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ABSTRACT
Mapping of reads to reference sequences is an essential step in a wide range of
biological studies. The large size of datasets generated with next-generation sequencing
technologies motivates the development of fast mapping software. Here, I describe
URMAP, a new read mapping algorithm. URMAP is an order of magnitude faster than
BWA with comparable accuracy on several validation tests. On a Genome in a Bottle
(GIAB) variant calling test with 30× coverage 2×150 reads, URMAP achieves high
accuracy (precision 0.998, sensitivity 0.982 and F-measure 0.990) with the strelka2
caller. However, GIAB reference variants are shown to be biased against repetitive
regions which are difficult to map and may therefore pose an unrealistically easy
challenge to read mappers and variant callers.

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Next generation sequencing, Read mapping

INTRODUCTION
Background
Next-generation sequencing has enabled dramatic advances in fields ranging from human
functional genomics (Morozova & Marra, 2008) to microbial metagenomics (Gilbert &
Dupont, 2011). Data analysis in next-generation studies often requires mapping of reads to
a reference database such as a human genome, human exome, or a collection of full-length
microbial genomes. Mapping is a special case of sequence database search where the query
sequence is short, database sequences are long, and sequence similarity is high. For a given
query sequence (read), the primary goal of mapping is to report the best match if possible,
otherwise to report that the best two or more alignments are sufficiently similar to each
other that the best match is ambiguous.

Prior work
Many mapping algorithms have been proposed. Representative examples include BWA (Li
& Durbin, 2009), Bowtie (Langmead et al., 2009), Bowtie2 (Langmead & Salzberg, 2012),
SOAP (Li et al., 2008), SOAP2 (Li et al., 2009b), Minimap2 (Li, 2018), FSVA (Liu, Wang
& Wang, 2016), SSAHA (Ning, Cox & Mullikin, 2001), Hisat2 (Kim et al., 2019) and SNAP
(Zaharia et al., 2011). Mappers utilizing the Burrows-Wheeler Transform (BWT) (Burrows
& Wheeler, 1994) are the current de facto standard, with BWA and Bowtie2 in particular
having more than 39,000 citations combined at the time of writing (Google Scholar
accessed 31st Dec 2019). When first utilized in read mapping, BWT had the important
advantage that it creates a compact index with size comparable to the reference database.
For the human genome, this is ∼3 GB, which is small enough to be stored in RAM with
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the commodity computers of that time. Currently, computers with 32 GB or more RAM
are readily available, which has raised the question of whether additional memory could
enable better mapping performance. In particular, the authors of SNAP claim (Zaharia et
al., 2011) that its use of a∼27 GB hash table index for the human genome gives both faster
speed and higher accuracy than BWA. FSVA also uses a hash table, reportedly (Liu, Wang
& Wang, 2016) achieving faster speed than BWT though with somewhat lower accuracy.

URMAP algorithm
URMAP uses a hash table index on k-mers, i.e., fixed-length words of length k, where k
= 24 is recommended for the human genome. The index is designed to keep information
relating to a given hashed word (slot ) close together in RAM to minimize memory cache
misses. Slots found exactly once in the reference (pins) are flagged. For a given query,
URMAP first searches for a pair of non-overlapping pins which are close together in the
reference (a brace, see Fig. 1). If a brace is found, an alignment is attempted and the search
terminates immediately if successful. Otherwise, a seed-and-extend strategy (Altschul et al.,
1990) is followed which prioritizes low-abundance slots.

Performance testing
Recent assessments of mapping accuracy, in particular those of SNAP and FSVA, have used
the wgsim program in the SAMtools package (Li et al., 2009a) to simulate reads of a human
genome. Mutation rates (more correctly, variation rates) of 0.1% were used in both cases,
with 0.09% single-nucleotide polymorphisms (SNPs) and 0.01% indels. The base call error
rate was set to 0.4% for testing FSVA and to various different values for testing SNAP.
Differences, i.e., base call errors, SNPs and indels, are introduced by wgsim with equal
probability for each type at each position, giving a Poisson distribution for inter-difference
spacing where closely-spaced SNPs and base call errors are rare. With a mutation rate of
0.1%, most reads of length 150nt simulated by wgsim have no mutation, and most reads
with mutations have exactly one single-base variant. In real human genomes, variants tend
to cluster, e.g., in non-coding regions (Altshuler et al., 2010;Montgomery et al., 2013). Thus,
average accuracy over all reads on a wgsim test gives little insight into mapper performance
on the more challenging, and often more biologically interesting, reads with multiple
differences compared to the reference. Ilumina base call errors also tend to cluster, for
example towards the end of a read (Minoche, Dohm & Himmelbauer, 2011), and in practice
there are therefore manymore reads withmultiple errors than a Poisson distribution would
predict.

