Marsupial and monotreme milk - A review of its
nutrient and immune properties (#46829)

First submission

Guidance from your Editor

Please submit by 1 May 2020 for the benefit of the authors (and your $200 publishing discount) .

Literature Review article
This is a Literature Review article, so the review criteria are slightly different.
Please write your review using the criteria outlined on the 'Structure and Criteria' page.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files 2 Figure file(s)
Download and review all files 1 Other file(s)
from the materials page.


https://peerj.com/submissions/46829/reviews/672538/materials/

For assistance email peer.review@peerj.com

Structure and 2
Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. STUDY DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready submit online.
Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING STUDY DESIGN

Clear, unambiguous, professional English
language used throughout.

Intro & background to show context.
Literature well referenced & relevant.

Structure conforms to Peer] standards,
discipline norm, or improved for clarity.

Is the review of broad and cross-disciplinary
interest and within the scope of the journal?

Has the field been reviewed recently? If so,
is there a good reason for this review
(different point of view, accessible to a
different audience, etc.)?

Does the Introduction adequately introduce
the subject and make it clear who the
audience is/what the motivation is?

Article content is within the Aims and
Scope of the journal.

Rigorous investigation performed to a
high technical & ethical standard.

Methods described with sufficient detail &
information to replicate.

Is the Survey Methodology consistent with
a comprehensive, unbiased coverage of
the subject? If not, what is missing?

Are sources adequately cited? Quoted or
paraphrased as appropriate?

Is the review organized logically into
coherent paragraphs/subsections?

VALIDITY OF THE FINDINGS

Speculation is welcome, but should be
identified as such.

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.

Is there a well developed and supported
argument that meets the goals set out in
the Introduction?


mailto:peer.review@peerj.com
https://peerj.com/submissions/46829/reviews/672538/
https://peerj.com/submissions/46829/reviews/672538/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

Conclusions are well stated, linked to Does the Conclusion identify unresolved
original research question & limited to questions / gaps / future directions?
supporting results.



Standout
reviewing tips

P

The best reviewers use these techniques
Tip

Support criticisms with
evidence from the text or from
other sources

Give specific suggestions on
how to improve the manuscript

Comment on language and
grammar issues

Organize by importance of the
issues, and number your points

Please provide constructive
criticism, and avoid personal
opinions

Comment on strengths (as well
as weaknesses) of the
manuscript

Example

Smith et al (] of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Your introduction needs more detail. | suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 - the current phrasing makes
comprehension difficult.

1. Your most important issue

2. The next most important item
3.

4. The least important points

| thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

| commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as | have noted above) which should be
improved upon before Acceptance.



PeerJ

Marsupial and monotreme milk - A review of its nutrient and
immune properties

Hayley J. Stannard ', Robert D. Miller ?, Julie M. Old “"** *

1

School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
2

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States
3

School of Science, University of Western Sydney, Penrith, NSW, Australia

Corresponding Author: Julie M. Old
Email address: j.old@westernsydney.edu.au

All mammals are characterized by the ability of females to produce milk. Marsupial
(metatherian) and monotreme (prototherian) young are born in a highly altricial state and
rely on their mother’s milk for the first part of their life. Here we review the role and
importance of milk in marsupial and monotreme development. Milk is the primary source

of sustenance for young marsupials and monotremes and varies+r-composiion-dependent
on-the-stage-of-development; We applied nutritional geometry techniques to a limited

number of species with values available to analyze changes in macronutrient composition
of milk at different stages. Macronutrient energy composition of marsupial milk varies
between species and changes concentration during the course of lactation. As well as
nourishment, marsupial and monotreme milk supplies growth and immune factors.
Neonates are unable to mount a specific immune response shortly after birth and
therefore rely on immunoglobulins, immunological cells and other immunologically
important molecules transferred through milk. Milk is also essential to the development of
the maternal-young bond and is achieved through feedback systems and odor preferences
in eutherian mammals, heweveﬁwe have much to learn about the role of milk in marsupial
and monotreme mother-young bonding. Further research is particttarhy warranted in
gaining a better understanding of the role of milk as a source of nutrition, and
developmental factors; including immunity, in a broader range of marsupial species, and
monotremes.
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Abs‘roct

All mammals are characterized by the ability of females to produce milk. Marsupial (metatherian) and
monotreme (prototherian) young are born in a highly altricial state and rely on their mother’s milk for the
first part of their life. Here we review the role and importance of milk in marsupial and monotreme
development. Milk is the primary source of sustenance for young marsupials and monotremes and varies
in composition dependent on the stage of development. We applied nutritional geometry techniques to a
limited number of species with values available to analyze changes in macronutrient composition of milk
at different stages. Macronutrient energy composition of marsupial milk varies between species and
changes concentration during the course of lactation. As well as nourishment, marsupial and monotreme
milk supplies growth and immune factors. Neonates are unable to mount a specific immune response
shortly after birth and therefore rely on immunoglobulins, immunological cells and other
immunologically important molecules transferred through milk. Milk is also essential to the development
of the maternal-young bond and is achieved through feedback systems and odor preferences in eutherian
mammals, however we have much to learn about the role of milk in marsupial and monotreme mother-
young bonding. Further research is particularly warranted in gaining a better understanding of the role of
milk as a source of nutrition and developmental factors, including immunity, in a broader range of

marsupial species, and monotremes.

Keywords: nutritional geometry, mammary gland, macronutrient, immunoglobulin, lactation
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1. Introduction
Mammals evolved approximately 200 million years ago (1) and today comprise three groups -
prototherians, metatherians and eutherians. Monotremes (prototherians) diverged from marsupials
(metatherians) and eutherians approximately 166 million years ago (2), and marsupials and eutherians
separated around 130 million years ago (3-5). Monotremes lay eggs and their young hatch in a highly
altricial state. Marsupials, however, give birth to live young in a highly altricial state and most of their
development is completed after birth, whilst eutherians give birth to young varying from altricial to
precocial. When compared to eutherians, newborn marsupials have been described as similar to a
gestationally eight week human fetus (6), hence much of the development of marsupials occurs in the
external environment. Thus, when comparing the development of marsupials and eutherians, the time of
‘pouch emergence’ of marsupial young is often regarded as similar to the time of birth in eutherians.

