Marsupial and monotreme milk - A review of its nutrient and immune properties (#46829)

First submission

Guidance from your Editor

Please submit by 1 May 2020 for the benefit of the authors (and your \$200 publishing discount).

Literature Review article

This is a Literature Review article, so the review criteria are slightly different. Please write your review using the criteria outlined on the 'Structure and Criteria' page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

2 Figure file(s)

1 Other file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. STUDY DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Is the review of broad and cross-disciplinary interest and within the scope of the journal?
- Has the field been reviewed recently? If so, is there a good reason for this review (different point of view, accessible to a different audience, etc.)?
- Does the Introduction adequately introduce the subject and make it clear who the audience is/what the motivation is?

STUDY DESIGN

- Article content is within the <u>Aims and Scope</u> of the journal.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.
- Is the Survey Methodology consistent with a comprehensive, unbiased coverage of the subject? If not, what is missing?
- Are sources adequately cited? Quoted or paraphrased as appropriate?
- Is the review organized logically into coherent paragraphs/subsections?

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.

Negative/inconclusive results accepted.

Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

Speculation is welcome, but should be identified as such.

Is there a well developed and supported argument that meets the goals set out in the Introduction?

Conclusions are well stated, linked to original research question & limited to supporting results.

Does the Conclusion identify unresolved questions / gaps / future directions?

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Marsupial and monotreme milk - A review of its nutrient and immune properties

Hayley J. Stannard 1, Robert D. Miller 2, Julie M. Old Corresp. 3

Corresponding Author: Julie M. Old Email address: j.old@westernsydney.edu.au

All mammals are characterized by the ability of females to produce milk. Marsupial (metatherian) and monotreme (prototherian) young are born in a highly altricial state and rely on their mother's milk for the first part of their life. Here we review the role and importance of milk in marsupial and monotreme development. Milk is the primary source of sustenance for young marsupials and monotremes and varies in composition dependent on the stage of development. We applied nutritional geometry techniques to a limited number of species with values available to analyze changes in macronutrient composition of milk at different stages. Macronutrient energy composition of marsupial milk varies between species and changes concentration during the course of lactation. As well as nourishment, marsupial and monotreme milk supplies growth and immune factors. Neonates are unable to mount a specific immune response shortly after birth and therefore rely on immunoglobulins, immunological cells and other immunologically important molecules transferred through milk. Milk is also essential to the development of the maternal-young bond and is achieved through feedback systems and odor preferences in eutherian mammals, however we have much to learn about the role of milk in marsupial and monotreme mother-young bonding. Further research is particularly warranted in gaining a better understanding of the role of milk as a source of nutrition, and developmental factors $_{\overline{\lambda}}$ including immunity, in a broader range of marsupial species, and monotremes.

 $^{^{}m 1}$ School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia

² Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States

³ School of Science, University of Western Sydney, Penrith, NSW, Australia

1	Marsupial and monotreme milk - A review of its nutrient and immune properties
2	
3	Hayley J. Stannard ^a , Robert D. Miller ^b and Julie M. Old ^{c*}
4	
5	^a Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW 2678,
6	Australia. ORCID: 0000-0002-6657-5435
7	^b Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New
8	Mexico Albuquerque, New Mexico, USA
9	^c School of Science, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW
10	2751, Australia. ORCID: 0000-0002-2754-7757
11	
12	*Corresponding Author
13	School of Science, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW
14	2751, Australia.
15	Email: j.old@westernsydney.edu.au

16 Abs

All mammals are characterized by the ability of females to produce milk. Marsupial (metatherian) and
monotreme (prototherian) young are born in a highly altricial state and rely on their mother's milk for the
first part of their life. Here we review the role and importance of milk in marsupial and monotreme
development. Milk is the primary source of sustenance for young marsupials and monotremes and varies
in composition dependent on the stage of development. We applied nutritional geometry techniques to a
limited number of species with values available to analyze changes in macronutrient composition of milk
at different stages. Macronutrient energy composition of marsupial milk varies between species and
changes concentration during the course of lactation. As well as nourishment, marsupial and monotreme
milk supplies growth and immune factors. Neonates are unable to mount a specific immune response
shortly after birth and therefore rely on immunoglobulins, immunological cells and other
immunologically important molecules transferred through milk. Milk is also essential to the development
of the maternal-young bond and is achieved through feedback systems and odor preferences in eutherian
mammals, however we have much to learn about the role of milk in marsupial and monotreme mother-
young bonding. Further research is particularly warranted in gaining a better understanding of the role of
milk as a source of nutrition and developmental factors, including immunity, in a broader range of
marsupial species, and monotremes.

Keywords: nutritional geometry, mammary gland, macronutrient, immunoglobulin, lactation

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

1. Introduction

Mammals evolved approximately 200 million years ago (1) and today comprise three groups prototherians, metatherians and eutherians. Monotremes (prototherians) diverged from marsupials (metatherians) and eutherians approximately 166 million years ago (2), and marsupials and eutherians separated around 130 million years ago (3-5). Monotremes lay eggs and their young hatch in a highly altricial state. Marsupials, however, give birth to live young in a highly altricial state and most of their development is completed after birth, whilst eutherians give birth to young varying from altricial to precocial. When compared to eutherians, newborn marsupials have been described as similar to a gestationally eight week human fetus (6), hence much of the development of marsupials occurs in the external environment. Thus, when comparing the development of marsupials and eutherians, the time of 'pouch emergence' of marsupial young is often regarded as similar to the time of birth in eutherians. However, despite these differences in developmental stages at birth, all three groups of mammals are characterized by the ability of the female of the species to produce milk. Milk supplies growth factors and immunological components to young mammals via the mammary glands and is the sole form of sustenance for newborn mammalian young immediately after birth or hatching. Mammalian young rely on their mother to provide all the nutrients for their initial growth and development. As mammals are diverse in their characteristics, size and habitats that they live in, milk composition varies markedly depending on the needs of the young. This paper specifically reviews the crucial role of milk in young marsupial (metatherian) and monotreme (prototherian) development with a focus on both nutrition and immunology. Furthermore, we highlight other largely neglected areas of research where milk is essential to development such as its role in maternal-young bonding and where further research is required. This review will be of particular interest to those conducting research in mammalogy, nutritional geometry, immunology, mammary gland biology and lactation.

59

60

58

2. Survey Methodology

Scientific journal articles were sourced for this review by conducting searches using the GoogleScholar® and Web of Science® databases. The search strategy used the combined terms "milk and monotreme" or "milk and marsupial". We screened and filtered the articles, limiting those with relevant titles and written in English. We identified further relevant articles referenced in the articles found. Generally, we included articles written no more than 30 years ago, although some earlier articles were incorporated due to their importance in this review to provide further clarity and enhancement of the review.

3. Mammary glands and pouches

Mammary glands are specialized accessory glands of the skin (7) and are similar to sweat glands in their secretory process, having evolved from apocrine skin glands (8). Mammary glands evolved prior to the radiation of today's extant mammals (reviewed in Lefèvre, Sharp (8), (9)), around 166-240 million years ago when the first mammals arose (4).

Both eutherians and marsupials have nipples or teats to aid transfer of milk to the young, whilst echidnas (*Tachyglossus* sp. and *Zaglossus* spp.) and the platypus (*Ornithorhynchus anatinus*) have the ducts of a single mammary gland opening directly onto the areola in association with a hair follicle, and young monotremes (puggles) suckle milk from the pores of these milk patches (10). The size and shape of mammary glands differs between species. The number of mammary glands, although usually occurring in pairs (11), differs between species. Among marsupials, there is generally an inverse relationship between body size of the female and the number of teats, with small species such as phascogales and bandicoots having eight teats (12), and larger species such as wombats and koalas having two, and macropods having four (13). The gray short-tailed opossum (*Monodelphis domestica*) is an extreme example having 13 mammary glands (13).

The position of mammary glands (and teats) also varies. In marsupials with pouches, such as red kangaroos (*Macropus rufus*), the teats are located within a pit on the dorsal surface of the pouch, and each

teat has a separate mammary gland (14). In marsupials the number of mammary glands, hence the number of teats, also determines the maximum litter size as marsupial young permanently attach to the maternal teat shortly after birth. The mammary gland subsequently grows correspondingly in size with the growth of the pouch young, as does the teat, in length (14). The number of teats for each species represents the maximum number of young that can be sustained for each litter. Thus in some dasyurid marsupials the transit to the maternal teat and attachment can lead to a fight for survival, as some marsupials give birth to supernumerary young (15-17), and more young are born than there are teats.

The mammary gland tissue consists primarily of glandular tissue with alveoli and ducts amongst a stroma of adipose and connective tissue (Cowper's ligaments) (18). While marsupials lack the suspensory ligaments associated with eutherians (7), the ilio-marsupialis muscle of the marsupial mammary glands and teats enable the mother to draw their young close to the body, in a similar manner to the cremaster muscle in males that draws the testes closer to the body (19). Male South American water opossums or yapok (*Chironectes minimus*), an aquatic marsupial, have a pouch that is used as a watertight compartment where they house the scrotum (20), and was likely similar to that of the now extinct Tasmanian tiger (*Thylacinus cynocephalus*) that had a backward facing pouch to also enclose their scrotum (21). Woolley, Patterson (22) has also suggested in the later stages of lactation that the ilio marsupialis muscles could be used to shake off the suckling young.

There is increasing evidence of the role of cells associated with the immune system in the normal development and function of marsupial mammary tissue. T cells infiltrate the mammary tissue early in during the first post-natal week in the gray short-tailed opossum and transcriptome analyses are consistent with the majority being $\gamma\delta$ T cells (23). What role these $\gamma\delta$ T cells are playing in mammary protection or the protection of the suckling young is not known. Also noteworthy is the appearance of eosinophils early in the postnatal period when the mammary tissue is undergoing significant remodeling in the opossum. The presence of eosinophils correlates with local expression of the cytokine Interleukin-16, a known

chemotactic factor for eosinophils (24). It has been speculated that in eutherians eosinophils play a role in mammary remodeling, whether the same is true in marsupials is unknown, but this appears to be an ancient conserved feature in mammals.

4. Odor identification and communication between mother and young

Although nipples and teats in marsupials and eutherians provide a delivery mechanism for milk to young mammals, they also provide a sensory attractant, including touch, olfaction and taste, for young mammals to locate milk. The same is true for milk patches in monotremes. The suckling in marsupials and eutherians by the young in turn induces oxytocin release in the mother, inducing milk letdown and maintenance (25), as well as inducing maternal behaviors (26).

Olfaction is not only essential for newborn mammals to locate the maternal nipple and feed, but also important in kin recognition and maternal-young bonding. In rabbits (*Oryctolagus cuniculus*) the mammary pheromone has been shown to influence sucking performance and hence milk intake in newborn kittens (27). Mammary pheromone is secreted by the nipples of lactating rabbits, however the precise source is unknown (28). It may be produced by the skin glands at the tip of the nipple and dissolved in milk, secretions of sebaceous and apocrine glands within the nipple dermis secreted into the galactophorous ducts, or compounds produced or changed by microflora in the galactophorous ducts (28). The olfactory systems of marsupials and monotremes are still immature at birth/hatching, however given their developmental stage it is likely young can use olfactory cues to find their way to their mother's milk (29). Behavioral testing by Schneider, Fletcher (30), for example, have shown that neonate tammar wallabies (*Notamacropus eugenii*) use olfactory cues to locate their mother's odor. Nishitani, Miyamura (31) also found human young show reduced pain responses when exposed to the odor of their mother's milk, but a reduction in pain response whilst suckling is yet to be investigated in marsupials or monotremes. Therefore, although no studies have been conducted on the odors produced by the marsupial

teat (and pouch), odors likely aid the newborn marsupial to locate the teat and attach, as well as aid development of the young-mother bond.