Urbench performance test
In this work, I introduce Urbench, a new benchmark test using experimentally determined
variation from a well-characterized human genome. Simulated read sequences are
combinedwith quality scores from a recent 2×150 Illumina run. At each base, a substitution
error is introduced with the probability implied by its quality score, with the goal of
generating a more realistic distribution of base call errors compared to earlier benchmarks.
Mapping sensitivity and error rates are measured separately on reads which do, or do not,
contain variants. Systematic errors are identified where most reads of a given locus are

Edgar (2020), PeerJ, DOI 10.7717/peerj.9338 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.9338


Tally
bytes

32-bit
pointers

7-bit
pointers

Hash table

Pin flag

R1 R2

Brace

XReference

X

X

X

X XReads

X

Figure 1 Schematic of the URMAP algorithm.Words in the plus strand of the reference sequence are in-
dexed using a hash table with 5 bytes per row comprising a tally byte and a 32-bit pointer. Pins, i.e., words
with a hash value that is unique across both strands of the reference, are indicated by a reserved tally value
(pin flag). URMAP searches for a brace, i.e., a pair of pins close in the reference, one in the forward read
(R1) and one in the reverse read (R2). If a brace is found, it is almost certain to be the correct location.
Words found more than once in the reference are indexed using a linked list with forward pointers which
are stored in tally bytes if they fit into 7 bits, otherwise in the 32-bit pointer field. The first bit of the tally is
set if the row is in a list but not the head.

Full-size DOI: 10.7717/peerj.9338/fig-1

mapped to the same incorrect locus. Systematic errors are presumably more likely to cause
false-positive inferences in later analysis than errors spread over many incorrect positions.

METHODS
URMAP index
Hash table
The positions of words of length k in the plus strand of the reference are stored in a hash
table. A wordW is converted to an integer w (W ) ∈ [0 , 4k) in the usual way by considering
letters to be base-4 digits A= 0, C = 1, G= 2 and T = 3. The murmur64 hash function
(https://en.wikipedia.org/wiki/MurmurHash) is used to convert w to an integer (slot ) s ∈
[0 , H ) where H is the table size by s = murmur64(w (W )) mod H. For brevity, a word
with a given slot value will be referred to simply as a slot. To reduce collisions, the table
size H should be a prime number substantially larger than the reference; for the human
genome H = 5 ×109 + 29 is recommended. The table design is intended to minimize size
and optimize adjacency of data relating to a given slot with the goal of avoiding memory
cache misses.

Hash table row
Each hash table entry (row) is five bytes: one byte (the tally) containing a one-bit flag
and sometimes a 7-bit pointer to another row, and a four-byte value which is usually a
32-bit reference coordinate, or rarely a pointer to another row. Using 32-bit coordinates
limits the total reference sequence size to 232 = 4 GB; references up to 1024 GB could be
accommodated by using five pointer bytes.
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Pins
A pin is a slot found exactly once in the reference, considering both plus and minus strands.
This is an important special case because if a pin is found in a read it probably maps
correctly to the same pin in the reference, though it may also be a false positive due to
sequencing error or a genome variant. A pin is indicated by a reserved tally value. The term
’’pin’’ was chosen by analogy with a metal (or virtual) pin used to mark a location on a
paper (or online) geographical map.

Singletons
A singleton is a slot that is found exactly once in the plus strand of the reference and one or
more times in the minus strand. A singleton is also indicated by a reserved tally value. Note
that while the minus strand is not indexed, there is nevertheless an important distinction
between pins and singletons because the reverse-complement of a singleton occurs at least
once in the plus strand of the reference, while the reverse-complement of a pin does not
occur. Thus, while a pin found in a read implies only one candidate alignment to the plus
strand of the reference considering both strands of the query, a singleton implies at least
two candidates.

Linked lists
To store positions of a slot occurring more than once in the plus strand of the reference, a
linked list is stored in nearby empty rows. Where possible, 7 bits of the tally are a pointer
to the next row in the list, represented as the number of rows to skip. Overflows where
this number does not fit into 7 bits are handled by storing a pointer to the next row in
the 32-bit value instead of a reference coordinate. Overflows and list ends are indicated by
reserved tally values.

Over-abundant slots
Slots exceeding an abundance threshold are excluded from the index. This is a speed
optimization to avoid constructing a large number of candidate alignments. The loss in
sensitivity is small because abundant slots are usually found in repetitive sequence which
maps ambiguously unless there is distinctive sequence elsewhere in the read, and unique
reference sequence of length ≥k necessarily contains a pin. By default, the abundance
threshold t is set to 32. A slot that occurs more than t times on either reference strand
is excluded. The minus strand is also considered in order to exclude cases where a repeat
occurs with high abundance on the minus strand but low abundance (in particular, only
once) on the plus strand. If a slot in such a repeat were indexed, this would tend to lead to
an over-estimate of the probability that one of its plus strand alignments is correct because
high-scoring secondary alignments to the minus strand would not be discovered.

Absent slots
A slot that does not occur in the reference, or is not indexed because it is over-abundant,
is absent, as opposed to a slot which is present in the index. An absent slot may appear in a
read, and the index must therefore indicate that the corresponding row does not contain
a reference coordinate for that slot. This is accomplished by the first bit of the tally, which
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is set to one for present slots and zero for absent slots. The reserved tally values for pins
and singletons have the first bit set to one to indicate that these slots are present, and the
reserved values for 7-bit pointer overflows and the end of a linked list start with a zero bit
because these slots were found to be absent and the corresponding rows were therefore
available for use in a list. Linked list pointers in tally bytes are limited to 7 bits to ensure
that the first bit is zero.

Collisions
A hash table collision occurs when two different reference words have the same slot value.
A collision between the query and index occurs when a word in the read is different from a
word in the index and has the same slot value. Collisions are not represented in the index
or explicitly checked during search. This strategy saves index space without compromising
search time because in the rare cases where a collided slot is aligned, the alignment will be
abandoned quickly due to excessive mismatches in the flanking reference sequence. When
aligning, it is faster to check the flanking sequence first than to verify that the seed matches
because in the typical (non-collision) case the seed always matches while flanking sequence
often does not.