However, despite these differences in developmental stages at birth, all three groups of mammals are

characterized by the ability of the female of the species to produce milk. Milksupplies-growth factors-and

ing; Mammalian young rely
on their mother to provide all the nutrients for their initial growth and development. As mammals are
diverse in their characteristics, size and habitats that they live in, milk composition varies markedly
depending on the needs of the young. This paper specifically reviews the crucial role of milk in young
marsupial (metatherian) and monotreme (prototherian) development with a focus on both nutrition and
immunology. Furthermore, we highlight other largely neglected areas of research where milk is essential
to development such as its role in maternal-young bonding and where further research is required. This
review will be of particular interest to those conducting research in mammalogy, nutritional geometry,

immunology, mammary gland biology and lactation.

2. Survey Methodology
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Scientific journal articles were sourced for this review by conducting searches using the GoogleScholar®
and Web of Science® databases. The search strategy used the combined terms “milk and monotreme” or
“milk and marsupial”. We screened and filtered the articles, limiting those with relevant titles and written
in English. We identified further relevant articles referenced in the articles found. Generally, we included
articles written no more than 30 years ago, although some earlier articles were incorporated due to their

importance in this review to provide further clarity and enhancement of the review.

3. Mammary glands and pouches
Mammary glands are specialized accessory glands of the skin (7) and are similar to sweat glands in their
secretory process, having evolved from apocrine skin glands (8). Mammary glands evolved prior to the
radiation of today’s extant mammals (reviewed in Lefévre, Sharp (8), (9)), around 166-240 million years

ago when the first mammals arose (4).

Both eutherians and marsupials have nipples or teats to aid transfer of milk to the young, whilst echidnas
(Tachyglossus sp. and Zaglossus spp.) and the platypus (Ornithorhynchus anatinus) have the ducts of a
single mammary gland opening directly onto the areola in association with a hair follicle, and young
monotremes (puggles) suckle milk from the pores of these milk patches (10). The size and shape of
mammary glands differs between species. The number of mammary glands, although usually occurring in
pairs (11), differs between species. Among marsupials, there is generally an inverse relationship between
body size of the female and the number of teats, with small species such as phascogales and bandicoots
having eight teats (12), and larger species such as wombats and koalas having two, and macropods having
four (13). The gray short-tailed opossum (Monodelphis domestica) is an extreme example having 13

mammary glands (13).

The position of mammary glands (and teats) also varies. In marsupials with pouches, such as red

kangaroos (Macropus rufiss), the teats are located within a pit on the dorsal surface of the pouch, and each
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teat has a separate mammary gland (14). In marsupials the number of mammary glands, hence the number
of teats, also determines the maximum litter size as marsupial young permanently attach to the maternal
teat shortly after birth. The mammary gland subsequently grows correspondingly in size with the growth
of the pouch young, as does the teat, in length (14). The number of teats for each species represents the
maximum number of young that can be sustained for each litter. Thus in some dasyurid marsupials the
transit to the maternal teat and attachment can lead to a fight for survival, as some marsupials give birth to

supernumerary young (15-17), and more young are born than there are teats.

The mammary gland tissue consists primarily of glandular tissue with alveoli and ducts amongst a stroma
of adipose and connective tissue (Cowper’s ligaments) (18). While marsupials lack the suspensory
ligaments associated with eutherians (7), the ilio-marsupialis muscle of the marsupial mammary glands
and teats enable the mother to draw their young close to the body, in a similar manner to the cremaster
muscle in males that draws the testes closer to the body (19). Male South American water opossums or
yapok (Chironectes minimus), an aquatic marsupial, have a pouch that is used as a watertight
compartment where they house the scrotum (20), and was likely similar to that of the now extinct
Tasmanian tiger (Thylacinus cynocephalus) that had a backward facing pouch to also enclose their

scrotum (21). Woolley, Patterson (22)

marsupialis muscles could be used to shake off the suckling young.

There is increasing evidence of the role of cells associated with the immune system in the normal
development and function of marsupial mammary tissue. T cells infiltrate the mammary tissue early in
during the first post-natal week in the gray short-tailed opossum and transcriptome analyses are consistent
with the majority being v T cells (23). What role these yo T cells are playing in mammary protection or
the protection of the suckling young is not known. Also noteworthy is the appearance of eosinophils early
in the postnatal period when the mammary tissue is undergoing significant remodeling in the opossum.

The presence of eosinophils correlates with local expression of the cytokine Interleukin-16, a known
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chemotactic factor for eosinophils (24). It has been speculated that in eutherians eosinophils play a role in
mammary remodeling , whether the same is true in marsupials is unknown, but this appears to be an

ancient conserved feature in mammals.

4. Odor identification and communication between mother and young
Although nipples and teats in marsupials and eutherians provide a delivery mechanism for milk to young
mammals, they also provide a sensory attractant, including touch, olfaction and taste, for young mammals
to locate milk. The same is true for milk patches in monotremes. The suckling in marsupials and
eutherians by the young in turn induces oxytocin release in the mother, inducing milk letdown and

maintenance (25), as well as inducing maternal behaviors (26).

Olfaction is not only essential for newborn mammals to locate the maternal nipple and feed, but also
important in kin recognition and maternal-young bonding. In rabbits (Oryctolagus cuniculus) the
mammary pheromone has been shown to influence sucking performance and hence milk intake in
newborn kittens (27). Mammary pheromone is secreted by the nipples of lactating rabbits, however the
precise source is unknown (28). It may be produced by the skin glands at the tip of the nipple and
dissolved in milk, secretions of sebaceous and apocrine glands within the nipple dermis secreted into the
galactophorous ducts, or compounds produced or changed by microflora in the galactophorous ducts (28).
The olfactory systems of marsupials and monotremes are still immature at birth/hatching, however given
their developmental stage it is likely young can use olfactory cues to find their way to their mother’s milk
(29). Behavioral testing by Schneider, Fletcher (30), for example, have shown that neonate tammar
wallabies (Notamacropus eugenii) use olfactory cues to locate their mother’s odor. Nishitani, Miyamura
(31) also found human young show reduced pain responses when exposed to the odor of their mother’s
milk, but a reduction in pain response whilst suckling is yet to be investigated in marsupials or

monotremes. Therefore, although no studies have been conducted on the odors produced by the marsupial
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teat (and pouch), odors likely aid the newborn marsupial to locate the teat and attach, as well as aid

development of the young-mother bond.

