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ABSTRACT
Background. Increasing bodies of evidence reveal that targeting a programmed
cell death protein 1 (PD-1) monoclonal antibody is a promising immunotherapy
for lung adenocarcinoma. Although PD receptor ligand 1 (PDL1) expression is
widely recognized as the most powerful predictive biomarker for anti-PD-1 therapy,
its regulatory mechanisms in lung adenocarcinoma remain unclear. Therefore, we
conducted this study to explore differentially expressed genes (DEGs) and elucidate
the regulatory mechanism of PDL1 in lung adenocarcinoma.
Methods. The GSE99995 data set was obtained from the Gene Expression Omnibus
(GEO) database. Patients with and without PDL1 expression were divided into PDL1-
positive and PDL1-negative groups, respectively. DEGs were screened using R. The
Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes
(KEGG)were analyzed using theDatabase for Annotation, Visualization and Integrated
Discovery. Protein–protein interaction (PPI) networks of DEGs was visualized using
Cytoscape, and theMNC algorithmwas applied to screen hub genes. A survival analysis
involving Gene Expression Profiling Interactive Analysis was used to verify the GEO
results. Mutation characteristics of the hub genes were further analyzed in a combined
study of five datasets in The Cancer Genome Atlas (TCGA) database.
Results. In total, 869 DEGs were identified, 387 in the PDL1-positive group and 482
in the PDL1-negative group. GO and KEGG analysis results of the PDL1-positive
group mainly exhibited enrichment of biological processes and pathways related to
cell adhesion and the peroxisome proliferators-activated receptors (PPAR) signaling
pathway, whereas biological process and pathways associated with cell division and
repair were mainly enriched in the PDL1-negative group. The top 10 hub genes were
screened during the PPI network analysis. Notably, survival analysis revealed BRCA1,
mainly involved in cell cycle and DNA damage responses, to be a novel prognostic
indicator in lung adenocarcinoma. Moreover, the prognosis of patients with different
forms of lung adenocarcinoma was associated with differences in mutations and
pathways in potential hub genes.
Conclusions. PDL1-positive lung adenocarcinoma and PDL1-negative lung adenocar-
cinoma might be different subtypes of lung adenocarcinoma. The hub genes might
play an important role in PDL1 regulatory pathways. Further studies on hub genes are
warranted to reveal new mechanisms underlying the regulation of PDL1 expression.
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These results are crucial for understanding and applying precision immunotherapy for
lung adenocarcinoma.

Subjects Bioinformatics, Immunology, Oncology, Respiratory Medicine, Data Mining and
Machine Learning
Keywords Lung adenocarcinoma, PDL1, Integrated bioinformatic analysis, Biomarkers,
Prognosis

INTRODUCTION
Non–small-cell lung cancer (NSCLC) is a leading malignancy threatening human life
and health worldwide (Herbst, Morgensztern & Boshoff, 2018; Zhang et al., 2019). Lung
adenocarcinoma is the most common type of NSCLC, and it is a more heterogeneous
subtype of NSCLC compared with squamous cell carcinoma. Therefore, its individualized
treatment and prognosis have attracted considerable attention; understanding its biological
characteristics is necessary for achieving such individualized treatment and prognosis.
In the past decade, studies have identified tyrosine kinase inhibitors (TKIs) targeting
epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and
ROS proto-oncogene 1 (ROS1) as potential therapies for lung adenocarcinoma on the
basis of genotyping (Sgambato et al., 2018; Singhi et al., 2019). Molecular targeted therapy
based on these sensitive targets has considerably enhanced overall survival (OS) in lung
adenocarcinoma. Despite the progress in the treatment of lung adenocarcinoma, the
mortality rate among patients with advanced lung adenocarcinoma remains high, with
the 5-year survival rate being approximately 15% in patients with advanced NSCLC
(Blandin Knight et al., 2017). Nevertheless, a breakthrough was achieved in terms of
immunotherapy for cancer according to recent reports, with immune checkpoint inhibitors
prolonging survival in some patients with various cancer types (Yu &Wang, 2018; Lorigan
& Eggermont, 2019; Morse, Hochster & Benson, 2020). In particular, targeting programmed
cell death protein 1 (PD-1) monoclonal antibodies is rapidly becoming a promising
therapeutic approach for NSCLC treatment (El-Osta & Jafri, 2019). Patients with >50%
PDL1 expression treated using anti-PD-1 therapy showed a longer progression-free
survival (PFS) period than did those treated using standard chemotherapy as the first-line
treatment for NSCLC. Furthermore, in the past few years, some of these antibodies have
been successfully commercialized and approved as first- and second-line treatments for
advanced NSCLC (Gridelli et al., 2018; Dafni et al., 2019). In particular, immunotherapy is
different from traditional chemotherapy or targeted therapy in that it has durable clinical
benefits and fewer side effects in general (Suresh et al., 2018). Hence, immunotherapy is
a promising therapy for lung adenocarcinoma; however, its application is limited to a
subtype of patients with lung adenocarcinoma. Individualized immunotherapy guided by
predictive biomarkers is crucial for improving the prognosis of lung adenocarcinoma.