Word length
Increasing k increases the frequency of pins in the reference and also increases the number
of words per query that are changed by a difference and hence the probability that a read
does not contain a pin, or any indexed slot, due to read errors and variants. The choice
of k is thus a compromise between speed and sensitivity. With the human genome, k
= 24 is recommended because of the ∼3G 24-mer slots, ∼0.9G (30%) are pins, and on
average a reference segment of length 150nt contains 38 pins. A query sequence with <7
single-base differences is guaranteed to have at least one 24-mer match, noting that 7
differences eliminate all 24-mer matches only in the tiny fraction of possible distributions
where they are maximally disruptive, and reads with ≥7 differences will often have at least
one preserved 24-mer.

URMAP search algorithm
Query word search order
With 24-mers, query words in a read of length 150 are processed at intervals (strides)
of length 29 using modulo 127 to keep the position within the read (because there are
127 24-mers in a read of length 150). For example, the first three words processed are at
positions 0, 29 and 58. At a given position, both strands are considered, so for example the
words at the first position (zero) in both plus and minus strands are both processed before
moving on to the plus and minus words at position 29. The stride value 29 is chosen to be
relatively prime with 24, which ensures that the following loop will visit each query word
exactly once:

for (int j = 0; j <127; ++j) { QueryWordPosition = (29*j)%127; /* ... */ }.
The simple form of this loop without conditional branches may enable loop unrolling or

vector parallelization by the compiler, and regardless is designed to be efficiently executed
on modern processors. In general, given the word length k, the stride is identified as the
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smallest prime number with value ≥k +5. The use of a stride >k is motivated by the
observation that neighboring words are not independent. If a query word is not a pin, fails
to align, or is not indexed, this is likely to be because the word is in a repetitive region
or variant, or contains a sequencing error. The immediately following words are likely to
have the same problem, and the chances of finding good alignments early in the search are
improved by skipping ahead.

First pass: brace search
In its first pass through the query words, URMAP seeks a pair of pins that are close together
in the reference. As noted in the Introduction, such a pair is called a brace (Fig. 1). This
term was chosen because the noun ’’brace’’ has two relevant meanings: two of a kind,
and a device that connects, fastens or stabilizes. With paired reads, one pin is sought
in the forward read (R1) and the other in the reverse read (R2). While a pin may be a
false positive due to sequencing error or a variant, a brace is almost certain to be a true
positive match. If a brace is found and is aligned successfully (is a good brace), the search
terminates immediately. Previous readmapping algorithms do not terminate when the first
high-scoring alignment is found, even if it has nomismatches, because equally high-scoring
alignments may exist elsewhere in the reference. By contrast, when a good brace is found
the likelihood that a different position is correct is vanishingly small. Noting that a typical
read contains several pins, and most pins are true positives, the search for a good brace
in a read pair proceeds as follows, with the goal of minimizing the number of hash table
accesses and attempted alignments in typical cases. The first pins in both reads (the forward
and reverse read, known as R1 and R2 respectively) are identified. If this pair is not a good
brace, the next pin is identified in R1, giving a new potential brace, then the next pin in R2,
and so on. This process continues until a good brace is found or all words in both reads
have been processed. Almost all pin pairs which are not braces can be

Identified as such because they are too far apart in the reference, which requires only
the coordinates in their hash table rows. It is very rare for non-overlapping false positive
pins to appear close in the reference, and therefore brace tests almost never fail in the
more expensive alignment stage. Since most human 2×150 read pairs contain a correct
brace, the brace search pass identifies the correct reference coordinate for most reads with
remarkable efficiency.

Second pass: low-abundance slot search
If no brace is found, the hash table row for each query word has been accessed exactly
once. Each row access almost certainly triggers a memory cache miss because of the large
size of the hash table (∼25 GB for the human genome). To accelerate access to these
rows in subsequent passes, the first pass copies them to a small (few kB) per-thread
buffer (PTB). Other data which may be used repeatedly, such as query slot values and the
reverse-complemented query sequence, is also stored in the PTB, which is designed to be
compact and contiguous to maximize the chance that it will be available in a fast memory
cache. The second pass attempts to align all non-pin slots with abundance ≤2. Most of the
index data needed for this task is already present in the PTB, though some additional rows
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may be required for slots with abundance two. If a high-scoring alignment is found in the
second pass, the search terminates.

Third pass: high-abundance slot search
In the rare case that no high scoring alignment is found in the first two passes, alignments
are attempted for the remaining slots.

HSP construction
Following BLAST (Altschul et al., 1990) and many subsequent algorithms, URMAP
constructs ungapped alignments using a seed-and-extend strategy. The seed is an indexed
slot found in the query, which implies an alignment of length k. The seed is extended into
flanking sequence using gapless x-drop alignment which stops if the score falls more than
x below the maximum so far observed (x is a heuristic parameter). If the score exceeds
a threshold, the alignment is designated a high-scoring segment pair (HSP) and stored,
otherwise the reference location is added to a list of failed extensions. The lists of HSPs and
failed locations are consulted before extending to prevent redundant attempts to align the
same reference location. If the HSP covers the entire query sequence, then the alignment
is considered successful.