5. Nutrient composition of milk
The ability to produce milk varying in composition at the same time is called asynchronous concurrent
lactation (32). Some marsupials, such as the tammar wallaby, are able to produce milk with varying
compositions at the same time, whereby one mammary gland supplies a newborn permanently attached to
one teat, whilst a second mammary gland supplies milk with a different composition to an older young at
foot. Similarly, the red kangaroo can produce two different kinds of milk, depending on the age of the
young (14). One gland can produce a fluid rich in protein for a neonate and the other “mature” milk for a
young at foot (14). Asynchronous concurrent lactation is possible due to changes in the extracellular
matrix composition of the mammary gland, and these changes subsequently regulate milk protein
expression (33). In marsupials, milk composition and yield also vary with sex of the young (34, 35). Both

tammar wallabies and eastern grey kangaroos allocate more protein to sons than to daughters (34, 35).

Milk consists of milk solids (made up of proteins, lipids, carbohydrates and minerals) and water.
Throughout lactation pronounced changes occur to the nutrient composition which is a characteristic of
marsupial milk and makes it different to that of eutherian milk (36, 37). In monotremes, while there is
very limited information available, it likewise appears that their milk composition also changes over time

(38-40).

Depending on the species, differences in milk composition produced at different times occur during early,
mid and late lactation, but can also be referred to as different phases or stages,-and-henee it is difficult to
make comparisons between species when discussing these different phases/stages/time of lactation
because the definitions can vary widely between species, and even in the literature for the same species.

Therefore, throughout this paper where possible we refer to the phase/stage/time of lactation for the
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species we are discussing as defined in the literature for that species. For example, early lactation
(sometimes referred to as Phase 2) consists of the milk produced from birth until the end of fixation,
where young are no longer permanently attached to the teat (41). In some species, such as the tammar
wallaby, phase 2 can also be separated into 2A and 2B. Phase 2A represents the period where the young
remains permanently attached to the teat, and 2B represents the stage whereby the young start to
intermittently detach (42). Late lactation (Phase 3) begins when the milk becomes similar to that of
eutherian milk, and the young is no longer permanently attached to the teat (43), and includes the time of
permanent pouch exit, and when the young starts to eat solid foods (41), but the timing of teat
detachment, or end of fixation or fixed period of lactation, and pouch exit differs greatly and is not
consistently defined for each species. In addition, the timing of the lactation phases differs for each
species, for example phase 2A is 0-125 days in the tammar wallaby and 0-70 days in the quokka (Sefonix
brachyurus) (36, 44). Early lactation protein, whey acidic protein and late lactation proteins are expressed
exclusively during early, mid and late lactation and also act as markers for the different phases (45), but
has not been studied in all species, and hence may differ among different species. For these complex
reasons, we will refer to early, mid and late lactation loosely, and not defined by the literature for each

species due to its variation in meaning.

In early lactation (soon after parturition) milk solids in marsupial milk are relatively low and the milk is
dilute, in later stages of lactation the milk becomes thicker. Milk solids increase as lactation progresses
(32, 36, 37, 46). Milk solids can be as low as 9% w/w (weight for weight) in early lactation and increase
to 54% w/w in late lactation depending on species (47, 48). In some marsupials, including the Virginian
opossum (Didelphis virginiana), common brushtail possum (7richosurus vulpecula), common ringtail
possum and koala (Phascolarctos cinereus), milk solids peak in early to mid-lactation prior to pouch exit
(48-51). Krockenberger (51) suggested that more dilute milk may provide an important water source for
young koalas prior to weaning, however it is possible mothers produce dilute milk to conserve their own

energy resources. Monotreme milk is rich in solids, with 48.9% w/w in short-beaked echidna
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(Tachyglossus aculeatus) milk and 39.1% w/w in platypus milk (38). Similar to marsupials, monotreme
milk appears to be more dilute in early lactation with platypus having 8% solids (39) and short-beaked

echidnas 12% (10), however data are based on small samples sizes.

4.1. Protein

Total macronutrient quantities change throughout lactation and qualitative changes also occur to the
macronutrients. Protein concentration increases throughout lactation in most marsupials (46, 52, 53). By
comparison, protein content either remains stable or only decreases slightly in eutherian species, for
example as seen in rhesus monkeys (Macaca mulatta), insectivorous bats and equids (54-56). Casein and
whey protein increase gradually in tammar wallaby milk (32), with pre-albumin and o-globulin fractions
increasing from 180 days postpartum and peak at pouch exit (57). Levels of serum albumin, a-
lactalbumin, B-lactoglobulin and transferrin are relatively consistent throughout lactation in the red
kangaroo (58, 59). However, whey acidic protein secretion begins at around day 155 post-partum and
ceases at day 209, cystatin is secreted from day 102 until day 192, and late lactation protein A is secreted
from day 192 (58). In the quokka whey albumin, y—globulin and B—globulin levels remain consistent
throughout lactation and are present at levels lower than maternal serum albumin (60). Common brushtail

possum transferrin increases around the time of pouch exit, as much as ten-fold between days 110 to 130

(61).

