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ABSTRACT
This study is aimed at characterizing soft tissue slices using a vibratome. In particular,
the effect of two sectioning parameters (i.e., step size and sectioning speed) on
resultant slice thickness was investigated for fresh porcine liver as well as for
paraformaldehyde-fixed (PFA-fixed) and fresh murine brain. A simple framework
for embedding, sectioning and imaging the slices was established to derive their
thickness, which was evaluated through a purposely developed graphical user
interface. Sectioning speed and step size had little effect on the thickness of fresh liver
slices. Conversely, the thickness of PFA-fixed murine brain slices was found to be
dependent on the step size, but not on the sectioning speed. In view of these results,
fresh brain tissue was sliced varying the step size only, which was found to have a
significant effect on resultant slice thickness. Although precision-cut slices (i.e., with
regular thickness) were obtained for all the tissues, slice accuracy (defined as the
match between the nominal step size chosen and the actual slice thickness obtained)
was found to increase with tissue stiffness from fresh liver to PFA-fixed brain. This
quantitative investigation can be very helpful for establishing the most suitable slicing
setup for a given tissue.

Subjects Bioengineering, Anatomy and Physiology, Histology
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INTRODUCTION
Vibrating blade microtomes or vibratomes are commonly used for obtaining precision-cut

slices from soft fresh tissues. Unlike classical sectioning procedures based on the use of

microtomes, vibratome slicing does not require any tissue fixation, dehydration and

embedding, thus cell viability and native tissue structure are conserved. Fresh tissue slices

are suitable candidates for in vitro tissue models (Parrish, Gandolfi & Brendel, 1995; Parrish

et al., 2002; Van de Bovenkamp et al., 2005; Groothuis & de Graaf, 2013) as well as for

structural and morphometric analysis (Karim et al., 2013; Eide et al., 2014). For instance,

precision-cut liver slices are powerful tools for the in vitro study of pharmacological

metabolism, toxicology and efficacy of novel substances under standardized conditions

(Van de Bovenkamp et al., 2005; Van de Bovenkamp et al., 2006; Van de Bovenkamp

et al., 2007; Karim et al., 2013; Eide et al., 2014). They have been used extensively for

rank-ordering the toxicity of chemicals and examining the mechanisms of liver injury as
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well as for investigating the induction of cytochrome P-450 enzymes and the expression

of stress proteins or peroxisomal enzymes, thus offering a valuable bridge between in vivo

and cell culture systems (Gandolfi, Wijeweera & Brendel, 1996; Olinga & Schuppan, 2013).

Notably, as the metabolic functions of pig liver are very similar to human liver, porcine

hepatic tissue slices are often employed for in vitro model applications and bio-artificial

liver devices (Vilei et al., 2001; Swindle, 2007). Brain tissue slices, on the other hand, are

attractive for the evaluation of different morphometric features such as the total extent of

dendrites and the number of branching points, as well as for 3D tissue reconstruction and

analysis of neurons (Jin et al., 2003; Billeci et al., 2013; Golovyashkina et al., 2014).

Despite the widespread use of vibratomes for obtaining live tissue sections, it is difficult

to find standard protocols or consolidated methods to determine sectioning parameters for

generating precision cut slices with a desired thickness for a given application. This is partly

because the selection of sectioning parameters is likely to depend widely on tissue type

and donor (Zimmermann et al., 2009) and sample status (e.g., hydration Haji Maghsoudi,

Hosseini Sharifabad & Karimzadeh, 2008; Png et al., 2008), and also because the sample

embedding and processing for thickness analysis varies from report to report (i.e., Haji

Maghsoudi, Hosseini Sharifabad & Karimzadeh, 2008; Zimmermann et al., 2009). Indeed

there is no unique consensus on the correlation between the nominal and experimental

thickness of vibratome slices. Most studies evaluate the experimental thickness of

vibratome-sliced tissues through paraffin embedding procedures and generally report a

shrinkage with respect to the nominal one, such as in Haji Maghsoudi, Hosseini Sharifabad

& Karimzadeh (2008) and Christensen et al. (2007). In the latter study, the authors report a

tissue shrinkage of 54% in the z-axis after sectioning and suggest that vibratome sections

should typically be cut at 70–100 µm due to this substantial collapse (Christensen et

al., 2007). This shrinking is most likely a result of sample dehydration during paraffin

embedding, as discussed in Zimmermann et al. (2009), and is thus poorly representative of

the experimental slice thickness after vibratome sectioning. Moreover, it is not obvious to

always expect tissue shrinking after vibratome slicing. Indeed, Zimmerman and colleagues

found the experimental thicknesses of porcine and bovine liver slices to be higher than

the nominal vibratome step size used (i.e., 200 µm), even though they used paraffin

embedding and subsequent cross sectioning to estimate slice thickness. These rather

inconsistent findings motivated us to establish an experimental framework for the rapid

generation and characterization of precision cut tissue slices without having to resort to

lengthy trial and error experiments and tissue wastage. In particular, our main objective

was to determine the “actual” slice thickness in the fully hydrated state after sectioning

and subsequent equilibration in phosphate buffered saline (PBS). Notably, the “actual”

thickness as defined here accounts for any deformation or swelling after sectioning and

is representative of that of the slice during culture (e.g., for application to organotypic

cultures for toxicity testing). In the present study, tissue slices were obtained from fresh

porcine liver and from both fresh and paraformaldehyde-fixed (PFA-fixed) murine brain

by varying two main vibratome sectioning parameters, i.e., the step size and the sectioning

speed. These three different tissues were selected in order to have three samples differing
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in stiffness to evaluate the effect of varying vibratome slicing parameters on the actual slice

thickness (i.e., after sectioning and equilibration). In particular, tissue stiffness increases

from fresh pig liver to PFA-fixed brain. In a recent study we showed that the compressive

modulus of fresh porcine liver samples harvested from one-year-old healthy pigs (as used

in this work, Section ‘Sample preparation and slicing setup’) is ∼1.5 kPa (Mattei et al.,