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

138

139

5. Nutrient composition of milk

The ability to produce milk varying in composition at the same time is called asynchronous concurrent lactation (32). Some marsupials, such as the tammar wallaby, are able to produce milk with varying compositions at the same time, whereby one mammary gland supplies a newborn permanently attached to one teat, whilst a second mammary gland supplies milk with a different composition to an older young at foot. Similarly, the red kangaroo can produce two different kinds of milk, depending on the age of the young (14). One gland can produce a fluid rich in protein for a neonate and the other "mature" milk for a young at foot (14). Asynchronous concurrent lactation is possible due to changes in the extracellular matrix composition of the mammary gland, and these changes subsequently regulate milk protein expression (33). In marsupials, milk composition and yield also vary with sex of the young (34, 35). Both tammar wallabies and eastern grey kangaroos allocate more protein to sons than to daughters (34, 35). Milk consists of milk solids (made up of proteins, lipids, carbohydrates and minerals) and water. Throughout lactation pronounced changes occur to the nutrient composition which is a characteristic of marsupial milk and makes it different to that of eutherian milk (36, 37). In monotremes, while there is very limited information available, it likewise appears that their milk composition also changes over time (38-40).Depending on the species, differences in milk composition produced at different times occur during early, mid and late lactation, but can also be referred to as different phases or stages, and hence it is difficult to make comparisons between species when discussing these different phases/stages/time of lactation because the definitions can vary widely between species, and even in the literature for the same species.

Therefore, throughout this paper where possible we refer to the phase/stage/time of lactation for the

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

species we are discussing as defined in the literature for that species. For example, early lactation (sometimes referred to as Phase 2) consists of the milk produced from birth until the end of fixation, where young are no longer permanently attached to the teat (41). In some species, such as the tammar wallaby, phase 2 can also be separated into 2A and 2B. Phase 2A represents the period where the young remains permanently attached to the teat, and 2B represents the stage whereby the young start to intermittently detach (42). Late lactation (Phase 3) begins when the milk becomes similar to that of eutherian milk, and the young is no longer permanently attached to the teat (43), and includes the time of permanent pouch exit, and when the young starts to eat solid foods (41), but the timing of teat detachment, or end of fixation or fixed period of lactation, and pouch exit differs greatly and is not consistently defined for each species. In addition, the timing of the lactation phases differs for each species, for example phase 2A is 0-125 days in the tammar wallaby and 0-70 days in the quokka (Setonix brachyurus) (36, 44). Early lactation protein, whey acidic protein and late lactation proteins are expressed exclusively during early, mid and late lactation and also act as markers for the different phases (45), but has not been studied in all species, and hence may differ among different species. For these complex reasons, we will refer to early, mid and late lactation loosely, and not defined by the literature for each species due to its variation in meaning.

180

181

182

183

184

185

186

187

188

189

In early lactation (soon after parturition) milk solids in marsupial milk are relatively low and the milk is dilute, in later stages of lactation the milk becomes thicker. Milk solids increase as lactation progresses (32, 36, 37, 46). Milk solids can be as low as 9% w/w (weight for weight) in early lactation and increase to 54% w/w in late lactation depending on species (47, 48). In some marsupials, including the Virginian opossum (*Didelphis virginiana*), common brushtail possum (*Trichosurus vulpecula*), common ringtail possum and koala (*Phascolarctos cinereus*), milk solids peak in early to mid-lactation prior to pouch exit (48-51). Krockenberger (51) suggested that more dilute milk may provide an important water source for young koalas prior to weaning, however it is possible mothers produce dilute milk to conserve their own energy resources. Monotreme milk is rich in solids, with 48.9% w/w in short-beaked echidna

(*Tachyglossus aculeatus*) milk and 39.1% w/w in platypus milk (38). Similar to marsupials, monotreme milk appears to be more dilute in early lactation with platypus having 8% solids (39) and short-beaked echidnas 12% (10), however data are based on small samples sizes.

4.1. Protein

Total macronutrient quantities change throughout lactation and qualitative changes also occur to the macronutrients. Protein concentration increases throughout lactation in most marsupials (46, 52, 53). By comparison, protein content either remains stable or only decreases slightly in eutherian species, for example as seen in rhesus monkeys (*Macaca mulatta*), insectivorous bats and equids (54-56). Casein and whey protein increase gradually in tammar wallaby milk (32), with pre-albumin and α -globulin fractions increasing from 180 days postpartum and peak at pouch exit (57). Levels of serum albumin, α -lactalbumin, β -lactoglobulin and transferrin are relatively consistent throughout lactation in the red kangaroo (58, 59). However, whey acidic protein secretion begins at around day 155 post-partum and ceases at day 209, cystatin is secreted from day 102 until day 192, and late lactation protein A is secreted from day 192 (58). In the quokka whey albumin, γ -globulin and β -globulin levels remain consistent throughout lactation and are present at levels lower than maternal serum albumin (60). Common brushtail possum transferrin increases around the time of pouch exit, as much as ten-fold between days 110 to 130 (61).

Casein and α –globulin proteins are the main proteins in milk, including monotreme milk. Overall, caseins are quite different across mammalian species, however most species have no more than four different casein proteins (62). Initially platypus were found to only have one casein protein while short-beaked echidnas had two (40, 63, 64), and more recently Lefèvre, Sharp (65) characterized the caseins in both species. The whey proteins of the short-beaked echidna are distinctly different from those of the platypus (66). Total protein and casein composition of echidna milk is high in early lactation (until day 48) (40).

7	1	Е
_	T	

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

4.2. Lipids

In a range of marsupials lipids increase gradually in early lactation, and then increase exponentially into late lactation and reach a peak around weaning (46, 47, 59, 67). Crude lipid concentration can increase by up to five times in late lactation compared to early lactation (53). In three arboreal folivores lipid concentration peaks in mid-lactation. In koalas this occurs just prior to pouch exit, before reducing in late lactation (49-51). The common ringtail and brushtail possums have the lowest concentrations of crude lipid (maximum 8g/100mL) in their milk compared to other marsupials studied thus far (49, 50). By comparison lipid concentration can be as high as 46g/100g in the eastern quoll (Dasyurus vivverinus) or 31.4g/100g in the Tasmanian pademelon (*Thylogale billardierii*) (53, 67). Oleic acid (CI8:1) followed by palmitic acid (CI6:0) are the predominant fatty acids present in marsupial milk (37, 47, 67, 68). In the eastern quoll palmitic acid is higher than oleic acid in early lactation and they crossover between 6-10 weeks post-partum with oleic acid becoming the dominant fatty acid (67). Stearic acid (CI8:0) and linoleic acid (CI8:2) are also major fatty acids in marsupial milk (14, 47, 67, 69-71), as well as palmitolic acid (C16.1) in long-nosed potoroo (Potorous tridactylus) milk (47). Arachidonic acid (C20:4) is present in eastern quoll and numbat (Myrmecobius fasciatus) milk more so than in tammar wallaby milk, likely due to the insectivorous diet of quolls and numbats (67, 71). Short-chain fatty acids are not found in the long-nosed potoroo, tammar wallaby or numbat milk while only trace amounts are found in eastern grey and red kangaroo milk (14, 47, 69-71). Monotreme milk shows some diversity in fatty acid composition across species. Short-beaked echidna milk is low in polyunsaturated fats compared to platypus milk which is high in polyunsaturated fats, such as linolenic acid (C18:3) (72-74). In addition, short-beaked echidnas lack very long-chained polyunsaturated fats such as docosahexaenoic acid (C22:6), docosatetraenoic acid (22:4) and

docosapentaenoic acid (C22:5) (73). Oleic acid (C18:1) is the dominant fatty acid in monotreme milk,

with short-beaked echidnas having more oleic acid than platypuses (38). The fatty acids in platypus milk are the same as those found in the food of platypuses (macroinvertebrates) (75). Fatty acid composition is influenced by captivity and diet in short-beaked echidnas, with significant differences observed between oleic and palmitic acids in captive and free-ranging short-beaked echidna milk (74). Similar to marsupials and monotremes, eutherian pinnipeds also show increases in lipid content of milk during lactation (76, 77). For example, northern elephant seal (*Mirounga angustirostris*) lipid levels increase from around 12% to 50% during lactation (77). This increase occurs as water content decreases.

Lipid content in milk has been suggested to be linked to nursing patterns, whereby those mothers being absent from their young for long periods produce higher quantities of fat, and those mothers that are always close to their young and therefore able to feed their young more frequently have lower levels of fats but higher carbohydrate levels (78, 79). This is also true of some seal species that leave their young for periods of time to go out and forage (77, 80). Marsupial neonates are permanently attached to the maternal teat and marsupial milk contains low levels of fat during this period (47, 67). The lipid levels increase as the young grows and detaches from the teat prior to weaning (46, 47, 59, 67). It has been suggested the lipid increases in marsupial milk can be correlated to the need for fat reserves required for thermoregulation and increased muscle activity related to locomotion in the young (50, 52).

4.3. Carbohydrates

Carbohydrate concentration in marsupial milk gradually increases post-partum, followed by a sharp decrease around the time of pouch exit. For example, in the tammar wallaby total hexose peaks at 13% at 26 weeks and falls to 1% by 40 weeks pospartum (81, 82), and a similar pattern is observed in the rednecked wallaby (*Macropus rufogriseus*) and red kangaroo (59, 83). In the eastern quoll, milk carbohydrate concentration peaks at eight weeks postpartum and rapidly decreases from 17 weeks postpartum prior to the onset of weaning at 20-22 weeks (84). Carbohydrates also undergo qualitative changes in composition throughout lactation.

200
7hh

Lactose is the main carbohydrate in eutherian milk, however this is not the case in monotremes and marsupials (85-87). There are differences between carbohydrate composition across marsupial species. In the tammar wallaby carbohydrates change from lactose to oligosaccharides between days 4 and 21 days post-partum (88). In the gray short-tailed opossum early lactation milk contains monosaccharides (galactose and glucose) as well as lactose, and after two weeks the milk carbohydrate changes to predominantly oligosaccharides that coincides with the end of fixed lactation (89). During late lactation of the gray short-tailed opossum, milk contains lactose, oligosaccharides and monosaccharides, while tammar wallaby milk contains monosaccharides as the only carbohydrates (81, 89). In the potoroo early milk is mostly oligosaccharides and then changes to lactose, galactose and glucose at 15 weeks post-partum (47). Arboreal folivore milk has similar compositional changes in carbohydrates. In the common brushtail possum lactose is the main carbohydrate, with traces of higher oligosaccharides in early lactation (90). During mid-lactation the carbohydrate portion of koala milk is dominated by oligosaccharides, while during late-lactation it is dominated by lactose, similar to the common ringtail and brushtail possums (50, 51, 90).