Gapped alignments
In the human genome, indel variants are rare (Altshuler et al., 2010), and Illumina indel
errors are very rare (Schirmer et al., 2015), and therefore a large majority of correct
alignments of human reads are expected to be gapless. Computing an ungapped alignment is
much faster than a gapped alignment, and URMAP therefore constructs gapped alignments
only if no HSP covers the query. Gapped alignments are constructed by extending the top
few HSPs into semi-global alignments using a variant of the Viterbi algorithm (Viterbi,
2006) where the alignment is constrained to include the HSP and the terminal regions are
banded, greatly reducing the number of dynamic programming matrix cells which must
be computed. Here, semi-global means that the entire query sequence must be included
but not the entire reference.

MAPQ calculation
MAPQ is an integer value representing the estimated probability Perror that the reference
coordinate of the top-scoring alignment is wrong,

Perror = 10−MAPQ/10.
Let T be the score of the first alignment in order of decreasing score, and S ≤ T be the

score of the second alignment. If only one alignment is found, S is set to T /2 as a prior
estimate of the second-best score rather than zero because the URMAP search algorithm
may terminate early if a high-scoring alignment is found. The first alignment is likely to
be correct (Perror is small) if T �S, and conversely Perror is at least ∼0.5 if T ≈S (because
if exactly two alignments X and Y have equal scores, there is a 1/2 chance that X is wrong;
2/3 chance if there are three, and so on). Thus MAPQ should increase monotonically with
T - S. Also, MAPQ should decrease monotonically with decreasing T because alignments
with more differences are less likely to be correct. The best possible alignment score is the
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query sequence length |Q| because identities contribute 1 to the score, and the ratio T /|Q|
therefore ranges from one to zero as the top alignment score ranges from best possible to
worst possible. This ratio is a natural choice to down-weight T - S, and a simple formula
with the desired properties is MAPQ = (T- S) T /|Q|. Empirically, using (T /|Q|)2 rather
than T /|Q| was found to give a more accurate estimate, and URMAP therefore uses

MAPQ = (T - S) (T /|Q|)2.
I am aware of no justification for this formula beyond its empirical success and the

intuitive considerations above. However, the simplicity of this formula and its lack of
tuned parameters (except perhaps the power of T/ |Q|) suggest that this or a similar result
may be derivable from more rigorous theoretical considerations.

URMAPv algorithm
Some applications are more tolerant of mapping errors than variant calling, for example
nucleosome position inference in cell-free DNA (Snyder et al., 2016). With this in mind,
I sought a set of parameters for URMAP giving faster execution time while maintaining
useful accuracy. Themost important speed optimization is reducing themaximum indexed
slot abundance t from 32 to 3. Other optimizations include tweaks to heuristic parameters
which trigger early termination of various search stages, such as the x in x-drop. Here
this algorithm is called URMAPv; it is invoked by the -veryfast command-line option. In
practice, the execution time of URMAPv is often dominated by file i/o, and thus represents
a point of diminishing returns in speed optimization for mapping.

Tested methods
The following methods were tested: BWA v0.7.17-r1188, Bowtie2 v2.3.4.1, SNAP
v1.0beta.24, FSVA GitHub commit 8cec132 (dated Jul 29, 2016), Minimap2 v2.17-r94,
Hisat2 2.1.0 and URMAP v1.0.1300. This is a somewhat arbitrary selection from the many
published methods designed include the most popular software (BWA and Bowtie2)
together with potentially competitive recently-published methods. The beta version of
SNAP was used because the release binaries failed on some tests.

Urbench benchmark
I implemented a benchmark, Urbench, which models mapping of shotgun 2×150 Illumina
reads, i.e., the current de facto standard, to the human reference genome. Variants and
sequencing error were introduced based on experimental results rather than by simulating
Poisson distributions as in previous benchmarks.

Reference sequence
Genome Reference Consortium Human genome build 38 (GRCh38) (Church et al., 2011)
was used as the reference sequence.

Variant genome
I chose to use NA12878, a well-studied human genome from the PlatinumGenomes project
(Eberle et al., 2017). Simulated variants were selected from variants in NA12878 identified
by barcoded long-molecule sequencing (Zhang et al., 2019). Many of these variants are
phased, i.e., assigned to a parental chromosome, over regions of tens to hundreds of kb.
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Unphased variants were randomly assigned to a parental chromosome.While these variants
may be less reliable than consensus predictions derived from a range of methods, I believe
that their distribution in the diploid genome is more realistic than a consensus because
long-molecule sequencing enables phasing and alsomapping to repetitive sequence which is
inaccessible to conventional short-read methods (see Unmappable Regions below). For the
Urbench test, false positives and incorrectly phased variants in NA12878 are unimportant
because a reference variant is present in the simulated genome regardless of whether it is
truly present in NA12878, while failing to introduce variants in repetitive regions would
result in an unrealistically easy test.

Simulated read pairs
Two source genome sequences were used to simulate reads: the reference genome GRCh38
and variant genome NA12878. Using the reference models a situation where the correct
sequence for each read is identical to the reference (i.e., does not contain a variant), which
is probably the case for most reads in practice. For each genome, 1M loci were selected.
For each locus, ten read pairs were simulated at random positions such that R1 or R2
contained the locus (Fig. 2). This enables systematic errors to be identified, i.e., cases where
the majority of reads for a given locus are assigned to the same incorrect reference segment.
With NA12878, each locus was the position of a variant so that all simulated read pairs
contains at least one variant. With GRCh38, loci were randomly selected positions.

