this operator on an empirical dataset leads to non-uniform
effective priors on site age (in this case two formations from the Early Devonian of

Spitzbergen) . Note that colours are plotted with transparency to show overlap.
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Figure 2

Linking the tip ages of fossils from the same site leads to increased precision of age
estimates and has minor effects on tree topology

(A) 95% HPD intervals for individual taxa within two fossil sites (light green, Turin Hill taxa;

light orange, MOTH taxa), compared with 95% HPD interval when tip ages within fossil sites
are linked (dark green, Turin Hill; dark orange, MOTH). Circles represent median estimates.
(B-C) 50% maijority rule cladogram (in part) from the analysis with independent tip ages (B)

and with linked tip ages for fossil sites (C).
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