Monotreme milk has a high fucose composition and the principal carbohydrate in echidna milk is sialyllactose, and difucosyl-lactose in the platypus whereas these are only minor carbohydrates in human milk (86, 91). In Tasmanian short-beaked echidnas (*T. a. setosus*) difucosyl-lactose was only detected in late lactation (~150 days post hatching) (92). Lactose is present in only trace amounts during early lactation in short-beaked echidna milk (92). It is hypothesized that fucose is the main energy source for young monotremes and is comparable to galactose and glucose in eutherian mammals (93). Sialyl-lactose found in monotreme milk is unique to the echidna and not found in any other mammal milk (91, 92).

4.4. Minerals (Electrolytes)

Comparatively less data is available on electrolytes compared to macronutrients in marsupial and monotreme milk. Sodium and potassium levels are variable. Usually sodium is found in higher concentrations than potassium in early lactation. There is an inverse correlation with these two minerals in late lactation when potassium levels become higher than sodium levels (49, 52, 83). In the red-necked wallaby, red kangaroo, and common ringtail and brushtail possums sodium levels increase around the time of weaning just prior to lactation ceasing (49, 50, 59, 83). Atypically American marsupials show little change in sodium or potassium concentrations over the course of lactation (48, 94). Sodium and potassium concentrations of monotremes (means from 37-99 days postpartum in the short-beaked echidna and unknown ages of platypus (38)) are within the range observed in the brush-tailed bettong (*Bettongia penicillata*) in early lactation (day 55) (95).

Generally iron concentrations show a decreasing trend during lactation in marsupial and eutherian mammals (96). Comparatively marsupial and monotreme milk contain higher levels (>3x) of iron than eutherian species (67, 97, 98). Marsupials and monotremes rely on iron supplied in milk for hemoglobin, cytochromes, and myoglobin due to their premature state at birth and prolonged need for milk (98). Due to the underdeveloped stage of marsupial livers at birth they are unable to store as much iron as eutherians and thus require higher levels from milk. Iron concentration in the milk can be up to nine times the maternal plasma levels in marsupials (99).

In the common ringtail possum no clear trends for calcium and magnesium concentrations are evident (50). In the red kangaroo calcium peaks in mid-lactation and reduces after pouch emergence, whilst magnesium concentrations are low relative to other electrolytes in the milk (59). In the Virginian opossum calcium peaks in early lactation and stays high until 10 weeks post-partum and decreases in late lactation (48). Calcium and magnesium concentrations of monotremes are similar to that in marsupials, however data are means (from 37-99 days postpartum in the short-beaked echidna), and from unknown ages of platypus (38), thus changes in these mineral concentrations cannot be determined. In an insectivorous

eutherian, the nine-banded armadillo (*Dasypus novemcinctus*), calcium concentration increases (~x2.9) throughout lactation between 3-6 days postpartum and 49-51 days postpartum (100), so it is possible monotremes undergo similar increases to those of marsupials and eutherians however more research is required.

4.5. Macronutrient energy

We applied nutritional geometry techniques to published data to assess the nutrition of marsupial and monotreme milk. Using the Atwater factors, protein 17kJ, lipid 37kJ, carbohydrate16kJ (101), composition of milk on a dry matter basis published data were converted into a percentage energy basis and graphed to determine the percentage of macronutrient energy contribution to milk at different times during lactation and comparisons made across two species (Supplementary Table 1). In the tammar wallaby and eastern quoll protein contributes a less variable percentage of energy than carbohydrate and lipid, remaining between 17 and 28% for both species (Figure 1). In early lactation for both species carbohydrate contributes a greater percentage of energy. Later in lactation closer to weaning time, lipid contributes the most energy in milk of both species (Figure 1). Higher lipid energy would support young is a time of accelerated growth and development and potential aid in fat storage.

6. Milk as sustenance for young

Growth of young is related to the quantity and quality of the milk produced and thus higher intake leads to faster growth rates. In marsupials young range from 10 to 750 mg at birth (13), thus milk intake in early lactation is low and increases exponentially. For example, quokka pouch young increase milk intake from 1.6 mL d⁻¹at 55 days postpartum to 32.5 mL d⁻¹ at 165 days postpartum (102). Marsupial young grow at a rate of 0.2 to 0.5 g per mL of milk consumed depending on species and age (52, 95, 102-105). The tammar wallaby grows at a rate of 0.21-0.25g mL⁻¹ during the first 24 weeks postpartum and then increases to 0.37g mL⁻¹ after 25 weeks (104). By comparison the brush-tailed bettong grows at a rate of 0.51g mL⁻¹ at 4-6 weeks postpartum and then decreases to 0.40g mL⁻¹ at 13 weeks (95). Differences in

growth rates during lactation are likely related to changes in energy composition of the milk throughout lactation and other factors (see section on Macronutrient energy). As well as total milk intake, Smolenski and Rose (105) suggested that protein intake from milk caused differences in growth rates between two similar-sized marsupial species.

Short-beaked echidna young can suckle 10-20% of their body mass in 30-60 min (106, 107). As lactation progresses frequency of feeding young decreases in monotremes and the time the mother spends out foraging for food increases (108-110). Green, Griffiths (107) estimated that echidna young grow at a rate of 0.41 ± 0.10 g mL⁻¹ of milk consumed.

7. Maternal nutrition

Lactation is energetically costly for all mammals with energy needs ranging from 35 to 149% above maintenance costs for mothers (111, 112). Marsupials have a long lactation period where significant changes occur to milk composition, and for marsupial young, most growth occurs at this time. Thus, marsupial mothers invest a significant proportion of energy towards milk production over a longer period of time than comparatively-sized eutherian mammals, whereas eutherians invest more in gestation. In the marsupials it appears that energetic needs increase significantly in late lactation by 112-222% (113-117). Changes to maternal energetic needs correspond to milk becoming more energy-rich and containing a higher lipid concentration. In the eastern quoll 9-14 weeks postpartum, there is an energetic increase to 200% that of non-lactating animals that coincides with an increase in milk production (118). During gestation and early lactation there are minimal increases in the energetic needs of marsupial mothers (114, 115, 117). However, restricting maternal nutrition affects the nutritional composition of milk produced by marsupial mothers (119). For example, bettongs fed on a restricted diet in captivity produced milk with a lower protein content compared to those on an *ad lib* diet and free-ranging animals (120). Access to lower quality forage caused eastern grey kangaroos to produce lower-energy milk than mothers in a previous year that were also in better body condition (34).

Some marsupial mothers contribute very little fat reserves towards lactation and rely on current nutrient
intake during lactation (113, 115-117). In the wild, this has implications on survival of young, for
example if mothers cannot access the required nutrition for themselves, as well as their young, they may
have to abandon their young to be able to survive. One example is that red kangaroos have a high
mortality of young-at-foot and pouch young during times of drought and poor quality food availability
(121). When resources are plentiful, marsupials that have multiple young at once will produce milk of the
similar quality/quantity for their litter no matter how many young they have, causing young in smaller
litters to grow faster (113, 114) and potentially wean earlier. For the bare-tailed woolly opossum
(Caluromys philander) having one young, as opposed to eight, does not require a significant increase in
energy intake, and thus energy intake by mothers with one pouch young is no different to non-lactating
females (114). Northern brown bandicoots (Isoodon macrourus), and common ringtail and brushtail
possums appear to use body stores to cope with late lactation, as well as increase their energy intake,
similar to other marsupials (122-124). The northern brown bandicoot stores body reserves in the first 30-
40 days of lactation then uses these stores in the latter half of lactation (124). It is suggested these stores
are fat that can be mobilized when the mothers require them for late lactation (124). In the common
ringtail possum the body stores are possibly fat (122), however this has not been investigated. Eastern
grey kangaroos use both stored and incoming resources to cope with the cost of lactation (34, 125). There
is some indication that short-beaked echidnas use body stores to support lactation (106, 108). Morrow and
Nicol (108) found echidna mothers do not leave the nursery burrow to feed during the first few weeks
after the young have hatched, and subsequently lost significant body mass, however their body mass
increased again after leaving the burrow and recommencing feeding. Platypus will consume up to 2093 kJ
kg ⁻¹ d ⁻ 1during lactation which is 227% that of non-lactating females (109). Like marsupials, there seems
to be minimal increases in energetic needs of female platypus in the first month of lactation (109, 126).
More data is needed on maternal nutrition from a wider range of marsupials and monotremes to
understand how nutrient demands change throughout lactation.

8. Growth factors in milk

Milk not only provides essential nutrition required for development but also plays a role in signaling growth and development in young (127-130). The components that are not essential for nutrition but used in cell and tissue growth are known as bioactives, and include proteins, peptides, fatty acids, hormones and growth factors (128). The reader is referred to Sharp, Modepalli (131) and Sharp, Wanyonyi (132) for comprehensive reviews of bioactives in milk in marsupials and monotremes. Modepalli, Hinds (133) and Modepalli, Hinds (134) found milk collected from tammar wallabies likely aids lung maturation.

Modepalli, Kumar (135) also identified miRNA in tammar wallaby milk and found they act as markers for lactation and mammary gland development in the mother and may aid development of the young.

Tammar wallaby milk contains exosomes that are likely to be able to cross the neonatal gut and hence enter the bloodstream (136, 137), therefore allowing miRNA within the milk to impact growth and development (131). Further, cross fostering studies in marsupials have shown that when a younger marsupial neonate is placed onto a teat secreting later-stage milk, the neonate will develop faster (129, 138), which is possibly due to the differences in bioactives supplied in milk of different stages as well as a higher energy content (119).

Earlier studies of cross-fostering in marsupials, particularly cross-species, were trialed over 60 years ago (139), because of its potential as a conservation tool, to remove the need for the donor species to continue lactation and support of the newly born young, and allow subsequent mating, thus enhancing population numbers through additional births (140, 141). Most studies have since been conducted on macropods (139, 142-146), but other studies have investigated bettongs (147) and wombats (140). Interspecies crossfostering has had mixed success. Success has been reported for pouch young transferred from wild bridled nailtail wallabies (*Onychogalea fraenata*) and spectacled hare wallabies (*Lagorchestes conspicillatus*) to captive unadorned rock wallaby (*Petrogale inornata*) mothers (144), and for pouch young transferred from wild brush-tailed rock wallaby (*Petrogale penicillata*) and yellow-footed rock wallaby (*Petrogale*)

xanthopus) mothers to captive tammar wallaby mothers (148). However, Johnson (144) has also documented mortality and retarded growth after transfer of wild whiptail wallaby (*Macropus parryi*) pouch young to agile wallaby (*Macropus agilis*) mothers, and Menzies, Shaw (149) has noted similar impacts on pouch young after transfer from parma wallabies (*Macropus parma*) to tammar wallabies. Finlayson, Taggart (140) has since suggested synchrony of reproductive cycles, in both target and recipient species, is essential for cross-fostering success.