Recent studies have proposed PDL1 expression, tumor mutational burden, and DNA
mismatch repair deficiency as biomarkers for anti-PD-1 therapy (Teng et al., 2018; Darvin
et al., 2018; El-Osta & Jafri, 2019). In particular, PDL1 expression—recommended by the
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National Comprehensive Cancer Network guidelines—is widely recognized as the most
powerful predictive marker for immunotherapy in lung adenocarcinoma. Moreover,
patients with PDL1-positive lung adenocarcinoma are more likely to benefit from
immunotherapy than those with PDL1-negative lung adenocarcinoma (Gridelli et al., 2018;
Dafni et al., 2019), suggesting that PDL1 expression plays amajor role in the pathogenesis of
lung adenocarcinoma. However, the mechanism underlying this clinical problem remains
unclear. Understanding the regulatory role of PDL1 expression in lung adenocarcinoma is
crucial for precision immunotherapy. Currently, PDL1 expression is primarily determined
using immunohistochemistry (IHC) assays; nevertheless, IHC assays yield inconsistent
results due to variable cutoffs and different antibodies with differing affinities (Hunter,
Socinski & Villaruz, 2018). Hence, such assays cannot comprehensively elucidate the
molecular mechanism and enriched pathways underlying the efficacy of immunotherapy.
To solve this problem, novel strategies are imperative to explore the intrinsic mechanism
of PDL1 expression in the biology of lung adenocarcinoma.

Because of advances in next-generation sequencing technology, high-throughput
sequencing results on cancers have been increasingly released on the Gene Expression
Omnibus (GEO), a public database; this can thus enable understanding the molecular
mechanism of PDL1 expression and pathogenesis of lung adenocarcinoma. Using next-
generation sequencing technology, previous studies have successfully identified key
biomarkers in lung adenocarcinoma, which has proved to be essential in understanding
the molecular mechanism of tumors (Tang et al., 2018; Li et al., 2019). Because PDL1
expression might affect certain key pathways in immunotherapy for lung adenocarcinoma,
exploring the differences between patients with PDL1-positive and those with PDL1-
negative lung adenocarcinoma would provide insights into the regulatory mechanisms
of immunotherapy. Hence, it is reasonable to explore the differences in gene expression
profiles and enriched pathways between the two groups of patients. Using the GEO
database, we studied a gene expression dataset (GEO accession number: GSE99995)
and comparatively analyzed sequencing data of gene expression between patients with
PDL1-positive and PDL1-negative lung adenocarcinoma using the Agilent oligonucleotide
microarray system. The aim of the study was to explore the differences in gene expression
profiles and enriched pathways between the two groups of patients and identify the potential
biomarkers predicting patient prognosis in order to elucidate the regulatory mechanism
of PDL1 in immunotherapy, which could be crucial in guiding precision immunotherapy
and improve prognosis in lung adenocarcinoma.

MATERIAL AND METHODS
Gene expression profile data
The GEO database is a public functional genomics data repository (https://www.ncbi.nlm.
nih.gov/geo/). We obtained gene expression profile data from the public GEO database
based on the keywords ‘‘PDL1 expression’’, ‘‘lung adenocarcinoma’’, and ‘‘homo sapiens’’.
GSE99995 was retrieved. To prevent interferon expression levels having effects on PDL1
gene expression profiles, only patients with lung adenocarcinoma with low interferon
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expression levels were included. Patients with and without PDL1 expression were divided
into PDL1-positive (3 people, average age: 52.33 ± 4.04 years, tumor stage IIIA) and
PDL1-negative (3 people, average age: 51.33 ± 3.06 years, tumor stage IIIA) groups,
respectively.

DEGs analysis and mapping
A series of matrix files and platforms were downloaded and processed using R. Screening of
differentially expressed genes (DEGs) between the two groups as well as heat mapping and
volcano mapping were performed using Limma. A log FoldChange of >2 and an adjusted
P value of <0.05 indicated the presence of DEGs.

Gene ontology and kyoto encyclopedia of genes and genomes
pathway enrichment analysis
We used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses to understand gene functional annotation and functional
enrichment, respectively. We used the Database for Annotation, Visualization and
Integrated Discovery (DAVID) to perform GO and KEGG annotation of DEGs. DAVID
is an online database (https://david.ncifcrf.gov/) for estimating functional domains and
biological implications. Fisher’s exact test was employed for analyses of pathways, diseases,
and functions. A P value of <0.05 is recommended because it denotes the significance
of GO terms and KEGG pathway enrichment in genes. The top 10 GO terms and KEGG
pathway enrichment results were mapped using Hmisc and ggplot2 in R.