Sequencing error
Simulated read sequences were combined with quality scores from run SRR9091899 in
the Sequence Read Archive (Leinonen, Sugawara & Shumway, 2011), which is a recent
(submitted 2019) 2×150 Illumina shotgun dataset. At each base, a substitution error was
introduced into the nucleotide sequence with the probability implied by its quality score.

Accuracy metrics
Per-read sensitivity Sr is defined as the fraction of reads which are mapped to the correct
coordinate with high confidence as reported by the mapper. Following the BWA paper,
high confidence was determined as MAPQ ≥10, corresponding to Perror ≤0.1. Per-read
error Er is defined as the fraction of reads with MAPQ ≥10 which are mapped to an
incorrect position. Per-locus sensitivity Sl is defined as the fraction of loci where at least
three reads have MAPQ ≥10 and the majority of these are mapped to the correct position.
Per-locus error rate El is defined as the fraction of loci with at least three reads having
MAPQ ≥10 where the majority of these are mapped to the same incorrect position. El is
interpreted as assessing systematic errors that are more likely to be harmful to downstream
analysis than randomly-distributed errors. These metrics are measured separately for reads
of the reference (ref ) and of the variant genome (var) giving a total of eight accuracy
metrics Srefr , Eref

r , Srefl , Eref
l , Svarr , Evar

r Svarl and Evar
l which are expressed as percentages.

Pairwise method comparison
To enable a compact summary comparison of the eight accuracy metrics for a pair of
methods X and Y, I defined the mean improvement of X over Y (MIXY ) as the mean of
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Figure 2 Design of the Urbench benchmark. For each locus L in a source genome (NA12878 or
GRCh38), ten simulated reads pairs are generated (five shown in figure) such that either R1 or R2 contains
the locus. This enables systematic errors to be identified where a majority of reads of a given locus are
mapped to the same incorrect location. With NA12878 a locus is the position of an experimentally
determined variant (SNP or indel) in one of the parental chromosomes, with GRCh38 a locus is a
randomly-chosen position. Base call substitution errors are introduced with probabilities given by quality
scores in sequencing run SRR9091899.

Full-size DOI: 10.7717/peerj.9338/fig-2

SX - SY - EX + EY over the four combinations of genome (ref or var) and read or locus
(r, l) and the improved metric count (IMXY ) of X vs. Y as the number out of the eight
metrics where X has a better value than Y (higher if sensitivity, lower if error rate). If
IMXY is 8, then all the metrics for X are better than Y, and X is unambiguously better than
Y by the Urbench test, denoted X>>Y. Conversely if IMXY is zero then all metrics for X
are worse, MIXY is negative, and X is worse than Y, denoted X<<Y. If six out of eight X
metrics are better; this is denoted by X>6Y, if five out of eight X metrics are worse, this
is written X<5Y. The magnitude of the improvement is indicated by MI and written in
parentheses, e.g., X<<(-1.2)Y or X>6(4.0)Y. The total improvement (TIX ) of method X
over the other tested methods is calculated as the total of MI over pairwise comparisons
with other methods.

Speed
The time required to map a given set of reads depends on the computer architecture (e.g.,
the processor type, number of cores, and sizes and speeds of L1 and L2 memory caches)
and overhead due to file input/output (i/o). Reads are typically provided in compressed
FASTQ format (fastq.gz extension), which requires potentially expensive decompression,
and output is typically written to large SAM (uncompressed) or BAM (compressed) files.
The overhead of file i/o (including decompression and/or compression, if applicable) can
be substantial for the faster mappers and varies widely with the computing environment.
With this in mind, I chose to measure speed using a method designed to isolate mapping
by reducing i/o overhead as much as possible, as follows. 10M reads were selected at
random from SRR9091899, giving a total of ∼2.4 GB compressed (∼6GB uncompressed)
FASTQ data (∼1.2 GB 3Gb each for R1 and R2). These files are small enough to be
cached in memory by the operating system, which minimizes i/o time on a computer with
sufficiently large RAM. Using a PC with a 16-core Intel i7-7820X CPU and 64 GB RAM
(more than twice the size of the largest genome index), I ran each mapper three times in
succession using from 12 to 20 threads, first with uncompressed then compressed reads,
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and selected the shortest time after subtracting the time required to load the genome index.
Speed is expressed as a multiple of the shortest time for BWA, i.e., the speed of BWA is
1.0 by definition. With this method, the measured relative speed of two mappers can be
interpreted as a limit on the ratio in practice which would be approached by the fastest
possible i/o.

Accuracy of MAPQ
The accuracy of MAPQ was assessed as follows. For each integer value (q) of MAPQ
reported by a mapper, the total number of reads nq and number of incorrectly mapped
reads nqerror were calculated, giving the measured error frequency f qerror = nqerror/nq and the
measured mapping quality at the reported quality q is then

qmeasured = −10 log10 (f
q
error ).

If the MAPQ values are accurate, then qmeasured should be ∼q for all reported values of
q, which was assessed by constructing a scatterplot of qmeasured against q.