A further protein (S100A19) has been identified in tammar wallaby neonatal forestomach and expressed only when the neonate is exclusively digesting milk (150). The same protein is expressed in the tammar wallaby mammary gland tissue but is only expressed during pregnancy and involution (150). It is believed S100A19 is involved in gut development or plays an antibacterial role in both the neonatal gut and the mammary gland (150). A more recent and comprehensive microarray study conducted on tammar wallaby mammary gland expression at different lactation periods has found, despite many immunological-related proteins being expressed during crucial developmental periods (127), that the molecular expression of some genes were down regulated, and some genes varied greatly in their levels of expression, such as *SIM2* and *FUT8*, however their function in lactation is yet to be determined (151).

9. Milk replacers

Milk replacers provide an alternative to maternal milk to raise young when the mother cannot. The nutrient composition of milk varies among different species as discussed earlier. For that reason, milk from one species is not suitable for another. Milk replacers have been used for a variety of marsupials and a monotreme, including bare-nosed wombats (*Vombatus ursinus*), Tasmanian devils (*Sarcophilus harrisii*) and the short-beaked echidna (152). Marsupials may require hand-raising when a mother rejects their young, is unable to produce enough milk, or has died. It is recommended that marsupials be fed milk with very low levels, or no lactose and galactose, hence eutherian milk is not suitable. There are a range

of commercially available milk replacers that have been designed specifically to meet the needs of marsupials and monotremes that should be used.

Using data available on commercially available milk replacers, we mapped macronutrient energy using the Atwater factors, protein 17kJ, lipid 37kJ and carbohydrate 16kJ. On a percentage energy basis milk replacers adequately replicate carbohydrate and protein energy for most marsupial milks during midlactation but they do not contain as much lipid as available in maternal milk (Figure 2). Generally, the milk replacers recommended for late lactation have higher lipid concentrations. In addition to being used to raise young, milk replacers have been used as supplements for older underweight animals, specifically koalas and bilbies (*Macrotis lagotis*), to help get animals back into condition (153).

10. Milk aids immunological defense of the young

As discussed previously marsupials and monotremes are born relatively under-developed compared to eutherian mammals. Newborn marsupials have been compared to an eight week old human fetus in terms of their developmental stage (6), and are unable to mount specific immune defense (154). At the time of birth, the young marsupial crawls from the vagina to the teat and permanently attaches. On attachment the teat swells in the neonate's mouth and the mouth fuses around the teat. As the neonate is unable to mount a specific immune response shortly after birth, and due to a lack of circulating mature lymphocytes(reviewed in Old and Deane (154)), the young marsupial is believed to be highly reliant on maternally-derived strategies for immune defense, including immunoglobulins transferred prenatally via the yolk-sac in some species (155), immunological cells (156), and other immunologically important molecules in milk (127, 157).

Neutrophils in all stages of development have been found in tammar wallaby milk and were the predominant cell type in colostrum and early stage milk of tammars and long-footed potoroos (*Potorous longipes*) (156), and late stage milk collected from koalas (158). In contrast, lymphocytes were observed

in early and late stage tammar milk, but not in colostrum samples, and macrophages were only found in late stage tammar and yellow-footed rock-wallaby (*Petrogale xanthopus*) milk (156). Basden, Cooper (159) found high levels of circulating neutrophils in newborn tammar wallabies and these may have been maternally-derived given the numbers in milk. Cockson and McNeice (160) also suggested this method of maternally-derived transfer of cells occurred across the neonatal quokka gut, as they noted small and large lymphocytes in the milk supplied to young 12 days postpartum and neutrophils in the milk of young 20 days postpartum.

Transplacental immunoglobulin(Ig) transfer although shown to occur in the tammar wallaby (155), does not occur in all marsupials, as evidenced by a lack of circulating Ig in newborn Virginian (161) and gray short-tailed opossums (162). Ingested Igs have been detected in the serum of common brushtail possums (and quokka) in the switch phase of lactation (up until at least 98 days), but not in the late phase of lactation (150 days) (163), however no pouch young younger than 40 days postpartum were examined. Further, although the concentration of IgG in colostrum is low in the tammar wallaby and hill kangaroo (*Macropus robustus*), after suckling the level of IgG in the serum of the young dramatically increases, suggesting passive uptake of IgG from the colostrum (155, 164).

Early milk contains colostrum, a protein-rich substance with high levels of Igs, as well as proteins important for transport, nutrition and immune protection (165). IgA has been detected in the early phase of tammar wallaby (155) and common brushtail possum (166) lactation. Expression of IgA, the J-chain, responsible for the dimeric formation of IgA, and polymeric Ig receptor (PIGR), the molecule responsible for transferring the IgA complex through epithelial cells, have been reported in the common brushtail possum mammary gland at all stages of lactation. However IgA and J-chain expression was heightened during the first week of lactation and towards the end of the switch phase, when the young marsupial first leaves the pouch, and PIGR expression was similar in its expression levels except that it remained high after the end of the switch phase until lactation ended (166). Thus, IgA appears important for immune

protection of the young during the early neonatal period and at the time of pouch exit (166). Further, Adamski and Demmer (43) reported two distinct stages during common brushtail possum lactation when immune transfer was increased, these being the early lactation and switch phases. Expression of FCRN, responsible for regulating IgG in milk, is also highest during the early lactation phase and decreases over time, whereas, β -2-microglobin increases during the switch phase when IgG secretion from the mammary gland is highest (167).

More recently, Fehrenkamp, Morrissey (168) demonstrated a correlation between FcRN expression in the mammary of lactating gray short-tailed opossums with FcRN expression in the gut of the neonates. As expression declined, presumably to reduce maternal IgG transfer as the young matured, there was concomitant reduction in expression in the gut of the suckling young. The timing of this decline correlates also with the maturity of the neonatal immune system and the appearance of endogenous IgG in the neonate (169). These observations are consistent with reducing transfer of maternal IgG timed with the newborn developing its own ability to respond to pathogens and generate active protective immunity and less dependence on passive maternal immunity. Furthermore, there is little evidence of resident, IgG producing B cells in opossum mammary tissue, suggesting that the IgG being transferred is from maternal circulation. In contrast there are resident IgA producing B cells in the opossum mammary (Fehrenkamp et al. 2019).

As stated earlier in this review total protein was highest in the late phase of lactation in the tammar wallaby (36, 57). Proteins of primary immunological importance include Igs, myeloid cathelicidin and complement component B, whilst other components may to provide secondary levels of protection such as very early lactation protein (VELP) (127). VELP has also been identified in common brushtail possum (170) and koala (171) milk. VELP may play a role against bacterial colonization of the mucosal surfaces of the gastrointestinal tract (165). MM1 has also recently been identified in the koala genome and

523	suggested to have antimicrobial properties (171). Other proteins are involved in nutrition, for example β -
524	lactoglobin, and development such as retinal A and α -fetoprotein (127).
525	
526	Monotremes express a unique monotreme lactation protein (MLP) in a variety of tissues including milk,
527	with the highest expression occurring in milk cells (172). Analysis of the recombinant protein shows it is
528	N-glycosylated, amphipathic and α -helical, and therefore typical of an antimicrobial protein (172, 173).
529	Functional studies have confirmed the recombinant protein has antimicrobial properties against
530	Staphylococcus aureus and a commensal bacteria, Enterococcus faecalis (172). Further antimicrobial
531	proteins have also been found in echidna (EchAMP) and platypus (PlatAMP) milk (172, 174), and shown
532	to have bacteriostatic properties against Gram positive and negative bacteria but not Enterococcus
533	faecalis (174).
534	
535	Cathelicidins, a type of antimicrobial peptide, found in most vertebrates are also produced by marsupials
536	(171, 175, 176) and have been identified in milk (177, 178). Warren, Hillier (179) have also identified
537	cathelicidins (180, 181) and defensins in the platypus genome, and Whittington, Sharp (182) in the tissues
538	(brain, kidney, liver, lung, spleen and testis), but did not find cathelicidins or defensins in platypus milk.
539	
540	Nicholas, Simpson (45) described the changes in composition of whey proteins in tammar wallaby milk
541	throughout lactation and correlated these with the different stages of lactation. Joss, Molloy (127) also
542	described the protein components of whey over the four lactation periods (phase 1 (early), 2A and 2B
543	(switch phase) and 3 (late)) of the tammar wallaby and correlated the changes in protein content to the
544	changes in developmental stages of the newborn marsupial. Whey acidic protein four- disulphide domain
545	protein-2, for example, is increased in pregnancy, high in phase 2A, downregulated in phase 2B,
546	upregulated again at the end of phase 3 and high in involution n (183), and has been shown to have
547	antibacterial activity against a range of pathogenic bacteria but not <i>Enterococcus faecalis</i> . The increased

levels of expression at these times correlate to the time at which the mammary gland is most at risk of infection (136). The time of increased expression is also likely to provide the young with additional immune protection whilst they are developing immunocompetence and unable to mount their own immune specific response (154).

Studies investigating gene expression in tammar wallaby mammary gland tissue using expressed sequence tags has found increased expression of genes over the period of lactation, particularly secreted proteins (157). These proteins were involved in translation, and metabolic and immune functions (157). Piotte, Marshall (184) also confirmed the presence of lysozyme, an antimicrobial enzyme, and found its protein structure to be similar to bovine stomach lysozymes and primate lysozymes, but different to calcium-binding lysozymes in the echidna (185, 186) and horse (187).

11. Conclusions

Milk is essential for marsupial and monotreme sustenance and development. Nutrient changes in marsupial milk are very pronounced. Although data on nutrient changes throughout lactation is available for some marsupial species, there is limited data available for monotremes. Further research is needed to assess changes in macronutrient composition of monotreme milk.

Maternal energy requirements undergo the most significant change during late lactation when maternal energy requirements can be up to 222% higher. The increased energy needs correspond to when milk becomes more lipid rich. Maternal food intake and sex of offspring correlates to differences in milk macronutrient concentration. Further work is needed to investigate specific dietary requirements of mothers to optimize milk production for the health of their young, as maternal nutrition is likely to correlate to pouch young survival and health later in life.

Commercially available milk replacers provide a substitute for maternal milk. While replacers replicate
the macronutrient composition of marsupial and monotreme milk further work is required to better
encompass the range of milk compositions produced by marsupial and monotreme mothers, as well as the
additional factors naturally present in milk such as growth factors and immunological components.
Whilst a good body of research exists for the role of milk in some specific marsupials, further research is
required to address the role of a range of factors present in milk and their direct effect on newborns from
broader range of marsupial and monotreme species. It is also clear that due to the wide and varied
definitions of the different stages and phases of milk production that it hinders comparison between many
of the studies on marsupials. Conservation of marsupials and monotremes would also benefit from
furthering our understanding of their species specific biology.