Gene set enrichment analysis pathway enrichment analysis and
validation
Gene Set Enrichment Analysis (GSEA) is a computational method—based on the analysis
of all genes—that determines whether an a priori defined set of genes shows statistically
significant differences between two biological states. In the KEGG pathway analysis, the
threshold value was set according to the expression level, which could only be analyzed in
genes with significantly different expression levels. To avoid limitations in our results, GSEA
was used again to consider the effect of all DEGs, not limited to those with significantly
different expression levels. Therefore, GSEA was used to comprehensively analyze the
differences in gene pathway enrichment results between the two groups.

Protein–protein interaction network and analysis of hub genes
STRING is an online database designed to evaluate and predict protein–protein interactions
(PPIs) (https://string-db.org/cgi/input.pl). First, STRING was used in this study to analyze
the PPI network of different genes in the two patient groups. Isolated nodes were removed,
and the results of the interaction network were downloaded and then imported into
Cytoscape (version 3.7.2) for subsequent analysis. Second, the PPI network was constructed
and visualized using Cytoscape (version 3.7.2) and cytoHubba. The MNC algorithm was
employed to screen and identify the hub genes that might be key candidate genes with
crucial regulatory functions.
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Clinical characteristics and survival analysis related to hub genes
Gene Expression Profiling Interactive Analysis (GEPIA) is an online cancer data mining
site that is based on the TCGA and GTEx databases and uses a standard processing
pipeline (http://gepia.cancer-pku.cn/detail.php). In this study, the online survival analysis
tool of GEPIA was used to verify our previous results obtained using the TCGA and GTEx
databases. Furthermore, differences in the expression of hub genes in lung adenocarcinoma
and adjacent normal tissues were analyzed. Moreover, the relationships among differences
in expression of hub genes, pathological staging, and prognosis in lung adenocarcinoma
were analyzed. Furthermore, P values of <0.05 were considered statistically significant.

Mutation characteristics and pathway analyses of hub genes
We investigated the mutation characteristics and possible functional mechanisms of
the differential expression of hub genes in lung adenocarcinoma. Therefore, data sets
containing gene expression profiles of patients with lung adenocarcinoma were included
in the TCGA database (e.g., Broad, Cell 2012; MSKCC, Science (2015); TCGA, Firehose
Legacy; TCGA, Nature (2014); and TCGA, PanCancer Atlas). A combined study of five
data sets including 1598 patients and 1600 samples were included in the analysis.

GSCALite is a web-based analysis platform that analyzes an entire set of genes in
cancers (http://bioinfo.life.hust.edu.cn/web/GSCALite/), including alterations in DNA
or RNA of cancer-related genes, the activity of 10 cancer-related pathways, and miRNA
regulatory network for genes. To understand the cancer-related pathways of hub genes,
we distinguished hub gene expression between pathway activation and inhibition groups
according to pathway scores in GSCALite.

RESULTS
Identification and mapping of DEGs
Our results revealed that the PDL1-positive and PDL1-negative groups comprised 34,729
genes. According to criteria of a log FoldChange of >2, and an adjusted P value of <0.05,
a total of 869 DEGs were identified, with 387 and 482 DEGs in the PDL1-positive and
PDL1-negative groups, respectively. The corresponding heat map and volcano map are
shown in Fig. 1.

GO terms and KEGG pathway enrichment analysis of DEGs
The analysis of DEGs by using GO terms was divided into three parts, namely biological
processes, cellular components, and molecular functions. The GO analysis of the PDL1-
positive group mainly revealed the enrichment of pathways involved in cell adhesion
(BP, GO:0007155) plasma membrane (CC, GO:0005886), and cadmium ion binding (MF,
GO:0046870). TheGO analysis of the PDL1-negative groupmainly revealed the enrichment
of pathways involved in cell division (BP, GO:0051301), nucleoplasm (CC, GO:0005654),
andDNA binding (MF, GO:0003677). The detailed results are shown in Table 1. The KEGG
pathway enrichment results in the PDL1-positive group revealed that the enriched pathways
were mainly those involved in cell adhesion molecules, PPAR signaling, and ECM-receptor
interaction. However, the KEGG pathway enrichment results of the PDL1-negative group

Qi et al. (2020), PeerJ, DOI 10.7717/peerj.9362 5/20

https://peerj.com
http://gepia.cancer-pku.cn/detail.php
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007155
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005886
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0046870
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051301
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005654
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003677
http://dx.doi.org/10.7717/peerj.9362


Figure 1 Heat map and volcanic plot of DEGs comparing patients with PDL1-positive and PDL1-
negative lung adenocarcinoma. (A) Heat map of DEGs. (B) Volcanic plot of DEGs. Red represents high
expression levels in the PDL1-positive group, whereas blue represents high expression levels in the PDL1-
negative group. Gray represents no difference in expression levels between the two groups.