Casein and a—globulin proteins are the main proteins in milk, including monotreme milk. Overall, caseins
are quite different across mammalian species, however most species have no more than four different
casein proteins (62). Initially platypus were found to only have one casein protein while short-beaked
echidnas had two (40, 63, 64), and more recently Lefévre, Sharp (65) characterized the caseins in both
species. The whey proteins of the short-beaked echidna are distinctly different from those of the platypus

(66). Total protein and casein composition of echidna milk is high in early lactation (until day 48) (40).
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4.2. Lipids

n; and then increase exponentially into
late lactation and reach a peak around weaning (46, 47, 59, 67). Crude lipid concentration can increase by
up to five times in late lactation compared to early lactation (53). In three arboreal folivores lipid
concentration peaks in mid-lactation. In koalas this occurs just prior to pouch exit, before reducing in late
lactation (49-51). The common ringtail and brushtail possums have the lowest concentrations of crude
lipid (maximum 8g/100mL) in their milk compared to other marsupials studied thus far (49, 50). By
comparison lipid concentration can be as high as 46g/100g in the eastern quoll (Dasyurus vivverinus) or

31.4g/100g in the Tasmanian pademelon (Thylogale billardierii) (53, 67).

Oleic acid (CIS8:1) followed by palmitic acid (CI6:0) are the predominant fatty acids present in marsupial
milk (37, 47, 67, 68). In the eastern quoll palmitic acid is higher than oleic acid in early lactation and they
crossover between 6-10 weeks post-partum with oleic acid becoming the dominant fatty acid (67). Stearic
acid (CI8:0) and linoleic acid (CI8:2) are also major fatty acids in marsupial milk (14, 47, 67, 69-71), as
well as palmitolic acid (C16.1) in long-nosed potoroo (Potorous tridactylus) milk (47). Arachidonic acid
(C20:4) is present in eastern quoll and numbat (Myrmecobius fasciatus) milk more so than in tammar
wallaby milk, likely due to the insectivorous diet of quolls and numbats (67, 71). Short-chain fatty acids
are not found in the long-nosed potoroo, tammar wallaby or numbat milk while only trace amounts are

found in eastern grey and red kangaroo milk (14, 47, 69-71).

Monotreme milk shows some diversity in fatty acid composition across species. Short-beaked echidna
milk is low in polyunsaturated fats compared to platypus milk which is high in polyunsaturated fats, such
as linolenic acid (C18:3) (72-74). In addition, short-beaked echidnas lack very long-chained
polyunsaturated fats such as docosahexaenoic acid (C22:6), docosatetraenoic acid (22:4) and

docosapentaenoic acid (C22:5) (73). Oleic acid (C18:1) is the dominant fatty acid in monotreme milk,
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with short-beaked echidnas having more oleic acid than platypuses (38). The fatty acids in platypus milk
are the same as those found in the food of platypuses (macroinvertebrates) (75). Fatty acid composition is
influenced by captivity and diet in short-beaked echidnas, with significant differences observed between
oleic and palmitic acids in captive and free-ranging short-beaked echidna milk (74). Similar to marsupials
and monotremes, eutherian pinnipeds also show increases in lipid content of milk during lactation (76,
77). For example, northern elephant seal (Mirounga angustirostris) lipid levels increase from around 12%

to 50% during lactation (77). This increase occurs as water content decreases.

Lipid content in milk has been suggested to be linked to nursing patterns, whereby those mothers being
absent from their young for long periods produce higher quantities of fat, and those mothers that are
always close to their young and therefore able to feed their young more frequently have lower levels of
fats but higher carbohydrate levels (78, 79). This is also true of some seal species that leave their young
for periods of time to go out and forage (77, 80). Marsupial neonates are permanently attached to the
maternal teat and marsupial milk contains low levels of fat during this period (47, 67). The lipid levels
increase as the young grows and detaches from the teat prior to weaning (46, 47, 59, 67). It has been
suggested the lipid increases in marsupial milk can be correlated to the need for fat reserves required for

thermoregulation and increased muscle activity related to locomotion in the young (50, 52).

4.3. Carbohydrates

Carbohydrate concentration in marsupial milk gradually increases post-partum, followed by a sharp
decrease around the time of pouch exit. For example, in the tammar wallaby total hexose peaks at 13% at
26 weeks and falls to 1% by 40 weeks pospartum (81, 82), and a similar pattern is observed in the red-
necked wallaby (Macropus rufogriseus) and red kangaroo (59, 83). In the eastern quoll, milk
carbohydrate concentration peaks at eight weeks postpartum and rapidly decreases from 17 weeks post-
partum prior to the onset of weaning at 20-22 weeks (84). Carbohydrates also undergo qualitative changes

in composition throughout lactation.
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Lactose is the main carbohydrate in eutherian milk, however this is not the case in monotremes and
marsupials (85-87). There are differences between carbohydrate composition across marsupial species. In
the tammar wallaby carbohydrates change from lactose to oligosaccharides between days 4 and 21 days
post-partum (88). In the gray short-tailed opossum early lactation milk contains monosaccharides
(galactose and glucose) as well as lactose, and after two weeks the milk carbohydrate changes to
predominantly oligosaccharides that coincides with the end of fixed lactation (89). During late lactation of
the gray short-tailed opossum, milk contains lactose, oligosaccharides and monosaccharides, while
tammar wallaby milk contains monosaccharides as the only carbohydrates (81, 89). In the potoroo early
milk is mostly oligosaccharides and then changes to lactose, galactose and glucose at 15 weeks post-
partum (47). Arboreal folivore milk has similar compositional changes in carbohydrates. In the common
brushtail possum lactose is the main carbohydrate, with traces of higher oligosaccharides in early
lactation (90). During mid-lactation the carbohydrate portion of koala milk is dominated by
oligosaccharides, while during late-lactation it is dominated by lactose, similar to the common ringtail and

brushtail possums (50, 51, 90).

Monotreme milk has a high fucose composition and the principal carbohydrate in echidna milk is sialyl-
lactose, and difucosyl-lactose in the platypus whereas these are only minor carbohydrates in human milk
(86, 91). In Tasmanian short-beaked echidnas (7. a. setosus) difucosyl-lactose was only detected in late
lactation (~150 days post hatching) (92). Lactose is present in only trace amounts during early lactation in
short-beaked echidna milk (92). It is hypothesized that fucose is the main energy source for young
monotremes and is comparable to galactose and glucose in eutherian mammals (93). Sialyl-lactose found

in monotreme milk is unique to the echidna and not found in any other mammal milk (91, 92).