585	Acknowledgments
586	The authors would like to thank Professor Kevin Nicholas for helpful discussions and suggestions on an
587	earlier draft.
588	
589	Declaration of competing interest
590	The authors have no competing interests to declare

References

- 592 1. Flight MH. Three major steps to a mammalian brain. Nature Reviews Neuroscience.
- 593 2011;12:371.
- 2. Renfree MB, Hore TA, Shaw G, Graves JAM, Pask AJ. Evolution of genomic imprinting: Insights
- from marsupials and monotremes. Annual Review of Genomics and Human Genetics. 2009;10(1):241-
- 596 62.
- 597 3. Luo Z-X, Ji Q, Wible JR, Yuan C-X. An early cretaceous tribosphenic mammal and metatherian
- 598 evolution. Science. 2003;302(5652):1934-40.
- 599 4. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, et al. The
- delayed rise of present-day mammals. Nature. 2007;446:507.
- 601 5. Nilsson MA, Churakov G, Sommer M, Van Tran N, Zemann A, Brosius J, et al. Tracking marsupial
- evolution using archaic genomic retroposon insertions. PLoS Biol. 2010;8(7):e1000436.
- 603 6. Block M. The blood forming tissues and blood of the newborn opossum (Didelphis virginiana). I.
- 604 Normal development through about the one hundreth day of life. Ergebnisse der Anatomie und
- 605 Entwicklungsgeschichte. 1964;37:237-366.
- 7. Cowie AT. Overview of the mammary gland. Journal of Investigative Dermatology. 1974;63(1):2-
- 607 9.
- 608 8. Lefèvre C, Sharp J, Nicholas K. Evolution of lactation: Ancient origin and extreme adaptations of
- 609 the lactation system. Annual Review of Genomics and Human Genetics. 2010;11(1):219-38.
- 610 9. Power ML, Schulkin J. Maternal regulation of offspring development in the mammals is an
- ancient adaptation tied to lactation. Applied and Translational Genomics. 2013;2(1):55-63.
- 612 10. Griffiths M, McIntosh D, Coles R. The mammary gland of the echidna, *Tachyglossus aculeatus*'
- with observations on the incubation of the egg and on the newly-hatched young. Journal of Zoology.
- 614 1969;158(3):371-86.
- 615 11. Tyndale-Biscoe H, Renfree M. Reproductive Physiology of Marsupials. Cambridge: Cambridge
- 616 University Press; 1987.
- 617 12. Stannard HJ, Borthwick CR, Ong O, Old JM. Longevity and breeding in captive red-tailed
- phascogales (*Phascogale calura*). Aust Mammal. 2013;35(2):217-9.
- 619 13. Tyndale-Biscoe H. Life of Marsupials. Clayton, VIC: CSIRO Publishing; 2005.
- 620 14. Griffiths M, McIntosh DL, Leckie RMC. The mammary glands of the red kangaroo with
- observations on the fatty acid components of the milk triglycerides. Journal of Zoology.
- 622 1972;166(2):265-75.
- 623 15. Gemmell RT, Veitch C, Nelson J. Birth in marsupials. Comparative Biochemistry and Physiology B.
- 624 2002;131(4):621-30.
- 625 16. Nelson JE, Gemmell RT. Birth in the northern quoll, *Dasyurus hallucatus* (Marsupialia:
- 626 Dasyuridae). Aust J Zool. 2003;51(2):187-98.
- 627 17. Bradley AJ. Reproduction and life history in the red-tailed phascogale, Phascogale calura
- 628 (Marsupialia: Dasyuridae): the adaptive-stress senescence hypothesis. Journal of Zoology.
- 629 1997;241(4):739-55.
- 630 18. Geddes DT. Inside the lactating breast: The latest anatomy research. Journal of Midwifery and
- 631 Women's Health. 2007;52(6):556-63.
- 632 19. Griffiths M, Slater E. The significance of striated muscle in the mammary glands of marsupials. J
- 633 Anat. 1988;156:141-56.
- 634 20. Hunsaker D, II. Ecology of new world marsupials. In: Hunsaker D, II, editor. The Biology of
- 635 Marsupials. New York: Academic Press; 1977. p. 95-156.
- 636 21. Beddard FE. On the pouch and brain of the male Thylacine. Proceedings of the Zoological Society
- 637 of London. 1891;59(1):138-48.

- 638 22. Woolley PA, Patterson MF, Stephenson GM, Stephenson DG. The ilio-marsupialis muscle in the
- 639 dasyurid marsupial Sminthopsis douglasi: form, function and fibre-type profiles in females with and
- 640 without suckling young. J Exp Biol. 2002;205(24):3775-81.
- 641 23. Fehrenkamp BD, Miller RD. γδ T cells are the predominant T cell type in opossum mammaries
- during lactation. Dev Comp Immunol. 2019;95:96-100.
- 643 24. Fehrenkamp BD, Miller RD. Opossum mammary maturation as it relates to immune cell
- 644 infiltration and nutritional gene transcription. Integrative Organismal Biology. 2020; 2: obz036.
- 645 25. Lincoln DW, Renfree MB. Milk ejection in a marsupial, Macropus agilis. Nature.
- 646 1981;289(5797):504-6.
- 647 26. Dwyer C. Maternal behaviour and lamb survival: From neuroendocrinology to practical
- 648 application. Animal. 2014;8(1):102-12.
- 649 27. Jouhanneau M, Schaal B, Coureaud G. Mammary pheromone-induced odour learning influences
- sucking behaviour and milk intake in the newborn rabbit. Anim Behav. 2016;111:1-11.
- 651 28. Moncomble A-S, Coureaud G, Quennedey B, Langlois D, Perrier G, Schaal B. The mammary
- pheromone of the rabbit: from where does it come? Anim Behav. 2005;69(1):29-38.
- 653 29. Schneider N. The development of the olfactory organs in newly hatched monotremes and
- 654 neonate marsupials. J Anat. 2011;219(2):229-42.
- 655 30. Schneider NY, Fletcher TP, Shaw G, Renfree MB. The olfactory system of the tammar wallaby is
- 656 developed at birth and directs the neonate to its mother's pouch odours. Reproduction.
- 657 2009;138(5):849-57.
- 658 31. Nishitani S, Miyamura T, Tagawa M, Sumi M, Takase R, Doi H, et al. The calming effect of a
- maternal breast milk odor on the human newborn infant. Neurosci Res. 2009;63(1):66-71.
- 660 32. Nicholas KR. Asynchronous dual lactation in a marsupial, the tammar wallaby (Macropus
- 661 eugenii). Biochem Biophys Res Commun. 1988;154(2):529-36.
- 662 33. Wanyonyi SS, Lefevre C, Sharp JA, Nicholas KR. The extracellular matrix locally regulates
- 663 asynchronous concurrent lactation in tammar wallaby (Macropus eugenii). Matrix Biology.
- 664 2013;32(6):342-51.
- 665 34. Quesnel L, MacKay A, Forsyth DM, Nicholas KR, Festa-Bianchet M. Size, season and offspring sex
- affect milk composition and juvenile survival in wild kangaroos. Journal of Zoology. 2017;302(4):252-62.
- 667 35. Waterman JM, Robert KA, Braun S. Milk composition during lactation suggests a mechanism for
- 668 male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE.
- 669 2012;7(11):e51099.
- 670 36. Green B, Newgrain K, Merchant J. Changes in milk composition during lactation in the tammar
- 671 wallaby (*Macropus eugenii*). Aust J Biol Sci. 1980;33(1):35-42.
- 672 37. Green B, editor Composition of milk and energetics of growth in marsupials. Symp Zool Soc
- 673 Lond; 1984.
- 674 38. Griffiths M, Green B, Leckie R, Messer M, Newgrain K. Constituents of platypus and echidna
- 675 milk, with particular reference to the fatty acid complement of the triglycerides. Aust J Biol Sci.
- 676 1984;37(6):323-30.
- 677 39. Grant T, Griffiths M, Leckie R. Aspects of lactation in the platypus, *Ornithorhynchus anatinus*
- 678 (Monotremata), in waters of eastern New South Wales. Aust J Zool. 1983;31(6):881-9.
- 679 40. Teahan C, McKenzie H, Griffiths M. Some monotreme milk "whey" and blood proteins.
- 680 Comparative Biochemistry and Physiology B. 1991;99(1):99-118.
- 681 41. Tyndale-Biscoe CH, Janssens PA. The Developing Marsupial: Models for Biomedical Research.
- 682 Berlin: Springer; 1988.
- 683 42. Pharo EA. Marsupial milk: a fluid source of nutrition and immune factors for the developing
- 684 pouch young. Reprod Fertil Dev. 2019;31(7):1252-65.

- 685 43. Adamski FM, Demmer J. Immunological protection of the vulnerable marsupial pouch young:
- 686 two periods of immune transfer during lactation in *Trichosurus vulpecula* (brushtail possum). Dev Comp
- 687 Immunol. 2000;24(5):491-502.
- 688 44. Miller SJ, Bencini R, Hartmann PE. Composition of the milk of the guokka (Setonix brachyurus).
- 689 Aust J Zool. 2009;57(1):11-21.
- 690 45. Nicholas K, Simpson K, Wilson M, Trott J, Shaw D. The tammar wallaby: A model to study
- 691 putative autocrine-induced changes in milk composition. Journal of Mammary Gland Biology and
- 692 Neoplasia. 1997;2(3):299-310.
- 693 46. Ikonomopoulou MP, Smolenski AP, Rose RW. Changes in milk composition during lactation in
- the eastern barred bandicoot (*Perameles gunnii*) (Marsupialia:Peramelidae). Aust J Zool. 2005;53(1):59-
- 695 65.
- 696 47. Crowley H, Woodward D, Rose R. Changes in milk composition during lactation in the potoroo,
- 697 Potorous tridactyius (Marsupialia: Potoroinae). Aust J Biol Sci. 1988;41(3):289-96.
- 698 48. Green B, Krause WJ, Newgrain K. Milk composition in the North American opossum (Didelphis
- 699 *virginiana*). Comparative Biochemistry and Physiology B. 1996;113(3):619-23.
- 700 49. Cowan P. Changes in milk composition during lactation in the common brushtail possum,
- 701 Trichosurus vulpecula (Marsupialia: Phalangeridae). Reproduction, Fertility and Development.
- 702 1989;1(4):325-35.
- 703 50. Munks S, Green B, Newgrain K, Messer M. Milk composition in the common ringtail possum,
- 704 Pseudocheirus peregrinus (Petauridae, Marsupialia). Aust J Zool. 1991;39(4):403-16.
- 705 51. Krockenberger AK. Composition of the milk of the koala, *Phascolarctos cinereus*, an arboreal
- 706 folivore. Physiol Zool. 1996;69(3):701-18.
- 707 52. Merchant J, Marsh H, Spencer P, Death G. Milk composition and production in free-living allied
- 708 rock-wallabies, *Petrogale assimilis*. Aust J Zool. 1996;44(6):659-74.
- 709 53. Rose RW, Shetewi AD, Flowers K. Milk composition of the Tasmanian pademelon (*Thylogale*
- 710 billardierii) (Macropodoidea:Marsupialia) in captivity. Aust J Zool. 2005;53(1):67-71.
- 711 54. Oftedal OT, Jenness R. Interspecies variation in milk composition among horses, zebras and
- 712 asses (Perissodactyla: Equidae). Journal of Dairy Research. 2009;55(1):57-66.
- 713 55. Lönnerdal B, Keen CL, Glazier CE, Anderson J. A longitudinal study of rhesus monkey (Macaca
- 714 *mulatta*) milk composition: Trace elements, minerals, protein, carbohydrate, and fat. Pediatric Research.
- 715 1984;18:911.
- 716 56. Kunz TH, Oftedal OT, Robson SK, Kretzmann MB, Kirk C. Changes in milk composition during
- 717 lactation in three species of insectivorous bats. Journal of Comparative Physiology B. 1995;164(7):543-
- 718 51.
- 719 57. Green S, Renfree M. Changes in the milk proteins during lactation in the tammar wallaby,
- 720 *Macropus eugenii*. Aust J Biol Sci. 1982;35(2):145-52.
- 721 58. Nicholas KR, Fisher JA, Muths E, Trott J, Janssens PA, Reich C, et al. Secretion of whey acidic
- 722 protein and cystatin is down regulated at mid-lactation in the red kangaroo (Macropus rufus). Comp
- 723 Biochem Physiol A. 2001;129(4):851-8.
- 724 59. Muths E. Milk Composition in a Field Population of Red Kangaroos, Macropus Rufus (Desmarest)
- 725 (Macropodidae: Marsupialia). Australian Journal of Zoology. 1996;44(2):165-75.
- 726 60. Jordan S, Morgan E. The changes in the serum and milk whey proteins during lactation and
- suckling in the quokka (Setonix brachyurus). Comparative Biochemistry and Physiology. 1968;25(1):271-
- 728 83.
- 729 61. Grigor MR, Bennett BL, Carne A, Cowan PE. Whey proteins of the common brushtail possum
- 730 (Trichosurus vulpecula): isolation, characterization and changes in concentration in milk during lactation
- 731 of transferrin, α-lactalbumin and serum albumin. Comparative Biochemistry and Physiology B.
- 732 1991;98(4):451-9.