Full-size DOI: 10.7717/peerj.9362/fig-1

revealed that the enriched pathways were mainly those involved in DNA replication, cell
cycle, and mismatch repair (Table 2). The detailed results are shown in Table 2. The top
10 GO terms and KEGG enriched pathways were mapped using the Hmisc and ggplot2
packages. The results are shown in Fig. 2.

GSEA enrichment analysis and validation
The results were validated through GSEA analysis after all the DEGs were considered. The
GSEA results also provided the KEGG results. However, a new pathway enrichment was
observed in the PDL1-positive group, namely the T-cell receptor pathway, which was not
observed in KEGG results of DEGs (Fig. 3).

Construction of PPI network and analysis of hub genes
The STRINGdatabase consists of known and predicted PPIs. The interactions include direct
(physical) and indirect (functional) associations. To explore the expression relationships
between the DEGs, a PPI network was constructed in our study. Our results showed that
the PPI network consisted of 570 nodes and 2937 edges (Fig. 4A). The average node degree
was 10.3 and the average local clustering coefficient was 0.404 (PPI enrichment p value:
<1.0e−16). In addition, the MNC algorithm was used to screen and identify hub genes
that might be key genes with crucial regulatory functions. The top 10 hub genes, BUB1B,
CDC45, BUB1, TTK, BRCA1, TOP2A, NDC80, RFC4, MCM2, and DTL, were identified in
our study (Fig. 4B). The results were ranked using the MNC method, as shown in Table 3.

Analysis of the mechanism of hub genes in the TCGA database
To prevent the limitations caused by using a single GEO database, our results were verified
using the TCGA and GTEx databases. First, comparative analysis of hub gene expression

Qi et al. (2020), PeerJ, DOI 10.7717/peerj.9362 6/20

https://peerj.com
https://doi.org/10.7717/peerj.9362/fig-1
http://dx.doi.org/10.7717/peerj.9362


Table 1 Top 10 GO terms.

Category Term Count % P-Value FDR

PDL1 positive group
GOTERM_BP_FAT Cell adhesion 21 8.713692946 2.88E−04 0.469256078
GOTERM_BP_FAT Biological adhesion 21 8.713692946 2.94E−04 0.478025436
GOTERM_BP_FAT Cell–cell adhesion 12 4.979253112 5.17E−04 0.841085346
GOTERM_BP_FAT Regulation of cell motion 10 4.149377593 5.50E−04 0.894179746
GOTERM_BP_FAT MAPKKK cascade 9 3.734439834 0.00173479 2.79437728
GOTERM_CC_FAT Plasma membrane 81 33.60995851 1.28E−08 1.64E−05
GOTERM_CC_FAT Intrinsic to plasma membrane 33 13.69294606 2.53E−05 0.032468756
GOTERM_CC_FAT Intrinsic to membrane 93 38.58921162 5.00E−05 0.064061563
GOTERM_CC_FAT Integral to plasma membrane 31 12.86307054 1.03E−04 0.132137329
GOTERM_CC_FAT Membrane raft 8 3.319502075 0.001913071 2.423429637
GOTERM_MF_FAT Cadmium ion binding 3 1.244813278 0.006756465 8.971494974
GOTERM_MF_FAT Sugar binding 8 3.319502075 0.012297355 15.76520126
GOTERM_MF_FAT Carbohydrate binding 11 4.564315353 0.01503554 18.94591653
GOTERM_MF_FAT Calcium ion binding 20 8.298755187 0.024264811 28.86459093
GOTERM_MF_FAT Lipid binding 12 4.979253112 0.02867722 33.1973471
PDL1 negative group
GOTERM_BP_DIRECT Cell division 34 8.629441624 4.29E−15 7.22E−12
GOTERM_BP_DIRECT DNA replication 22 5.583756345 4.68E−13 7.79E−10
GOTERM_BP_DIRECT Mitotic nuclear division 26 6.598984772 2.39E−12 3.98E−09
GOTERM_BP_DIRECT Chromosome segregation 14 3.553299492 1.75E−10 0.000000291
GOTERM_BP_DIRECT G1/S transition of mitotic cell cycle 15 3.807106599 3.32E−09 0.00000554
GOTERM_CC_DIRECT Nucleoplasm 89 22.58883249 1.26E−09 0.00000169
GOTERM_CC_DIRECT Condensed chromosome kinetochore 14 3.553299492 2.29E−09 0.00000306
GOTERM_CC_DIRECT Nucleus 136 34.5177665 6.77E−08 0.0000906
GOTERM_CC_DIRECT Chromosome, centromeric region 10 2.538071066 0.00000043 0.000576
GOTERM_CC_DIRECT Kinetochore 11 2.791878173 0.00000104 0.001390211
GOTERM_MF_DIRECT DNA binding 52 13.19796954 0.000106 0.150583673
GOTERM_MF_DIRECT Protein binding 190 48.22335025 0.000124 0.175586276
GOTERM_MF_DIRECT Chromatin binding 19 4.822335025 0.000252 0.356042613
GOTERM_MF_DIRECT DNA helicase activity 5 1.269035533 0.000804 1.132060211
GOTERM_MF_DIRECT ATP binding 43 10.91370558 0.002267608 3.161395589