4.4. Minerals (Electrolytes)
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Comparatively less data is available on electrolytes compared to macronutrients in marsupial and
monotreme milk. Sodium and potassium levels are variable. Usually sodium is found in higher
concentrations than potassium in early lactation. There is an inverse correlation with these two minerals in
late lactation when potassium levels become higher than sodium levels (49, 52, 83). In the red-necked
wallaby, red kangaroo, and common ringtail and brushtail possums sodium levels increase around the
time of weaning just prior to lactation ceasing (49, 50, 59, 83). Atypically American marsupials show
little change in sodium or potassium concentrations over the course of lactation (48, 94). Sodium and
potassium concentrations of monotremes (means from 37-99 days postpartum in the short-beaked echidna
and unknown ages of platypus (38)) are within the range observed in the brush-tailed bettong (Bettongia

penicillata) in early lactation (day 55) (95).

Generally iron concentrations show a decreasing trend during lactation in marsupial and eutherian
mammals (96). Comparatively marsupial and monotreme milk contain higher levels (>3x) of iron than
eutherian species (67, 97, 98). Marsupials and monotremes rely on iron supplied in milk for hemoglobin,
cytochromes, and myoglobin due to their premature state at birth and prolonged need for milk (98). Due
to the underdeveloped stage of marsupial livers at birth they are unable to store as much iron as eutherians
and thus require higher levels from milk. Iron concentration in the milk can be up to nine times the

maternal plasma levels in marsupials (99).

In the common ringtail possum no clear trends for calcium and magnesium concentrations are evident
(50). In the red kangaroo calcium peaks in mid-lactation and reduces after pouch emergence, whilst
magnesium concentrations are low relative to other electrolytes in the milk (59). In the Virginian opossum
calcium peaks in early lactation and stays high until 10 weeks post-partum and decreases in late lactation
(48). Calcium and magnesium concentrations of monotremes are similar to that in marsupials, however
data are means (from 37-99 days postpartum in the short-beaked echidna), and from unknown ages of

platypus (38), thus changes in these mineral concentrations cannot be determined. In an insectivorous
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eutherian, the nine-banded armadillo (Dasypus novemcinctus), calcium concentration increases (~x2.9)
throughout lactation between 3-6 days postpartum and 49-51 days postpartum (100), so it is possible
monotremes undergo similar increases to those of marsupials and eutherians however more research is

required.

4.5. Macronutrient energy

We applied nutritional geometry techniques to published data to assess the nutrition of marsupial and
monotreme milk. Using the Atwater factors, protein 17klJ, lipid 37kJ, carbohydrate16kJ (101),
composition of milk on a dry matter basis published data were converted into a percentage energy basis
and graphed to determine the percentage of macronutrient energy contribution to milk at different times
during lactation and comparisons made across two species (Supplementary Table 1). In the tammar
wallaby and eastern quoll protein contributes a less variable percentage of energy than carbohydrate and
lipid, remaining between 17 and 28% for both species (Figure 1). In early lactation for both species
carbohydrate contributes a greater percentage of energy. Later in lactation closer to weaning time, lipid
contributes the most energy in milk of both species (Figure 1). Higher lipid energy would support young

is a time of accelerated growth and development and potential aid in fat storage.

6. Milk as sustenance for young
Growth of young is related to the quantity and quality of the milk produced and thus higher intake leads
to faster growth rates. In marsupials young range from 10 to 750 mg at birth (13), thus milk intake in
early lactation is low and increases exponentially. For example, quokka pouch young increase milk intake
from 1.6 mL d-'at 55 days postpartum to 32.5 mL d-! at 165 days postpartum (102). Marsupial young
grow at a rate of 0.2 to 0.5 g per mL of milk consumed depending on species and age (52, 95, 102-105).
The tammar wallaby grows at a rate of 0.21-0.25g mL-! during the first 24 weeks postpartum and then
increases to 0.37g mL-! after 25 weeks (104). By comparison the brush-tailed bettong grows at a rate of

0.51g mL-! at 4-6 weeks postpartum and then decreases to 0.40g mL! at 13 weeks (95). Differences in
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growth rates during lactation are likely related to changes in energy composition of the milk throughout
lactation and other factors (see section on Macronutrient energy). As well as total milk intake, Smolenski
and Rose (105) suggested that protein intake from milk caused differences in growth rates between two

similar-sized marsupial species.

Short-beaked echidna young can suckle 10-20% of their body mass in 30—60 min (106, 107). As lactation
progresses frequency of feeding young decreases in monotremes and the time the mother spends out
foraging for food increases (108-110). Green, Griffiths (107) estimated that echidna young grow at a rate

of 0.41 £ 0.10 g mL"! of milk consumed.

7. Maternal nutrition
Lactation is energetically costly for all mammals with energy needs ranging from 35 to 149% above
maintenance costs for mothers (111, 112). Marsupials have a long lactation period where significant
changes occur to milk composition, and for marsupial young, most growth occurs at this time. Thus,
marsupial mothers invest a significant proportion of energy towards milk production over a longer period
of time than comparatively-sized eutherian mammals, whereas eutherians invest more in gestation. In the
marsupials it appears that energetic needs increase significantly in late lactation by 112-222% (113-117).
Changes to maternal energetic needs correspond to milk becoming more energy-rich and containing a
higher lipid concentration. In the eastern quoll 9-14 weeks postpartum, there is an energetic increase to
200% that of non-lactating animals that coincides with an increase in milk production (118). During
gestation and early lactation there are minimal increases in the energetic needs of marsupial mothers (114,
115, 117). However, restricting maternal nutrition affects the nutritional composition of milk produced by
marsupial mothers (119). For example, bettongs fed on a restricted diet in captivity produced milk with a
lower protein content compared to those on an ad /ib diet and free-ranging animals (120). Access to lower
quality forage caused eastern grey kangaroos to produce lower-energy milk than mothers in a previous