- 733 62. Ginger MR, Grigor MR. Comparative aspects of milk caseins. Comparative Biochemistry and
- 734 Physiology B. 1999;124(2):133-45.
- 735 63. Marston H. The milk of monotreme Echidna aculeata multi-aculeata. Aust J Exp Biol Med Sci.
- 736 1926;3(4):217-20.
- 737 64. Grant T. Platypus. 4th ed. Collingwood: CSIRO Publishing; 2007.
- 738 65. Lefèvre CM, Sharp JA, Nicholas KR. Characterisation of monotreme caseins reveals lineage-
- 739 specific expansion of an ancestral casein locus in mammals. Reproduction, Fertility and Development.
- 740 2009;21(8):1015-27.
- 741 66. Joseph R, Griffiths M. Whey proteins in early and late milks of monotremes (Monotremata:
- 742 Tachyglossidae, Ornithorhynchidae) and of the tammar wallaby (*Macropus eugenii*, Marsupialia:
- 743 Macropodidae). Aust Mammal. 1992;15:125-7.
- 744 67. Green B, Merchant J, Newgrain K. Milk composition in the eastern quoll, *Dasyurus viverrinus*
- 745 (Marsupialia: Dasyuridae). Aust J Biol Sci. 1987;40(4):379-88.
- 746 68. Grigor M. Structure of milk triacylglycerols of five marsupials and one monotreme: Evidence for
- an unusual pattern common to marsupials and eutherians but not found in the echidna, a monotreme.
- 748 Comparative Biochemistry and Physiology B. 1980;65(2):427-30.
- 749 69. Green B, Griffiths M, Leckie RM. Qualitative and quantitative changes in milk fat during lactation
- in the tammar wallaby (*Macropus eugenii*). Aust J Biol Sci. 1983;36(6):455-62.
- 751 70. Poole W, Sharman G, Scott K, Thompson S. Composition of milk from red and grey kangaroos
- with particular reference to vitamins. Aust J Biol Sci. 1982;35(6):607-16.
- 753 71. Griffiths M, Friend JA, Whitford D, Fogerty A. Composition of the milk of the numbat,
- 754 Myrmecobius fasciatus (Marsupialia: Myrmecobiidae), with particular reference to the fatty acids of the
- 755 lipids. Aust Mammal. 1988(11):59-62.
- 75. Griffiths M. The Biology of the Monotremes. New York: Academic Press; 1978.
- 757 73. Griffiths M, Elliott MA, Leckie RMC, Schoefl GI. Observations of the comparative anatomy and
- 758 ultrastructure of mammary glands and on the fatty acids of the triglycerides in platypus and echidna
- 759 milk fats. Journal of Zoology. 1973;169(2):255-79.
- 760 74. Augee ML, Gooden B, Musser A. Echidna: Extraordinary egg-laying mammal. Melbourne: CSIRO
- 761 Publishing; 2006.
- 762 75. Gibson RA, Neumann M, Grant TR, Griffiths M. Fatty acids of the milk and food of the platypus
- 763 (*Ornithorhynchus anatinus*). Lipids. 1988;23(4):377-9.
- 764 76. Arnould JPY, Hindell MA. The composition of Australian fur seal (Arctocephalus pusillus
- 765 doriferus) milk throughout lactation. Physiol Biochem Zool. 1999;72(5):605-12.
- 766 77. Riedman M, Ortiz CL. Changes in milk composition during lactation in the northern elephant
- 767 seal. Physiol Zool. 1979;52(2):240-9.
- 768 78. Oftedal OT. The mammary gland and its origin during synapsid evolution. Journal of Mammary
- 769 Gland Biology and Neoplasia. 2002;7(3):225-52.
- 770 79. Sharp JA, Cane KN, Mailer SL, Oosthuizen WH, Arnould JPY, Nicholas KR. Species-specific cell-
- 771 matrix interactions are essential for differentiation of alveoli like structures and milk gene expression in
- 772 primary mammary cells of the Cape fur seal (Arctocephalus pusillus pusillus). Matrix Biology.
- 773 2006;25(7):430-42.
- 774 80. Dosako Si, Taneya Sc, Kimura T, Ohmori T, Daikoku H, Suzuki N, et al. Milk of northern fur seal:
- 775 Composition, especially carbohydrate and protein. J Dairy Sci. 1983;66(10):2076-83.
- 776 81. Messer M, Green B. Milk carbohydrates of marsupials. II. Quantitative and qualitative changes in
- 777 milk carbohydrates during lactation in the tammar wallaby (*Macropus eugenii*). Aust J Biol Sci.
- 778 1979;32(6):519-31.
- 779 82. Messer M, Trifonoff E, Collins JG, Bradbury JH. Structure of a branched tetrasaccharide from
- 780 marsupial milk. Carbohydrate Research. 1982;102(1):316-20.

- 781 83. Merchant J, Green B, Messer M, Newgrain K. Milk composition in the red-necked wallaby,
- 782 Macropus rufogriseus banksianus (Marsupialia). Comp Biochem Physiol A. 1989;93(2):483-8.
- 783 84. Messer M, FitzGerald PA, Merchant JC, Green B. Changes in milk carbohydrates during lactation
- 784 in the eastern quoll, *Dasyurus viverrinus* (Marsupialia). Comparative Biochemistry and Physiology B.
- 785 1987;88(4):1083-6.
- 786 85. Jenness R, Regehr EA, Sloan RE. Comparative biochemical studies of milks. 2. Dialyzable
- 787 carbohydrates. Comparative Biochemistry and Physiology. 1964;13:339-52.
- 788 86. Messer M, Kerry KR. Milk carbohydrates of the echidna and the platypus. Science.
- 789 1973;180:201-3.
- 790 87. Bergman HC, Housley C. Chemical analyses of American opossum (*Didelphys virginiana*) milk.
- 791 Comparative Biochemistry and Physiology. 1968;25:213-8.
- 792 88. Messer M, Griffiths M, Green B. Changes in milk carbohydrates and electrolytes during early
- 793 lactation in the tammar wallaby, *Macropus eugenii*. Aust J Biol Sci. 1984;37(2):1-6.
- 794 89. Crisp EA, Messer M, VandeBerg JL. Changes in milk carbohydrates during lactation in a didelphid
- 795 marsupial, Monodelphis domestica. Physiol Zool. 1989;62(5):1117-25.
- 796 90. Crisp E, Cowan P, Messer M. Changes in milk carbohydrates during lactation in the common
- 797 brushtail possum, Trichosurus vulpecula (Marsupialia:Phalangeridae). Reproduction, Fertility and
- 798 Development. 1989;1(4):309-14.
- 799 91. Messer M. Identification of N-acetyl-4–O-acetylneuraminyl-lactose in echidna milk. Biochem J.
- 800 1974;139(2):415-20.
- 801 92. Oftedal OT, Nicol SC, Davies NW, Sekii N, Taufik E, Fukuda K, et al. Can an ancestral condition for
- milk oligosaccharides be determined? Evidence from the Tasmanian echidna (*Tachyglossus aculeatus*
- 803 *setosus*). Glycobiology. 2014;24(9):826-39.
- 804 93. Messer M, Gadiel P, Ralston G, Griffiths M. Carbohydrates of the milk of the platypus. Aust J Biol
- 805 Sci. 1983;36(2):129-38.
- 806 94. Green B, Vandeberg J, Newgrain K. Milk composition in an American marsupial (Monodelphis
- domestica). Comparative Biochemistry and Physiology B. 1991;99(3):663-5.
- 808 95. Merchant J, Libke J, Smith M. Lactation and energetics of growth in the brush-tailed bettong,
- 809 Bettongia penicillata (Marsupialia, Potoroidae) in captivity. Aust J Zool. 1994;42(3):267-77.
- 810 96. Loh TT, Kaldor I. Iron in milk and milk fractions of lactating rats, rabbits and quokkas.
- 811 Comparative Biochemistry and Physiology B. 1973;44(2):337-46.
- 812 97. Kaldor I, Ezekiel E. Iron content of mammalian breast milk: Measurements in the rat and in a
- 813 marsupial. Nature. 1962;196(4850):175-.
- 814 98. Griffiths M. Lactation in Monotremata and speculations concerning the nature of lactation in
- 815 Cretaceous Multituberculata. Acta Palaeontol Pol. 1983;28(1-2).
- 816 99. Kaldor I, Morgan E. Iron metabolism during lactation and suckling in a marsupial, the quokka
- 817 (Setonix brachyurus). Comp Biochem Physiol A. 1986;84(4):691-4.
- 818 100. Power ML, Watts SM, Murtough KL, Knight FM. Macronutrient composition of milk of captive
- 819 nine-banded armadillos (Dasypus novemcinctus). J Mammal. 2018;99(2):498-504.
- 820 101. Merrill AL, Watt BK. Energy value of foods: basis and derivation. Agriculture handbook 74.
- Washington DC, USA: U.S. Government Printing Office; 1973.
- 822 102. Miller SJ, Bencini R, Hartmann PE. Consumption of milk by quokka (Setonix brachyurus) young.
- 823 Aust J Zool. 2010;58(2):121-6.
- 824 103. Munks SA, Green B. Milk consumption and growth in a marsupial arboreal folivore, the common
- ringtail possum, *Pseudocheirus peregrinus*. Physiol Zool. 1997;70(6):691-700.
- 826 104. Green B, Merchant J, Newgrain K. Milk consumption and energetics of growth in pouch young of
- the tammar wallaby, Macropus eugenii. Aust J Zool. 1988;36(2):217-27.