in lung adenocarcinoma and adjacent normal tissue was performed in our study, and our
results showed that the expression levels of BUB1B, CDC45, BUB1, TTK, TOP2A, NDC80,
MCM2, and DTL were significantly higher in lung adenocarcinoma tissues than in adjacent
normal lung tissues (P < 0.01). However, although the expression levels of BRCA1 and
RFC4 were higher in lung adenocarcinoma tissues than in adjacent normal tissues, the
differences were not significant (Fig. 5).

In addition, the relationship between hub genes and pathological staging were analyzed.
The results showed that BUB1B (F value = 5.22, p= 0.00148), CDC45 (F value = 2.86,
P = 0.0364), BUB1 (F value = 5.22, P = 0.00149), TTK (F value = 5.06, P = 0.00185),
BRCA1 (F value = 4.9, P = 0.0023), TOP2A (F value = 2.88, P = 0.0354), NDC80 (F
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Table 2 Top 10 KEGG pathway enrichment results.

Category Term Count % P-Value Genes FDR

PDL1 positive group
KEGG_PATHWAY Arrhythmogenic

right ventricular
cardiomyopathy
(ARVC)

7 2.904564315 0.001300189 LAMA2, ITGA9,
CACNA2D1, RYR2,
ITGA10, CACNA2D3,
CTNNA3

1.414211029

KEGG_PATHWAY Cell adhesion
molecules (CAMs)

7 2.904564315 0.019094239 NCAM2, ITGA9, SELP,
CDH15, CD22, CLDN22,
HLA-DQA1

19.02707303

KEGG_PATHWAY PPAR signaling
pathway

5 2.074688797 0.024587412 LPL, SLC27A1, OLR1,
FABP3, ANGPTL4

23.85529626

KEGG_PATHWAY Complement and
coagulation cascades

5 2.074688797 0.024587412 KNG1, CD55, CR2, F3,
CFD

23.85529626

KEGG_PATHWAY ECM-receptor
interaction

5 2.074688797 0.045850772 LAMA2, ITGA9, ITGA10,
CHAD, THBS4

40.17953232

PDL1 negative group
KEGG_PATHWAY DNA replication 10 2.538071066 4.44E−09 RFC3, RFC4, POLD2,

PCNA, POLA1, MCM2,
MCM3, MCM5, CM6,
RPA3

0.00000536

KEGG_PATHWAY Cell cycle 15 3.807106599 1.25E−08 E2F2, SKP2, TTK, SMAD2,
MCM2, MCM3, MCM5,
MCM6, CCNE2, CDC45,
CDKN2A, PCNA, BUB1,
BUB1B, ORC1

0.0000151

KEGG_PATHWAY Mismatch repair 5 1.269035533 0.000497 RFC3, RFC4, POLD2,
PCNA, RPA3

0.598123244

KEGG_PATHWAY Nucleotide excision
repair

6 1.52284264 0.001008028 RFC3, RFC4, POLD2,
PCNA, GTF2H4, RPA3

1.210410161

KEGG_PATHWAY p53 signaling
pathway

6 1.52284264 0.004883612 CCNE2, CDKN2A, SER-
PINB5, RPRM, PERP,
GTSE1

5.740021178

value = 3.58, P = 0.014), MCM2 (F value = 2.78, P = 0.0407), and DTL (F value = 5.97,
P = 0.000535) were positively correlated with pathological staging, and the differences were
statistically significant. However, regarding the correlation between RFC4 and pathological
staging, although RFC4 was positively correlated with pathological staging, the expression
of RFC4 did not differ significantly between the two groups (F value = 1.82, P = 0.142;
Fig. 6).