year that were also in better body condition (34).
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Some marsupial mothers contribute very little fat reserves towards lactation and rely on current nutrient
intake during lactation (113, 115-117). In the wild, this has implications on survival of young, for
example if mothers cannot access the required nutrition for themselves, as well as their young, they may
have to abandon their young to be able to survive. One example is that red kangaroos have a high
mortality of young-at-foot and pouch young during times of drought and poor quality food availability
(121). When resources are plentiful, marsupials that have multiple young at once will produce milk of the
similar quality/quantity for their litter no matter how many young they have, causing young in smaller
litters to grow faster (113, 114) and potentially wean earlier. For the bare-tailed woolly opossum
(Caluromys philander) having one young, as opposed to eight, does not require a significant increase in
energy intake, and thus energy intake by mothers with one pouch young is no different to non-lactating
females (114). Northern brown bandicoots (Isoodon macrourus), and common ringtail and brushtail
possums appear to use body stores to cope with late lactation, as well as increase their energy intake,
similar to other marsupials (122-124). The northern brown bandicoot stores body reserves in the first 30-
40 days of lactation then uses these stores in the latter half of lactation (124). It is suggested these stores
are fat that can be mobilized when the mothers require them for late lactation (124). In the common
ringtail possum the body stores are possibly fat (122), however this has not been investigated. Eastern
grey kangaroos use both stored and incoming resources to cope with the cost of lactation (34, 125). There
is some indication that short-beaked echidnas use body stores to support lactation (106, 108). Morrow and
Nicol (108) found echidna mothers do not leave the nursery burrow to feed during the first few weeks
after the young have hatched, and subsequently lost significant body mass, however their body mass
increased again after leaving the burrow and recommencing feeding. Platypus will consume up to 2093 kJ
kg! d-1during lactation which is 227% that of non-lactating females (109). Like marsupials, there seems
to be minimal increases in energetic needs of female platypus in the first month of lactation (109, 126).
More data is needed on maternal nutrition from a wider range of marsupials and monotremes to

understand how nutrient demands change throughout lactation.
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8. Growth factors in milk
Milk not only provides essential nutrition required for development but also plays a role in signaling
growth and development in young (127-130). The components that are not essential for nutrition but used
in cell and tissue growth are known as bioactives, and include proteins, peptides, fatty acids, hormones
and growth factors (128). The reader is referred to Sharp, Modepalli (131) and Sharp, Wanyonyi (132) for
comprehensive reviews of bioactives in milk in marsupials and monotremes. Modepalli, Hinds (133) and
Modepalli, Hinds (134) found milk collected from tammar wallabies likely aids lung maturation.
Modepalli, Kumar (135) also identified miRNA in tammar wallaby milk and found they act as markers
for lactation and mammary gland development in the mother and may aid development of the young.
Tammar wallaby milk contains exosomes that are likely to be able to cross the neonatal gut and hence
enter the bloodstream (136, 137), therefore allowing miRNA within the milk to impact growth and
development (131). Further, cross fostering studies in marsupials have shown that when a younger
marsupial neonate is placed onto a teat secreting later-stage milk, the neonate will develop faster (129,
138), which is possibly due to the differences in bioactives supplied in milk of different stages as well as a

higher energy content (119).

Earlier studies of cross-fostering in marsupials, particularly cross-species, were trialed over 60 years ago
(139), because of its potential as a conservation tool, to remove the need for the donor species to continue
lactation and support of the newly born young, and allow subsequent mating, thus enhancing population
numbers through additional births (140, 141). Most studies have since been conducted on macropods
(139, 142-146), but other studies have investigated bettongs (147) and wombats (140). Interspecies cross-
fostering has had mixed success. Success has been reported for pouch young transferred from wild bridled
nailtail wallabies (Onychogalea fraenata) and spectacled hare wallabies (Lagorchestes conspicillatus) to
captive unadorned rock wallaby (Petrogale inornata) mothers (144), and for pouch young transferred

from wild brush-tailed rock wallaby (Petrogale penicillata) and yellow-footed rock wallaby (Petrogale
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xanthopus) mothers to captive tammar wallaby mothers (148). However, Johnson (144) has also
documented mortality and retarded growth after transfer of wild whiptail wallaby (Macropus parryi)
pouch young to agile wallaby (Macropus agilis) mothers, and Menzies, Shaw (149) has noted similar
impacts on pouch young after transfer from parma wallabies (Macropus parma) to tammar wallabies.
Finlayson, Taggart (140) has since suggested synchrony of reproductive cycles, in both target and

recipient species, is essential for cross-fostering success.

A further protein (S100A19) has been identified in tammar wallaby neonatal forestomach and expressed
only when the neonate is exclusively digesting milk (150). The same protein is expressed in the tammar
wallaby mammary gland tissue but is only expressed during pregnancy and involution (150). It is

believed S100A19 is involved in gut development or plays an antibacterial role in both the neonatal gut
and the mammary gland (150). A more recent and comprehensive microarray study conducted on tammar
wallaby mammary gland expression at different lactation periods has found, despite many
immunological-related proteins being expressed during crucial developmental periods (127), that the
molecular expression of some genes were down regulated, and some genes varied greatly in their levels of

expression, such as SIM2 and FUTS, however their function in lactation is yet to be determined (151).

9. Milk replacers
Milk replacers provide an alternative to maternal milk to raise young when the mother cannot. The
nutrient composition of milk varies among different species as discussed earlier. For that reason, milk
from one species is not suitable for another. Milk replacers have been used for a variety of marsupials and
a monotreme, including bare-nosed wombats (Vombatus ursinus), Tasmanian devils (Sarcophilus
harrisii) and the short-beaked echidna (152). Marsupials may require hand-raising when a mother rejects
their young, is unable to produce enough milk, or has died. It is recommended that marsupials be fed milk

with very low levels, or no lactose and galactose, hence eutherian milk is not suitable. There are a range
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of commercially available milk replacers that have been designed specifically to meet the needs of

marsupials and monotremes that should be used.