Wgsim validation
For comparison with previous work, I implemented a simulated dataset using wgsim v1.7
with three reference genomes: Homo sapiens, Drosophila melanogaster and Arabidopsis
thaliana using GenBank (Benson et al., 2013) assemblies GRCh38, GCA_004798075.2 and
GCA_000835945.1 respectively. For each genome, 1M paired reads were simulated at each
of three different lengths: 150, 250 and 300 nt. Default parameters were used for wgsim: base
call error rate 0.02, mutation rate 0.001, indel fraction 0.15 and indel extension probability
0.3. The random number seed was fixed using the -S 1 option to enable reproduction of
the dataset. Accuracy was measured using the Sr and Er metrics as defined for Urbench.

Variant calling test
To validate that URMAP is compatible with variant calling, I implemented a test based
on Genome in a Bottle (GIAB) reference data (Krusche et al., 2019; Zook et al., 2014).
I used 30× coverage 2×150 HiSeq reads of sample HG002 (Ashkenazim son, reads
at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_
son/NIST_HiSeq_HG002_Homogeneity-10953946/HG002_HiSeq300x_fastq/140528_
D00360_0018_AH8VC6ADXX/Project_RM8391_RM8392 via Zook et al., 2016). To
call variants, I used bcftools in samtools v1.7 and strelka2 v2.9.10 (Kim et al., 2018).
Accuracy of variant calls was measured using the vcfeval command in rtg-tools v3.11
(Cleary et al., 2015), which reports the following metrics: number of true positives (TPs),
number of false positives (FPs), number of false negatives (FNs), precision, sensitivity
and F-measure. Evaluation was restricted to the high-confidence regions defined in
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_
son/latest/GRCh38/HG002_GRCh38_GIAB_highconf_CG-Illfb-IllsentieonHC-Ion-
10XsentieonHC-SOLIDgatkHC_CHROM1-22_v.3.3.2_highconf_noinconsistent.bed via
Zook et al. (2016).

Unmappable regions
I used the following procedure to identify and characterize regions in GRCh38 which
cannot be mapped by conventional paired-read sequencing. Paired reads of GRCh38 were
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simulated at 10× coverage with no variants or sequencing error, representing a best-case
scenario for mapping. For a given mapper, read length L and MAPQ threshold Q, a base in
GRCh38 was considered mappable if at least one read with MAPQ ≥Q covered the base,
otherwise the base was designated unmappable. Unmappable regions were identified as
contiguous segments of unmappable bases of length≥L containing <10 uncalled bases (i.e.,
Ns or other wildcard letters) per window of length L. The consensus of two ormoremappers
was obtained by intersecting their unmappable regions using bedtools v2.26 (Quinlan &
Hall, 2010). Unmappable regions were intersected with the GIAB high-confidence regions
in HG002 and the following repeat annotation tracks in the UCSC human genome browser
(Kent et al., 2002): genomicSuperDups, repeatMasker and simpleRepeats.

RESULTS
Speed and mapping accuracy on Urbench
Speed and accuracy onUrbench are shown in Figs. 3, 4 and 5 (underlying values reported in
Supplementary Tables 1 and 2). As with most benchmarks in biological sequence analysis,
results should be interpreted with caution because of the limitations of simulated data and
the many somewhat arbitrary decisions that must be made in designing the benchmark and
its performance metrics; other defensible designs would no doubt give somewhat different
method rankings and numerical values for sensitivity and error rates. With these caveats
in mind, some general trends can be observed. URMAP and URMAPv are the fastest
methods, with URMAP ∼10× faster than BWA and Bowtie and URMAPv ∼28× faster,
noting that in practice the speed improvement may be less due to file i/o overhead. Hisat2
(∼9×) and SNAP (∼8×) have similar speed to URMAP. All methods were faster with
uncompressed FASTQ, showing that the added time for decompression exceeds the time
saved by reading smaller files. Four methods, BWA, URMAP, SNAP and Bowtie2, stand
out as more accurate than the others (Minimap2, Hisat2, URMAPv and FSVA) because all
methods from the first group have at least 6 better metrics (shown as >6, >7 or >>in Fig. 5)
with a positive mean improvement compared to all methods in the second group with the
exception of SNAP >5(3.4) URMAPv. The four top methods (BWA, URMAP, SNAP and
Bowtie2) have similar accuracy, with no method having more than 6 out of 8 better (hence
3 or 4 worse) accuracy metrics than another, and all pairwise comparisons exhibit only
small mean improvements ranging from BWA >5(0.5) URMAP to BWA >5(2.0) Bowtie2.
Thus, the accuracy differences between BWA, URMAP, SNAP and Bowtie2 are small and
ambiguous, and I believe these differences are unlikely to be consequential in practice for
most applications.

MAPQ accuracy on Urbench
Figure 6 is a scatterplot of reported vs. measured MAPQ on Urbench. Hisat2 is not shown
because it generated only three distinct MAPQ values: MAPQ = 0 (measured MAPQ =
1.8), MAPQ = 1 (measured 2.0) and MAPQ = 60 (measured 18). Bowtie2 and URMAP
are close to the diagonal, showing reasonably good estimates of MAPQ though Bowtie2
tends to underestimate and URMAP tends to overestimate. The other tested methods have
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Figure 3 Speed on Urbench. Speed is measured relative to BWA with file i/o overhead minimized.
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Figure 4 Mapping accuracy on Urbench. Accuracy metrics are sensitivity and error rate with MAPQ
≥10, expressed as percentages.