Finally, the relationship between the hub genes and prognosis was analyzed. The results
showed that patients with lung adenocarcinoma with low expression levels of BUB1B (Log
rank P = 3.8e−05, P (HR)= 5.1e−05 ), CDC45 (log rank P = 0.0032, p (HR)= 0.0035),
BUB1 (log rank P = 0.0024, p (HR) = 0.0026 ), TTK [log rank P = 0.00029, P (HR) =
0.00034], BRCA1 [log rank P = 0.0035, P (HR) = 0.0038], TOP2A [log rank P = 0.011, P
(HR)= 0.012], NDC80 [log rank P = 0.0027, P (HR)= 0.003], MCM2 [log rank P = 0.02,
P (HR) = 0.021], and DTL [log rank P = 0.0016, P (HR) = 0.0018] had significantly
higher overall survival than those with high gene expression levels (P < 0.05). However,
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Figure 2 Bubble mapping of the top 10 GO terms and KEGG pathway enrichment analysis data of
DEGs. (A) GO analysis of DEGs in biological process. (B) GO analysis of DEGs in cellular components.
(C) GO analysis of DEGs in terms of molecular function. (D) KEGG enrichment analysis of DEGs. A high
gene ratio represents a high level of enrichment. The size of the dot indicates the number of target genes
in the pathway and the color of the dot reflects the p value range. (E) GO Chord plot of DEGs. (F) KEGG
Chord plot of DEGs.

Full-size DOI: 10.7717/peerj.9362/fig-2

no significant correlation was observed between RFC4 gene expression level and overall
survival (log rank P = 0.059; Fig. 7).

Analysis of the mechanism of hub genes in the TCGA database
Furthermore, analysis of the lung adenocarcinoma was performed using the database
TCGA. The results showed that the hub genes had different mutation frequencies,
ranging from 1% to 5%. For example, BUB1B (4%), CDC45 (1.9%), and DTL (5%)
(Fig. 8A). Moreover, the potential hub genes exhibited different mutation forms in lung
adenocarcinoma, whichmay facilitate further exploration of the function of these hub genes
in lung adenocarcinoma. For example, BUB1B mainly exhibited deep deletion, whereas
BRCA1 mainly exhibited amplification (Fig. 8B). However, these different mutant forms
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Figure 3 GSEA enrichment analysis and validation. (A, B, C, D) GSEA enrichment analysis in the
PDL1-positive group. (E, F, G, H) GSEA enrichment analysis in the PDL1-negative group.

Full-size DOI: 10.7717/peerj.9362/fig-3

Figure 4 Construction of PPI networks and analysis of hub genes. (A) The PPI network was
constructed using Cytoscape. (B) The top 10 hub genes were screened using the MNC algorithm. The
color of the hub gene holds importance according to the MNC algorithm.

Full-size DOI: 10.7717/peerj.9362/fig-4

of hub genes were involved in different signaling pathways influencing the development of
lung adenocarcinoma; for example, BRCA1 was mainly involved in the cell cycle and DNA
damage response pathways (Figs. 9A and 9B).

DISCUSSION
Lung adenocarcinoma is a highly heterogeneous type of cancer, and its individualized
treatment has attracted considerable attention. An increasing number of studies have
recently indicated that immunotherapy, especially anti-PD-1 therapy, is a promising
strategy for treating lung adenocarcinoma. Some anti-PD-1 antibodies have been
successfully commercialized and approved as first- and second-line immunotherapy
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Table 3 Top 10 hub genes ranked using theMNCmethod.

Rank Name Score

1 BUB1B 81
2 CDC45 79
3 BUB1 78
3 TTK 78
5 BRCA1 75
6 TOP2A 73
7 NDC80 72
8 RFC4 71
9 MCM2 69
9 DTL 69

Figure 5 Analysis of hub gene expression in lung adenocarcinoma. The red and gray boxes represent
lung adenocarcinoma and adjacent normal tissue, respectively. (A) BUB1B; (B) CDC45; (C) BUB1, (D)
TTK; (E) BRCA1; (F) TOP2A; (G) NDC80; (H) RFC4; (I) MCM2; and (J) DTL.

Full-size DOI: 10.7717/peerj.9362/fig-5

options for advanced NSCLC in the past few years. Nevertheless, the overall response rate
for such immunotherapy is only approximately 20% (Greillier, Tomasini & Barlesi, 2018),
and the efficacy of such immunotherapy is affected by PDL1 expression. In particular,
PDL1 expression has been proposed as a predictive biomarker, suggesting that it plays a
major role in immune regulation in lung adenocarcinoma. Therefore, understanding the
effects of PDL1 expression on the biological behavior and the efficacy of immunotherapy in
lung adenocarcinoma is crucial. However, the use of IHC alone to assess PDL1 expression
cannot provide a complete explanation for the molecular mechanism and enriched
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Figure 6 Analysis of the relationship between hub genes and pathological staging in lung adenocarci-
noma. (A) BUB1B; (B) CDC45; (C) BUB1; (D) TTK; (E) BRCA1; (F) TOP2A; (G) NDC80; (H) RFC4; (I)
MCM2; and (J) DTL.