- 828 105. Smolenski AJ, Rose RW. Comparative lactation in two species of rat-kangaroo (Marsupialia).
- 829 Comp Biochem Physiol A. 1988;90(3):459-63.
- 830 106. Griffiths M. Rate of growth and intake of milk in a suckling echidna. Comparative Biochemistry
- 831 and Physiology. 1965;16:383-92.
- 832 107. Green B, Griffiths M, Newgrain K. Intake of milk by suckling echidnas (Tachyglossus aculeatus).
- 833 Comp Biochem Physiol A. 1985;81(2):441-4.
- 834 108. Morrow GE, Nicol SC. Maternal care in the Tasmanian echidna (*Tachyglossus aculeatus setosus*).
- 835 Australian Journal of Zoology. 2012;60:289-98.
- 836 109. Thomas JL, Parrott ML, Handasyde KA, Temple-Smith P. Maternal care of platypus nestlings
- 837 (Ornithorhynchus anatinus). Aust Mammal. 2020:In press.
- 838 110. Rismiller PD, McKelvey MW. Activity and behaviour of lactating echidnas (*Tachyglossus*
- 839 aculeatus multiaculeatus) from hatching of egg to weaning of young. Aust J Zool. 2009;57(4):265-73.
- 840 111. Gittleman JL, Thompson SD. Energy allocation in mammalian reproduction. Am Zool.
- 841 1988;28(3):863-75.
- 842 112. Hayssen V. Empirical and theoretical constraints on teh evolution of lactation. Journal of Dairy
- 843 Science. 1993;76:3213-33.
- 844 113. Stannard HJ, Old JM. Changes to food intake and nutrition of female red-tailed phascogales
- 845 (*Phascogale calura*) during late lactation. Physiology and Behavior. 2015;151:398-403.
- 846 114. Atramentowicz M. Optimal litter size: Does it cost more to raise a large litter in Caluromys
- 847 *philander*? Can J Zool. 1992;70(8):1511-5.
- 848 115. Cork S. Meeting the energy requirements for lactation in a macropodid marsupial: current
- 849 nutrition versus stored body reserves. Journal of Zoology. 1991;225(4):567-76.
- 850 116. Krockenberger A. Meeting the energy demands of reproduction in female koalas, *Phascolarctos*
- cinereus: evidence for energetic compensation. Journal of Comparative Physiology B. 2003;173(6):531-
- 852 40.
- 853 117. Loudon AS. The reproductive energetics of lactation in a seasonal macropodid marsupial:
- comparison of marsupial and eutherian herbivores. Symposium of the Zoological Society of London.
- 855 1987;57:419-39.
- 856 118. Green B, Merchant J, Newgrain K. Lactational energetics of a marsupial carnivore, the eastern
- 857 quoll (*Dasyurus viverrinus*). Aust J Zool. 1997;45(3):295-306.
- 858 119. Green B, Merchant J. The composition of marsupial milk. In: Tyndale-Biscoe C, Janssens P,
- 859 editors. The Developing Marsupial: Models for Biomedical Research. Berlin: Springer-Verlag; 1988. p. 41-
- 860 54.
- 861 120. Rose RW, Morahan TM, Mulchay JE, Ratkowsky DA. Milk composition and growth in wild and
- 862 captive Tasmanian bettongs, Bettongia gaimardi (Marsupialia). Journal of Comparative Physiology B.
- 863 2003;173(2):125-33.
- 864 121. Frith H, Sharman G. Breeding in wild populations of the red kangaroo, Megaleia rufa. Wildl Res.
- 865 1964;9(1):86-114.
- 866 122. Munks S, Green B. Energy allocation for reproduction in a marsupial arboreal folivore, the
- 867 common ringtail possum (*Pseudocheirus peregrinus*). Oecologia. 1995;101(1):94-104.
- 868 123. Bell B, editor Breeding and condition of possums Trichosurus vulpecula in the Orongorongo
- Valley, near Wellington, New Zealand, 1966–1975. Proceedings of the first symposium on marsupials in
- New Zealand; 1981: Zoology Publications of the Victoria University; 1981.
- 871 124. Merchant JC. Aspects of lactation in the northern brown bandicoot *Isoodon macrourus*. In:
- 872 Seebeck JH, Brown PR, Wallis RL, Kemper CM, editors. Bandicoots and Bilbies. Sydney: Surrey Beatty and
- 873 Sons; 1990. p. 219-28.

- 874 125. Gelin U, Wilson ME, Cripps J, Coulson G, Festa-Bianchet M. Individual heterogeneity and
- offspring sex affect the growth-reproduction trade-off in a mammal with indeterminate growth.
- 876 Oecologia. 2016;180(4):1127-35.
- 877 126. Thomas JL, Handasyde KA, Temple-Smith P, Parrott ML. Seasonal changes in food selection and
- 878 nutrition of captive platypuses (Ornithorhynchus anatinus). Aust J Zool. 2017;65(5):319-27.
- 879 127. Joss JL, Molloy MP, Hinds L, Deane E. A longitudinal study of the protein components of
- marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). Dev Comp Immunol.
- 881 2009;33(2):152-61.
- 882 128. Donovan SM, Odle J. Growth-factors in milk as mediators of infant development. Annu Rev Nutr.
- 883 1994;14:147-67.
- 884 129. Waite R, Giraud A, Old J, Howlett M, Shaw G, Nicholas K, et al. Cross-fostering in Macropus
- 885 eugenii leads to increased weight but not accelerated gastrointestinal maturation. Journal of
- 886 Experimental Zoology A. 2005;303A(5):331-44.
- 887 130. Kobata R, Tsukahara H, Ohshima Y, Ohta N, Tokuriki S, Tamura S, et al. High levels of growth
- factors in human breast milk. Early Human Development. 2008;84(1):67-9.
- 889 131. Sharp JA, Modepalli V, Enjapoori AK, Bisana S, Abud HE, Lefevre C, et al. Bioactive functions of
- 890 milk proteins: A comparative genomics approach. Journal of Mammary Gland Biology and Neoplasia.
- 891 2014;19(3):289-302.
- 892 132. Sharp JA, Wanyonyi S, Modepalli V, Watt A, Kuruppath S, Hinds LA, et al. The tammar wallaby: A
- 893 marsupial model to examine the timed delivery and role of bioactives in milk. Gen Comp Endocrinol.
- 894 2017;244:164-77.
- 895 133. Modepalli V, Hinds LA, Sharp JA, Lefevre C, Nicholas KR. Role of marsupial tammar wallaby milk
- in lung maturation of pouch young. BMC Dev Biol. 2015;15:16.
- 897 134. Modepalli V, Hinds LA, Sharp JA, Lefevre C, Nicholas KR. Marsupial tammar wallaby delivers milk
- 898 bioactives to altricial pouch young to support lung development. Mech Dev. 2016;142:22-9.
- 899 135. Modepalli V, Kumar A, Hinds LA, Sharp JA, Nicholas KR, Lefevre C. Differential temporal
- 900 expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus
- 901 *eugenii*). BMC Genomics. 2014;15(1):1012.
- 902 136. Daly KA, Digby M, Lefèvre C, Mailer S, Thomson P, Nicholas K, et al. Analysis of the expression of
- 903 immunoglobulins throughout lactation suggests two periods of immune transfer in the tammar wallaby
- 904 (Macropus eugenii). Vet Immunol Immunopathol. 2007;120(3):187-200.
- 905 137. Old JM, Deane EM. The lymphoid and immunohaematopoietic tissues of the embryonic
- brushtail possum (*Trichosurus vulpecula*). Anat Embryol. 2003;206(3):193-7.
- 907 138. Kwek JHL, longh RD, Digby MR, Renfree MB, Nicholas KR, Familari M. Cross-fostering of the
- 908 tammar wallaby (Macropus eugenii) pouch young accelerates fore-stomach maturation. Mech Dev.
- 909 2009;126(5-6):449-63.
- 910 139. Merchant JC, Sharman GB. Observations on the attachment of marsupial pouch young to the
- 911 teats and on the rearing of pouch young by foster-mothers of the same or different species. Aust J Zool.
- 912 1966;14(4):593-609.
- 913 140. Finlayson GR, Taggart DA, Shimmin GA, White CR, Steele V, Paris MCJ, et al. The application of
- 914 intra-species fostering techniques to the southern hairy-nosed wombat, Lasiorhinus latifrons. Pac
- 915 Conserv Biol. 2007;13(4):259-63.
- 916 141. Druery GV, Shimmin GA, Taggart DA, Temple-Smith PD, Breed WG, McDonald CH, et al. Ovarian
- 917 follicular superstimulation and oocyte maturation in the anoestrous southern hairy-nosed wombat,
- 918 *Lasiorhinus latifrons*. Anim Reprod Sci. 2007;99(3-4):363-76.
- 919 142. Taggart DA, Schultz D, White C, Whitehead P, Underwood G, Phillips K. Cross-fostering, growth
- 920 and reproductive studies in the brush-tailed rock-wallaby, Petrogale pencillata (Marsupialia:

- 921 Macropodidae): efforts to acclerate breeding in a threatened marsupial species. Australia Journal of
- 922 Zoology. 2005;53:313-23.
- 923 143. Clark MJ. Growth of pouch young of the red kangaroo, Megaleia rufa in the pouches of foster
- mothers of teh same species. Int Zoo Yearb. 1968;8:102-6.
- 925 144. Johnson PM. The rearing of marsupial pouch young by foster mothers of different species. Int
- 926 Zoo Yearb. 1981;21:173-6.
- 927 145. Jones M, Temple-Smith PD, Taggart DA. Age determination and growth in wild and captive
- 928 black-footed rock-wallaby pouch young, Petrogale lateralis: with notes on cross fostering. Aust J Zool.
- 929 2004;52:447-61.
- 930 146. Shultz DJ, Whitehead PJ, Taggart DA. Review of the surrogacy program for the brush-tailed rock
- 931 wallaby, Petrogale penkillala, with special reference lo animal husbandly and veterinary considerations.
- 932 Zoo and Wildlife Medicine. 2006;37:33-9.
- 933 147. Smith MJ. Establishment of a captive colony of *Bettongia tropica* (Marsupialia: Potoroidae) by
- cross-fostering; and observations on reproduction. Journal of Zoology. 1998;244:43-50.
- 935 148. Taggart D, A., Schultz D, Temple-Smith PD. Development and application of assisted
- 936 reproductive technologies in marsupials: their value for conservation of rock-wallabies. Aust Mammal.
- 937 1997;19:183-90.
- 938 149. Menzies BR, Shaw G, Fletcher TP, Renfree MB. Perturbed growth and development in marsupial
- 939 young after reciprocal cross-fostering between species. Reproduction, Fertility and Development.
- 940 2007;19(8):976-83.
- 941 150. Kwek JHL, Wynne A, Lefèvre C, Familari M, Nicholas KR, Sharp JA. Molecular evolution of a novel
- 942 marsupial S100 protein (S100A19) which is expressed at specific stages of mammary gland and gut
- 943 development. Mol Phylogenet Evol. 2013;69(1):4-16.
- 944 151. Vander Jagt CJ, Whitley JC, Cocks BG, Goddard ME. Gene expression in the mammary gland of
- 945 the tammar wallaby during the lactation cycle reveals conserved mechanisms regulating mammalian
- 946 lactation. Reproduction, Fertility and Development. 2016;28(9):1241-57.
- 947 152. Jackson S. Australian Mammals: Biology and Captive Management. Melbourne: CSIRO
- 948 Publishing; 2003.
- 949 153. Gamble J, Blyde D. Artificial milk diets as a supplement for aged and infirmed marsupials. Int Zoo
- 950 Yearb. 1992;31:90-2.
- 951 154. Old JM, Deane EM. Development of the immune system and immunological protection in
- 952 marsupial pouch young. Dev Comp Immunol. 2000;24(5):445-54.
- 953 155. Deane E, Cooper D, Renfree M. Immunoglobulin G levels in fetal and newborn tammar wallables
- 954 (Macropus eugenii). Reproduction, Fertility and Development. 1990;2(4):369-75.
- 955 156. Young L, Basden K, Cooper DW, Deane EM. Cellular components of the milk of the tammar
- 956 wallaby (*Macropus eugenii*). Aust J Zool. 1997;45(4):423-33.
- 957 157. Lefèvre CM, Digby MR, Whitley JC, Strahm Y, Nicholas KR. Lactation transcriptomics in the
- 958 Australian marsupial, Macropus eugenii: transcript sequencing and quantification. BMC Genomics.
- 959 2007;8(1):417.
- 960 158. Young LJ, Deane EM. Cellular composition of the late milk of the koala (*Phascolarctos cinereus*).
- 961 Aust J Zool. 2001;49(2):195-202.
- 962 159. Basden K, Cooper D, Deane E. Development of the blood-forming tissues of the tammar wallaby
- 963 Macropus eugenii. Reproduction, Fertility and Development. 1996;8(6):989-94.
- 964 160. Cockson A, McNeice R. Survival in the pouch: the role of macrophages and maternal milk cells.
- 965 Comp Biochem Physiol A. 1980;66(2):221-5.
- 966 161. Hindes RD, Mizell M. The origin of immunoglobulins in opossum "embryos". Dev Biol.
- 967 1976;53(1):49-61.