Full-size DOI: 10.7717/peerj.9338/fig-4

much stronger tendencies to overestimate. For example, with MAPQ = 50, the measured
MAPQ for BWA is 15.7 and the measured MAPQ for SNAP is 5.6.
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TI BWA URMAP SNAP Bowtie2 Minimap2 Hisat2 URMAPv FSVA

BWA 18.9 >5(0.5) >6(0.6) >5(2.0) >6(3.4) >>(3.5) >6(4.0) >>(5.0)

URMAP 14.9 <5(-0.5) >4(0.1) >4(1.5) >6(2.9) >7(3.0) >>(3.5) >>(4.4)

SNAP 14.3 <6(-0.6) <4(-0.1) =4(1.4) >5(2.8) >>(3.0) >5(3.4) >>(4.4)

Bowtie2 3.0 <5(-2.0) <4(-1.5) =4(-1.4) >7(1.4) >6(1.5) >>(2.0) >7(3.0)

Minimap2 -8.1 <6(-3.4) <6(-2.9) <5(-2.8) <7(-1.4) >6(0.2) >6(0.6) >5(1.6)

Hisat2 -9.3 <<(-3.5) <7(-3.0) <<(-3.0) <6(-1.5) <6(-0.2) <5(0.5) >6(1.4)

URMAPv -13.2 <6(-4.0) <<(-3.5) <5(-3.4) <<(-2.0) <6(-0.6) >5(-0.5) >5(0.9)

FSVA -20.7 <<(-5.0) <<(-4.4) <<(-4.4) <7(-3.0) <5(-1.6) <6(-1.4) <5(-0.9)

Figure 5 Pair-wise method comparisons on Urbench.Methods are sorted by decreasing total improve-
ment (TI) (see Methods). Cells are colored according to mean improvement. A pairwise comparison of
the method in row X vs. the method in column Y is given using the notation described in Methods; e.g.,
BWA >5(2.0) Bowtie2 means that BWA has five of eight metrics that are better than Bowtie2 with a mean
improvement of 2.0. The symbols >> and << indicate that all metrics are better or worse, respectively,
e.g., URMAP >>(4.4) FSVA means that URMAP is better than FSVA by all metrics with a mean improve-
ment of 4.4.

Full-size DOI: 10.7717/peerj.9338/fig-5

Table 1 Accuracy on GIAB variant calling test. Accuracy metrics according to the rtg vcfeval command
when variants are called by strelka2 (top) and bcfeval (bottom). Bowtie2 + strelka2 exhibits anomalously
poor performance. FSVA failed with a segfault on this test.

+Strelka2 TP FP FN Precision Sensitivity F-measure

Bowtie2 2.081M 0.052M 1.425M 0.975 0.594 0.738
BWA 3.475M 0.012M 0.031M 0.997 0.991 0.994
Hisat2 3.421M 0.017M 0.084M 0.995 0.976 0.985
Minimap2 3.454M 0.011M 0.052M 0.997 0.985 0.991
SNAP 3.466M 0.012M 0.040M 0.997 0.989 0.993
URMAP 3.442M 0.008M 0.064M 0.998 0.982 0.990
URMAPv 3.339M 0.001M 0.167M 0.997 0.953 0.974

+Bcftools TP FP FN Precision Sensitivity F-measure

Bowtie2 2.840M 0.191M 0.665M 0.937 0.810 0.869
BWA 3.306M 0.103M 0.199M 0.970 0.943 0.956
Hisat2 3.229M 0.084M 0.277M 0.975 0.921 0.947
Minimap2 3.286M 0.076M 0.219M 0.977 0.938 0.957
SNAP 3.271M 0.098M 0.234M 0.971 0.933 0.952
URMAP 3.334M 0.098M 0.172M 0.972 0.951 0.961
URMAPv 3.21M 0.080M 0.381M 0.800 0.894 0.844

Mapping accuracy on wgsim test
Figure 7 shows accuracy results on the wgsim test (underlying values in Table S1). Most
methods exhibit similar or improved accuracy as read length (L) increases, with the
exception of Hisat2 which has substantially lower sensitivity at L= 250 and L= 300.
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Table 2 Re-scaledMAPQ results. Accuracy metrics of variants called by strelka2 and bcftools respec-
tively given Bowtie2 alignments of chr20 when MAPQ values are multiplied by the factor shown in the
first column. Note that accuracy metrics are sensitive to MAPQ scaling.

strelka2 bcftools
MAPQ Precision Sensitivity F-measure Precision Sensitivity F-measure

x 0.5 0.973 0.360 0.525 0.944 0.646 0.767
x 0.8 0.974 0.530 0.687 0.937 0.785 0.854
x 1.0 0.972 0.573 0.721 0.920 0.792 0.851
x 1.2 0.973 0.588 0.733 0.903 0.795 0.846
x 1.5 0.966 0.730 0.832 0.966 0.731 0.832
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Figure 6 Scatterplot of reportedMAPQ vs. measuredMAPQ. For each integer value of MAPQ, the
measured MAPQ is determined by the frequency of incorrectly mapped reads in the Urbench benchmark.
Hisat2 is not shown because it reports only three distinct MAPQ values (see main text).