Full-size DOI: 10.7717/peerj.9362/fig-6

Figure 7 Survival analysis for patients with lung adenocarcinoma in relation to the expression of hub
genes. (A) BUB1B; (B) CDC45; (C) BUB1; (D) TTK; (E) BRCA1; (F) TOP2A; (G) NDC80; (H) RFC4; (I)
MCM2; and (J) DTL. Red and blue represent high and low expression levels of hub genes, respectively.

Full-size DOI: 10.7717/peerj.9362/fig-7

pathways underlying the efficacy of immunotherapy. With the development of next-
generation sequencing technology and bioinformatics, a novel strategic solution to this
problem may be identified (Morganti et al., 2019). Furthermore, previous studies have
used bioinformatic analysis to explore the core genes of lung adenocarcinoma and their
malignant transformation mechanisms (Yuan et al., 2017; Yeh et al., 2019). However, no
research has been conducted on PDL1-positive and PDL1-negative patients. Understanding
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Figure 8 Analysis of mutation characteristics of hub genes. (A) Matrix heatmap shows genomic alter-
ations of hub genes in five lung data sets (Broad, Cell (2012); MSKCC, Science (2015); TCGA, Firehose
Legacy; TCGA, Nature (2014); and TCGA, PanCancer Atlas). (B) The alteration frequencies of hub genes
across five studies on lung adenocarcinoma.

Full-size DOI: 10.7717/peerj.9362/fig-8

DEGs and differences in the biological processes and enrichment pathways between PDL1-
positive and PDL1-negative patients is crucial. Hence, by using gene bioinformatics analysis,
we explored the differences in gene expression profiles and enrichment pathways between
the two groups of patients and identified the potential key biomarkers that could be used
for predicting disease prognosis in patients. The elucidation of the regulatory mechanism
of PDL1 is crucial to improve precision immunotherapy for lung adenocarcinoma.
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Figure 9 Analysis of pathways of Hub genes. (A) Pie chart of hub genes involved in pathways. (B) Inter-
action map of hub genes and pathways in lung adenocarcinoma.

Full-size DOI: 10.7717/peerj.9362/fig-9

Our study demonstrated that even in patients with lung adenocarcinoma, differences
in gene expression were observed between those in the PDL1-positive and PDL1-negative
group, thus suggesting that these two types of patients should be treated differently.

The important findings in our study in the GO terms and KEGG pathway analysis
were the differences between the PDL1-positive and PDL1-negative groups of patients
with lung adenocarcinoma. Our results reveal that the PDL1-positive group mainly
demonstrated enrichment of adhesion-related biological processes and the PPAR signaling
pathway. Adhesion-related biological processes have been previously reported to be
associated with invasion and metastasis in patients with lung adenocarcinoma (Stevens
et al., 2017; Alonso-Nocelo et al., 2018), resulting in relatively high levels of organ and
tissue metastases and poor prognosis. Real-world studies have revealed similar results
(Wang et al., 2015; Okita et al., 2017). Previous studies have reported that PPAR, an anti-
inflammatory molecule with a potent, could promote tumor proliferation, angiogenesis,
inflammation, and metastasis in lung adenocarcinoma (Reka et al., 2011; Ammu et al.,
2019), suggesting that it is a vital and potential therapeutic target for lung adenocarcinoma.
Moreover, Lv & Wang (2015) discovered that the PPAR signaling pathway played a
major role in malignant transformation of cells among nonsmoking patients with lung
adenocarcinoma. These results are consistent with our findings. Although several studies
have suggested the relationship between PPAR and lung adenocarcinoma, the role of
PPAR in immunotherapy for lung adenocarcinoma has yet to be reported. Moreover,
recent studies have demonstrated that PPAR could enhance indoleamine 2,3-dioxgenase-1
(IDO) activity and promote the generation of regulatory T cells in melanoma; hence, the
use of PPAR inhibitors could enhance cancer immunotherapy (Poupot et al., 2014). On
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the basis of our results along with the results of these studies, we hypothesized that the
PPAR pathway might play a crucial role in immunotherapy for lung adenocarcinoma.
A comprehensive analysis of our results indicated that although PDL1 expression was
associated with the immune response pathway, it might have potential to contribute to
invasion and metastasis in patients with PDL1-positive lung adenocarcinoma.

Conversely, the results of the PDL1-negative group mainly revealed enrichment of
division-related biological processes and repair systems pathways, which indicated that
these pathways might be able to repair defects in apoptosis or recombination to reduce the
production of neoantigens. Some clinical studies have shown that PDL1-negative patients
tend to have lower tumor mutation burdens or fewer neoantigens than PDL1-positive
patients (Xia et al., 2017; Chan et al., 2019), which might be related to its involvement in
various repair systems. Further research must be conducted to confirm our conclusions.