- 968 162. Samples NK, Vanderberg JL, Stone WH. Passively acquired immunity in the newborn of a
- 969 marsupial (Monodelphis domestica). American Journal of Reproductive Immunology and Microbiology.
- 970 1986;11(3):94-7.
- 971 163. Yadav M. The transmissions of antibodies across the gut of pouch-young marsupials.
- 972 Immunology. 1971;21(5):839-51.
- 973 164. Deane EM, Cooper DW. Immunology of pouch young marsupials. I. Levels of immunoglobulin
- 974 transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos: Macropus
- 975 robustus, marsupialia). Dev Comp Immunol. 1984;8(4):863-76.
- 976 165. Joss J, Molloy M, Hinds L, Deane E. Proteomic analysis of early lactation milk of the tammar
- 977 wallaby (Macropus eugenii). Comparative Biochemistry and Physiology D. 2007;2(2):150-64.
- 978 166. Adamski FM, Demmer J. Two stages of increased IgA transfer during lactation in the marsupial,
- 979 Trichosurus vulpecula (Brushtail possum). The Journal of Immunology. 1999;162(10):6009-15.
- 980 167. Adamski FM, King AT, Demmer J. Expression of the Fc receptor in the mammary gland during
- 981 lactation in the marsupial *Trichosurus vulpecula* (brushtail possum). Mol Immunol. 2000;37(8):435-44.
- 982 168. Fehrenkamp BD, Morrissey KA, Miller RD. Opossum milk IgG is from maternal circulation and
- 983 timing of transfer correlates with neonatal immune development. Reproduction, Fertility and
- 984 Development. 2019.
- 985 169. Wang X, Sharp AR, Miller RD. Early postnatal B cell ontogeny and antibody repertoire
- 986 maturation in the opossum, *Monodelphis domestica*. PLoS ONE. 2012;7(9):e45931.
- 987 170. Kuy S, Kelly VC, Smit A-M, Palmer DJ, Cooper GJ. Proteomic analysis of whey and casein proteins
- 988 in early milk from the marsupial *Trichosurus vulpecula*, the common brushtail possum. Comparative
- 989 Biochemistry and Physiology D. 2007;2(2):112-20.
- 990 171. Johnson RN, O'Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, et al. Adaptation and
- 991 conservation insights from the koala genome. Nature Genetics. 2018;50:1102-11.
- 992 172. Enjapoori AK, Grant TR, Nicol SC, Lefevre CM, Nicholas KR, Sharp JA. Monotreme lactation
- 993 protein is highly expressed in monotreme milk and provides antimicrobial protection. Genome Biology
- 994 and Evolution. 2014;6(10):2754-73.
- 995 173. Newman J, Sharp JA, Enjapoori AK, Bentley J, Nicholas KR, Adams TE, et al. Structural
- 996 characterization of a novel monotreme-specific protein with antimicrobial activity from the milk of the
- 997 platypus. Acta Crystallographica F: Structural Biology Communications. 2018;74(Pt 1):39-45.
- 998 174. Bisana S, Kumar S, Rismiller P, Nicol SC, Lefèvre C, Nicholas KR, et al. Identification and
- 999 functional characterization of a novel monotreme-specific antibacterial protein expressed during
- 1000 lactation. PLoS ONE. 2013;8(1):e53686.
- 1001 175. Carman RL, Old JM, Baker M, Jacques NA, Deane EM. Identification and expression of a novel
- marsupial cathelicidin from the tammar wallaby (Macropus eugenii). Vet Immunol Immunopathol.
- 1003 2009;127(3):269-76.
- 1004 176. Carman RL, Simonian MR, Old JM, Jacques NA, Deane EM. Immunohistochemistry using
- antibodies to the cathelicidin LL37/hCAP18 in the tammar wallaby, *Macropus eugenii*. Tissue and Cell.
- 1006 2008;40(6):459-66.
- 1007 177. Daly KA, Digby MR, Lefévre C, Nicholas KR, Deane EM, Williamson P. Identification,
- 1008 characterization and expression of cathelicidin in the pouch young of tammar wallaby (Macropus
- 1009 eugenii). Comparative Biochemistry and Physiology B. 2008;149(3):524-33.
- 1010 178. Wanyonyi SS, Sharp JA, Khalil E, Lefevre C, Nicholas KR. Tammar wallaby mammary cathelicidins
- are differentially expressed during lactation and exhibit antimicrobial and cell proliferative activity.
- 1012 Comp Biochem Physiol A. 2011;160(3):431-9.
- 1013 179. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. Genome
- analysis of the platypus reveals unique signatures of evolution. Nature. 2008;453:175.

- 1015 180. Whittington CM, Papenfuss AT, Bansal P, Torres AM, Wong ESW, Deakin JE, et al. Defensins and
- the convergent evolution of platypus and reptile venom genes. Genome Research. 2008;18(6):986-94.
- 1017 181. Whittington CM, Papenfuss AT, Kuchel PW, Belov K. Expression patterns of platypus defensin
- and related venom genes across a range of tissue types reveal the possibility of broader functions for
- 1019 OvDLPs than previously suspected. Toxicon. 2008;52(4):559-65.
- 1020 182. Whittington CM, Sharp JA, Papenfuss A, Belov K. No evidence of expression of two classes of
- natural antibiotics (cathelicidins and defensins) in a sample of platypus milk. Aust J Zool. 2009;57(4):211-
- 1022 7.
- 1023 183. Watt AP, Sharp JA, Lefevre C, Nicholas KR. WFDC2 is differentially expressed in the mammary
- 1024 gland of the tammar wallaby and provides immune protection to the mammary gland and the
- developing pouch young. Dev Comp Immunol. 2012;36(3):584-90.
- 1026 184. Piotte CP, Marshall CJ, Hubbard MJ, Collet C, Grigor MR. Lysozyme and α -lactalbumin from the
- milk of a marsupial, the common brush-tailed possum (*Trichosurus vulpecula*). Biochim Biophys Acta.
- 1028 1997;1336(2):235-42.
- 1029 185. Teahan CG, McKenzie HA, Shaw DC, Griffiths M. The isolation and amino acid sequences of
- echidna (*Tachyglossus aculeatus*) milk lysozyme I and II. Biochem Int. 1991;24(1):85-95.
- 1031 186. Kikuchi M, Kawano K, Nitta K. Calcium-binding and structural stability of echidna and canine milk
- 1032 lysozymes. Protein Science. 1998;7(10):2150-5.
- 1033 187. McKenzie HA, Shaw DC. The amino acid sequence of equine milk lysozyme. Biochem Int.
- 1034 1985;10(1):23-31.

1036	Figure legend
1037	
1038	Figure 1. Right angle mixture triangle of macronutrient composition of milk from the eastern quoll and
1039	tammar wallaby at different weeks (w) of lactation. For the tammar wallaby values represent phase 2A,
1040	2B and two time points within phase3. Protein and lipid (% energy) increase along the X and Y axes,
1041	respectively. The percentage of carbohydrate decreases with distance from the origin, with the diagonal
1042	lines representing a fixed percentage carbohydrate
1043	Figure 2. Right-angled mixture triangle of commercially available marsupial milk formulas. Protein and
1044	lipid (% energy) increase along the X and Y axes, respectively. The percentage of carbohydrate decreases
1045	with distance from the origin.

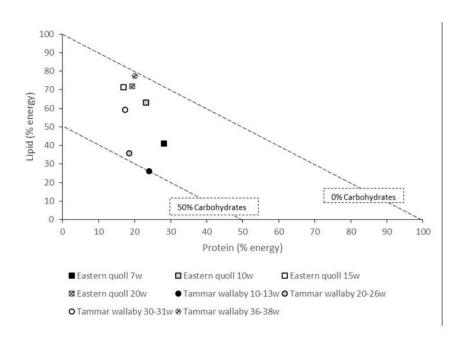


Figure 1

Figure 1

Figure 1. Right angle mixture triangle of macronutrient composition of milk from the eastern quoll and tammar wallaby at different weeks (w) of lactation. For the tammar wallaby values represent phase 2A, 2B and two time points within phase3. Protein and lipid (% energy) increase along the X and Y axes, respectively. The percentage of carbohydrate decreases with distance from the origin, with the diagonal lines representing a fixed percentage carbohydrate.

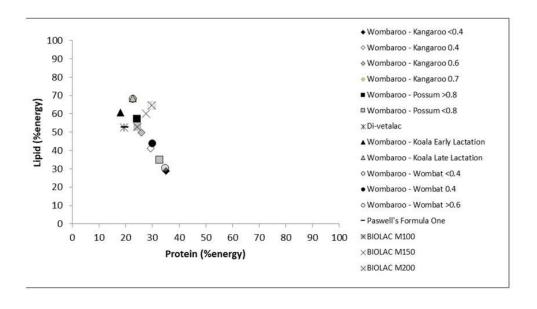


Figure 2

Figure 2

Figure 2. Right-angled mixture triangle of commercially available marsupial milk formulas. Protein and lipid (% energy) increase along the X and Y axes, respectively. The percentage of carbohydrate decreases with distance from the origin.