Full-size DOI: 10.7717/peerj.9338/fig-6

GIAB variant calling test
Results on the variant calling test are shown in Table 1. With strelka2, accuracy of all
methods is high (all metrics > 0.97) except for Bowtie2 which has much lower sensitivity
(0.59) and F-measure (0.74). Lower accuracies are observed with bcftools, except for
Bowtie2 which has higher sensitivity (0.81) and F-measure (0.87). To investigate this, I
called variants using modified Bowtie2 SAM files where the MAPQ values were multiplied
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Figure 7 Mapping accuracy on wgsim test. Accuracy metrics are sensitivity and error rate with MAPQ
≥10, expressed as percentages. Tests were performed with three simulated read lengths: (A) 150, (B) 250
and (C) 300, respectively.

Full-size DOI: 10.7717/peerj.9338/fig-7

by constant factors 0.5, 0.8, 1.0, 1.2 and 1.5, respectively. To reduce computational cost, I
used only SAM records for chr20. Results are shown in Table 2, which show strong variation
with the MAPQ scaling factor especially with strelka2. The number of reads mapped by
each method on the GIAB test is given in Table S4.

Unmappable regions
I measured unmappable regions with read length L= 150 to determine a consensus of
BWA, Bowtie2 and URMAP. The MAPQ threshold was set to 3 (error probability ≥0.5),
which presumably would be considered not reliably mapped in a downstream analysis.
As shown in Fig. 8, there is high agreement between the three mappers. A total of 51M
bases are not mappable by at least one mapper; 97% of which (49.6M bases, collectively
designated UnmapQ3) are not mappable by any of these mappers. With MAPQ ≤10,
the consensus increases by only a small amount to 50.8M bases and with MAPQ ≤1
(error probability ≥ 0.8) the consensus decreases marginally to 49.5M. These results
show that identification of unmappable regions is robust against choices of mapper and
MAPQ threshold. Intersecting UnmapQ3 with UCSC browser tracks gave the following
numbers of bases: genomicSuperDup (high-identity long segmental duplications) 20.M,
repeatMasker 36.9M, simpleRepeats 25.8M and all three tracks combined 47.7M. Thus,
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Figure 8 Mapper agreement on unmappable regions in the human reference genome.Venn diagram
showing agreement of BWA, Bowtie2 and URMAP on unmappable regions with 2×150 reads of GRCh38
with MAPQ ≤3. These mappers agree that 49.6M bases (intersection of the three regions) are not map-
pable.
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as might be expected, unmappable regions are mostly comprised of well-known repeats.
There are 747 high-confidence GIAB HG002 variants in UnmapQ3, corresponding to a
frequency of 1.5×10−5 variants per base, or equivalently one variant every 66kb on average
when the diploid genome is mapped onto the reference. By contrast, the frequency in the
rest of the genome (i.e., regions which are mappable by 2×150 reads) is 0.0015 or one
variant every 650 bases.

DISCUSSION
GIAB variant call accuracy as a benchmark of mapping accuracy
Tables 1 and 2 show that the accuracy of variant calls on a GIAB with a single variant
caller is not a robust test of mapping accuracy. The accuracy of a variant calling pipeline
varies with the choice of caller in addition to the mapper, as might be expected, and
also that there are dependencies between the variant caller and mapper such a given
pair may have low accuracy together (e.g., Bowtie2 + strelka2) while each has higher
accuracy in a different pipeline (e.g., Bowtie2 + bcftools and BWA + strelka2). With both
strelka2 and bcftools, accuracy with Bowtie2 is substantially lower than the other tested
methods, which is inconsistent with the good performance of Bowtie2 on Urbench and the
wgsim test. Bowtie2 differs from all other tested methods by over-estimating rather than
underestimating MAPQ (Fig. 6), suggesting that variant callers, especially strelka2, may be
sensitive to MAPQ bias.
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GIAB bias against regions which are challenging to mappers
The density of reference variants in unmappable regions is 100× lower than the genome
average, showing that the GIAB high-confidence variants are strongly biased against
repetitive regions which have ambiguous alignments to conventional 2×150 reads. The
GIAB high-confidence regions for HG002 cover 2.5 Gb, i.e., exclude 27% of the genome,
suggesting that theremay be extensive bias against repetitive regions which aremappable by
the conservative definition used here but nevertheless challenging for short-read mapping.

Number of aligned reads as a test of mapping accuracy
If mappers are compared by the number of aligner reads, a larger number does not
necessarily indicate better performance because there could be more errors. In practice,
there is usually little difference between a read which is not mapped and a read which is
mapped with very low MAPQ, e.g., MAPQ = 0 corresponds to Perror=1 and MAPQ = 1 to
Perror = 0.8, so alignments withMAPQ≤1 should be ignored bymost downstream analysis.
Alignments with higher MAPQ are more relevant, but mappers have widely varyingMAPQ
biases (Fig. 6) such that MAPQ values and thresholds are not directly comparable between
different mappers.

CONCLUSIONS
URMAP is an order of magnitude faster than BWA while achieving comparable accuracy.
A speed-optimized variant of the algorithm is >25× faster than BWA with accuracy that
is slightly lower but nevertheless likely to be useful in applications where the best possible
accuracy is not required and/or computational cost is a limiting factor. On a GIAB variant
calling test with 30× coverage 2×150 reads, URMAP achieves high accuracy (precision
0.998, sensitivity 0.982 and F-measure 0.990) with the strelka2 caller. However, GIAB
reference variants are shown to be biased against repetitive regions which are difficult to
map and may therefore pose an unrealistically easy challenge to read mappers and variant
callers.
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