In addition, the GSEA results were similar to those for the KEGG pathway analysis.
More importantly, a notable and novel finding was reported in the PDL1-positive group,
namely that related to the T-cell receptor pathway, which has been proved to be crucial for
achieving a favorable immunotherapeutic response in NSCLC (Van De Ven & Borst, 2015).
This finding suggests that PDL1 might be involved in the regulation of the T-cell pathway;
therefore, understanding the effects of PDL1 expression on tumor microenvironmental
immune cells and mediation of T-cell pathways is necessary.

In our study, 10 hub genes screened in the GEO database were verified and further
analyzed using the TCGA and GTEx databases. Our study further analyzed the prognostic
value and possible mechanism of hub genes in lung adenocarcinoma considering their
importance.

Several hub genes, such as BUB1B, CDC45, BUB1, TTK, TOP2A, MCM2, NDC80,
and DTL, have been reported to be associated with poor prognosis in patients with lung
adenocarcinoma (Hayama et al., 2006;He et al., 2019;Liu et al., 2017;Perez-Pea et al., 2017;
Song et al., 2018; Sun et al., 2020). Our findings corroborate these results. Another major
finding of our study is that BRCA1 is a predictor in patients with lung adenocarcinoma.

BRCA1 encodes a nuclear phosphoprotein that helps maintain genomic stability. It
is involved in biological processes such as cell cycle regulation, replication, and mitotic
spindle assembly. Previous studies have suggested that BRCA1 overexpression regulates
drug response in chemotherapy, is related to the efficacy of EGFR-TKIs, and is prevalent in
patients with NSCLC with early disease onset (Reguart et al., 2008; Sun et al., 2018). Recent
studies have analyzed the potential prognostic role of BRCA1 in early-stage NSCLC,
suggesting that BRCA1 is a predictor of survival in only stage III NSCLC (Hu et al., 2019).
Although several studies have demonstrated the role of BRCA1 in NSCLC, the prognostic
value and possible mechanism of BRCA1 in lung adenocarcinoma remain unclear. Our
study results suggest that BRCA1 overexpression was associated with poor prognosis in
lung adenocarcinoma. In particular, our results indicate that BRCA1 was mainly involved
in cell cycle and DNA damage responses in lung adenocarcinoma, which might produce
new antigens and enhance immune responses. BRCA1 mutation was also reported to be
associated with tumor neoantigen production, immune cell invasion, and PDL1 expression
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in ovarian cancer (Strickland et al., 2016). Overall, these findings suggest that BRCA1 plays
a key role in the immunomodulatory pathway of lung adenocarcinoma.

RFC4, also named activator 1, is a protein complex consisting of five subunits measuring
140, 40, 38, 37, and 36 kD. TelomereC-strand (Lagging Strand) Synthesis and E2F-mediated
regulation of DNA replication are some of its related pathways. A previously conduced
weighted gene co-expression network analysis revealed that it was a prognosis-related
biomarker in lung adenocarcinoma (Yi et al., 2020). However, our GEPIA survival analysis
showed that RFC4 overexpression was positively correlated with pathological staging but
was not associated with poor prognosis in patients with lung adenocarcinoma. Possible
reasons for these inconsistent findings are differences in sample selection strategies and
algorithms. Accordingly, the prognostic value of RFC4 for lung adenocarcinoma warrants
further study.

The present study has several limitations. First, only a single GSE was searched and
analyzed in the GEO database. To prevent bias resulting from the analysis of a single data
set, we adopted an integrated bioinformatic analysis approach. Second, the main objective
of this study was to explore the influence of PDL1 expression on related gene expression
profiles in patientswith lung adenocarcinoma.Hence, this studywas divided into expression
in PDL1-positive and PDL1-negative groups; however, no further distinction was made
in the PDL1-positive group between patients with high (50%) and low (<1%) levels of
PDL1 expression. Different PDL1 expression levels might have caused differences in the
expression profiles of genes, which warrants further confirmation. Third, some key genes
have been studied in various tumors, including non–small-cell lung cancer. However,
this study identified core genes that might be related to or regulated by the expression of
PDL1 in lung adenocarcinoma, which will assist in the further discovery of mechanisms
for designing novel immunotherapeutic options.

This study revealed the DEGs and different biological pathways between PDL1-positive
and PDL1-negative patients with lung adenocarcinoma, speculating that these two types
of patients might have different subtypes of lung adenocarcinoma. The identification
and verification of hub genes through integrated bioinformatic analysis revealed that they
related to immune response pathways and prognosis in patients with lung adenocarcinoma.
In particular, they had different mutations and were involved in different pathways in lung
adenocarcinoma.

CONCLUSIONS
PDL1-positive lung adenocarcinomaand PDL1-negative lung adenocarcinoma might be
different subtypes of lung adenocarcinoma. Potential hub genes might be involved in
PDL1 regulatory pathways, and further research is warranted to reveal new mechanisms
underlying the regulation of PDL1 expression. This could be of great significance for
precision immunotherapy for lung adenocarcinoma.
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