Using data available on commercially available milk replacers, we mapped macronutrient energy using
the Atwater factors, protein 17kJ, lipid 37kJ and carbohydrate 16kJ. On a percentage energy basis milk
replacers adequately replicate carbohydrate and protein energy for most marsupial milks during mid-
lactation but they do not contain as much lipid as available in maternal milk (Figure 2). Generally, the
milk replacers recommended for late lactation have higher lipid concentrations. In addition to being used
to raise young, milk replacers have been used as supplements for older underweight animals, specifically

koalas and bilbies (Macrotis lagotis), to help get animals back into condition (153).

10. Milk aids immunological defense of the young
As discussed previously marsupials and monotremes are born relatively under-developed compared to
eutherian mammals. Newborn marsupials have been compared to an eight week old human fetus in terms
of their developmental stage (6), and are unable to mount specific immune defense (154). At the time of
birth, the young marsupial crawls from the vagina to the teat and permanently attaches. On attachment the
teat swells in the neonate’s mouth and the mouth fuses around the teat. As the neonate is unable to mount
a specific immune response shortly after birth, and due to a lack of circulating mature
lymphocytes(reviewed in Old and Deane (154)), the young marsupial is believed to be highly reliant on
maternally-derived strategies for immune defense, including immunoglobulins transferred prenatally via
the yolk-sac in some species (155), immunological cells (156), and other immunologically important

molecules in milk (127, 157).

Neutrophils in all stages of development have been found in tammar wallaby milk and were the
predominant cell type in colostrum and early stage milk of tammars and long-footed potoroos (Poforous

longipes) (156), and late stage milk collected from koalas (158). In contrast, lymphocytes were observed
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472  in early and late stage tammar milk, but not in colostrum samples, and macrophages were only found in
473  late stage tammar and yellow-footed rock-wallaby (Petrogale xanthopus) milk (156). Basden, Cooper
474  (159) found high levels of circulating neutrophils in newborn tammar wallabies and these may have been
475 maternally-derived given the numbers in milk. Cockson and McNeice (160) also suggested this method of
476  maternally-derived transfer of cells occurred across the neonatal quokka gut, as they noted small and large
477  lymphocytes in the milk supplied to young 12 days postpartum and neutrophils in the milk of young 20
478  days postpartum.

479

480 Transplacental immunoglobulin(Ig) transfer although shown to occur in the tammar wallaby (155), does
481 not occur in all marsupials, as evidenced by a lack of circulating Ig in newborn Virginian (161) and gray
482  short-tailed opossums (162). Ingested Igs have been detected in the serum of common brushtail possums
483 (and quokka) in the switch phase of lactation (up until at least 98 days), but not in the late phase of

484  lactation (150 days) (163), however no pouch young younger than 40 days postpartum were examined.
485  Further, although the concentration of IgG in colostrum is low in the tammar wallaby and hill kangaroo
486 (Macropus robustus), after suckling the level of IgG in the serum of the young dramatically increases,
487  suggesting passive uptake of IgG from the colostrum (155, 164).

488

489  Early milk contains colostrum, a protein-rich substance with high levels of Igs, as well as proteins

490 important for transport, nutrition and immune protection (165). IgA has been detected in the early phase
491 of tammar wallaby (155) and common brushtail possum (166) lactation. Expression of IgA, the J-chain,
492  responsible for the dimeric formation of IgA, and polymeric Ig receptor (PIGR), the molecule responsible
493  for transferring the IgA complex through epithelial cells, have been reported in the common brushtail
494  possum mammary gland at all stages of lactation. However IgA and J-chain expression was heightened
495  during the first week of lactation and towards the end of the switch phase, when the young marsupial first
496 leaves the pouch, and PIGR expression was similar in its expression levels except that it remained high

497  after the end of the switch phase until lactation ended (166). Thus, IgA appears important for immune
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protection of the young during the early neonatal period and at the time of pouch exit (166). Further,
Adamski and Demmer (43) reported two distinct stages during common brushtail possum lactation when
immune transfer was increased, these being the early lactation and switch phases. Expression of FCRN,
responsible for regulating IgG in milk, is also highest during the early lactation phase and decreases over
time, whereas, -2-microglobin increases during the switch phase when IgG secretion from the mammary

gland is highest (167).

More recently, Fehrenkamp, Morrissey (168) demonstrated a correlation between FCRN expression in the
mammary of lactating gray short-tailed opossums with FCRN expression in the gut of the neonates. As
expression declined, presumably to reduce maternal IgG transfer as the young matured, there was
concomitant reduction in expression in the gut of the suckling young. The timing of this decline correlates
also with the maturity of the neonatal immune system and the appearance of endogenous IgG in the
neonate (169). These observations are consistent with reducing transfer of maternal IgG timed with the
newborn developing its own ability to respond to pathogens and generate active protective immunity and
less dependence on passive maternal immunity. Furthermore, there is little evidence of resident, IgG
producing B cells in opossum mammary tissue, suggesting that the IgG being transferred is from maternal
circulation. In contrast there are resident IgA producing B cells in the opossum mammary (Fehrenkamp et

al. 2019).

As stated earlier in this review total protein was highest in the late phase of lactation in the tammar
wallaby (36, 57). Proteins of primary immunological importance include Igs, myeloid cathelicidin and
complement component B, whilst other components may to provide secondary levels of protection such
as very early lactation protein (VELP) (127). VELP has also been identified in common brushtail possum
(170) and koala (171) milk. VELP may play a role against bacterial colonization of the mucosal surfaces

of the gastrointestinal tract (165) . MM1 has also recently been identified in the koala genome and
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suggested to have antimicrobial properties (171). Other proteins are involved in nutrition, for example -

lactoglobin, and development such as retinal A and o-fetoprotein (127).

Monotremes express a unique monotreme lactation protein (MLP) in a variety of tissues including milk,
with the highest expression occurring in milk cells (172). Analysis of the recombinant protein shows it is
N-glycosylated, amphipathic and a-helical, and therefore typical of an antimicrobial protein (172, 173).
Functional studies have confirmed the recombinant protein has antimicrobial properties against
Staphylococcus aureus and a commensal bacteria, Enterococcus faecalis (172). Further antimicrobial
proteins have also been found in echidna (EchAMP) and platypus (PlatAMP) milk (172, 174), and shown
to have bacteriostatic properties against Gram positive and negative bacteria but not Enterococcus

faecalis (174).

Cathelicidins, a type of antimicrobial peptide, found in most vertebrates are also produced by marsupials
(171, 175, 176) and have been identified in milk (177, 178). Warren, Hillier (179) have also identified
cathelicidins (180, 181) and defensins in the platypus genome, and Whittington, Sharp (182) in the tissues

(brain, kidney, liver, lung, spleen and testis), but did not find cathelicidins or defensins in platypus milk.

Nicholas, Simpson (45) described the changes in composition of whey proteins in tammar wallaby milk
throughout lactation and correlated these with the different stages of lactation. Joss, Molloy (127) also
described the protein components of whey over the four lactation periods (phase 1 (early), 2A and 2B
(switch phase) and 3 (late)) of the tammar wallaby and correlated the changes in protein content to the
changes in developmental stages of the newborn marsupial. Whey acidic protein four- disulphide domain
protein-2, for example, is increased in pregnancy, high in phase 2A, downregulated in phase 2B,
upregulated again at the end of phase 3 and high in involution n (183), and has been shown to have

antibacterial activity against a range of pathogenic bacteria but not Enterococcus faecalis. The increased
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levels of expression at these times correlate to the time at which the mammary gland is most at risk of
infection (136). The time of increased expression is also likely to provide the young with additional
immune protection whilst they are developing immunocompetence and unable to mount their own

immune specific response (154).

Studies investigating gene expression in tammar wallaby mammary gland tissue using expressed
sequence tags has found increased expression of genes over the period of lactation, particularly secreted
proteins (157). These proteins were involved in translation, and metabolic and immune functions (157).
Piotte, Marshall (184) also confirmed the presence of lysozyme, an antimicrobial enzyme, and found its
protein structure to be similar to bovine stomach lysozymes and primate lysozymes, but different to

calcium-binding lysozymes in the echidna (185, 186) and horse (187).

11. Conclusions
Milk is essential for marsupial and monotreme sustenance and development. Nutrient changes in
marsupial milk are very pronounced. Although data on nutrient changes throughout lactation is available
for some marsupial species, there is limited data available for monotremes. Further research is needed to

assess changes in macronutrient composition of monotreme milk.

Maternal energy requirements undergo the most significant change during late lactation when maternal
energy requirements can be up to 222% higher. The increased energy needs correspond to when milk
becomes more lipid rich. Maternal food intake and sex of offspring correlates to differences in milk
macronutrient concentration. Further work is needed to investigate specific dietary requirements of
mothers to optimize milk production for the health of their young, as maternal nutrition is likely to

correlate to pouch young survival and health later in life.
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Commercially available milk replacers provide a substitute for maternal milk. While replacers replicate
the macronutrient composition of marsupial and monotreme milk further work is required to better
encompass the range of milk compositions produced by marsupial and monotreme mothers, as well as the

additional factors naturally present in milk such as growth factors and immunological components.

Whilst a good body of research exists for the role of milk in some specific marsupials, further research is
required to address the role of a range of factors present in milk and their direct effect on newborns from a
broader range of marsupial and monotreme species. It is also clear that due to the wide and varied
definitions of the different stages and phases of milk production that it hinders comparison between many
of the studies on marsupials. Conservation of marsupials and monotremes would also benefit from

furthering our understanding of their species specific biology.
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Figure legend

Figure 1. Right angle mixture triangle of macronutrient composition of milk from the eastern quoll and
tammar wallaby at different weeks (w) of lactation. For the tammar wallaby values represent phase 2A,
2B and two time points within phase3. Protein and lipid (% energy) increase along the X and Y axes,

respectively. The percentage of carbohydrate decreases with distance from the origin, with the diagonal

lines representing a fixed percentage carbohydrate

Figure 2. Right-angled mixture triangle of commercially available marsupial milk formulas. Protein and
lipid (% energy) increase along the X and Y axes, respectively. The percentage of carbohydrate decreases

with distance from the origin.
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Figure 1. Right angle mixture triangle of macronutrient composition of milk from the eastern
quoll and tammar wallaby at different weeks (w) of lactation. For the tammar wallaby values
represent phase 2A, 2B and two time points within phase3. Protein and lipid (% energy)
increase along the X and Y axes, respectively. The percentage of carbohydrate decreases
with distance from the origin, with the diagonal lines representing a fixed percentage

carbohydrate.
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Figure 2. Right-angled mixture triangle of commercially available marsupial milk formulas.
Protein and lipid (% energy) increase along the X and Y axes, respectively. The percentage of

carbohydrate decreases with distance from the origin.

Peer] reviewing PDF | (2020:03:46829:0:1:NEW 30 Mar 2020)



PeerJ Manuscript to be reviewed

+ Wombaroo - Kangaroo <0.4
100 -
< Wombaroo - Kangaroo 0.4
90 - @ Wombaroo - Kangaroo 0.6
80 - + Wombaroo - Kangaroo 0.7
e QS P 1 Wombaroo - Possum >0.8
& X o' Wombaroo - Possum <0.8
5 60 A X :
5 E % #Di-vetalac
N 50
- 8 A Wombaroo - Koala Early Lactation
2 40
,E- (] 4 Wombaroo - Koala Late Lactation
30 Q & Wombaroo - Wombat <0.4
20 & Wombaroo - Wombat 0.4
10 o Wombaroo - Wombat >0.6
0 i 5 .r e . . : " ; ; = Paswell's Formula One
0 10 20 30 40 50 60 70 80 90 100 =BIOLACM100
Protein (%energv) *BIOLAC M150
% BIOLAC M200

Peer] reviewing PDF | (2020:03:46829:0:1:NEW 30 Mar 2020)