2014a). Aurand et al. (2014) reported that the compressive modulus for murine brain

samples harvested from 3 months mice (as used in this study, Section ‘Sample preparation

and slicing setup’) is ∼3.5 kPa. The stiffness of biological tissues is known to increase after

PFA-fixation (Braet et al., 1998; Hutter et al., 2005; Franke et al., 2007), being about 20 times

higher than that of fresh tissue for brain samples obtained by perfusing 4% PFA through

the animal’s left ventricle (as in this work, Section ‘Sample preparation and slicing setup’)

(Lee, 2011).

The other vibratome sectioning parameters (i.e., oscillation amplitude and blade angle)

were kept constant as they are less crucial to the determination of slice thickness. In order

to derive meaningful results with minimal artefacts due to tissue shrinkage, the actual

slice thicknesses were evaluated by embedding fully hydrated vibratome-sliced samples in

agarose gels. Unlike classical paraffin inclusion, agarose embedding does not require any

tissue fixation and dehydration, which are likely to affect quantitative measurements of

resultant slice thickness, as discussed above. The technique is widely used for processing

delicate samples and is known to maintain their morphology intact (Wu, Baskin &

Gallagher, 2012; Ke, Fujimoto & Imai, 2013). Agarose-embedded slices were sectioned

perpendicularly to their surface obtaining transverse sections. The sections were imaged

with an optical microscope and analyzed with a purposely-developed Graphical User

Interface (GUI) to evaluate the actual slice thickness.

MATERIALS AND METHODS
Sample preparation and slicing setup
Fresh porcine hepatic tissue was collected from n = 2 one-year-old healthy pigs and cut

into 1.5 × 0.5 × 0.5 cm3 samples, avoiding the Glisson’s capsule and macroscopic vascula-

ture. The tissue was obtained from a local abattoir, as a slaughter by-product. Fresh murine

brains were collected from n = 2 three-month-old mice which were deeply anesthetized

by intraperitoneal injection of chloral hydrate (400 mg/kg) and then perfused through the

left ventricle with 50 mL of 10 mM phosphate buffered saline (PBS 1×; Sigma-Aldrich,

Milan, Italy). PFA-fixed brains were obtained from n = 2 three-month-old mice treated as

described for fresh tissue and then perfused with 200 mL of 4% paraformaldehyde (PFA,

pH 7.4) fixative solution prepared in 0.1 M PBS (Sigma-Aldrich, Milan, Italy). Murine

brains were cut along to their sagittal plane, obtaining two samples. Mouse perfusion was

performed at the Department of Translational Research New Technologies in Medicine

and Surgery of the University of Pisa. Experiments were conducted in conformity with

the European Communities Council Directive of 24 November 1986 (86/609/EEC and

2010/63/UE) and in agreement with the Italian DM26/14. Experiments were approved by

the Italian Ministry of Health and Ethical Committee of the University of Pisa.
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Figure 1 Agarose-embedded tissue slices. (A) Fresh porcine liver. (B) Haematoxylin-stained PFA-fixed
murine brain. Scale bars: 1 cm.

A Leica VT1200 S vibratome (Leica Microsystems, Nussloch, Germany) was used to

obtain tissue slices. Each sample was fixed with superglue onto specimen plates and then

cut using a stainless steel razor blade (Gillette, Milan, Italy), under buffered conditions

with ice-cold PBS 1×. Block advance calibrations were used to set up and calibrate the

vibratome device. In particular, 10 slices of 200 µm thickness were cut from a block of

pig liver. Block thickness was measured before and after cutting with a caliper, averaging

measurements from 4 different points over the surface of the block. The results were within

5% of the expected 2 mm. The following cutting settings were used: blade angle, 18◦;

oscillation amplitude, 3 mm for liver, 1.5 mm for brain; sectioning speed, 0.1, 0.2 and

0.4 mm/s for liver, 0.05 and 0.2 mm/s for PFA-fixed brain; step size, 100, 200 and 400 µm.

In the case of fresh brain, only one sectioning speed (0.2 mm/s) was used on the basis of the

results obtained from fixed tissue.

Thickness evaluation
After cutting, the slices were equilibrated in PBS 1× and then embedded in a 1% w/v

agarose gel (A9539; Sigma-Aldrich, Milan, Italy) prepared in deionized water (Fig. 1). The

slice-containing agarose gel, which was formed at room temperature via thermal gelation,

allowed easy and quick embedding of hydrated slices. As discussed in the introduction, this

procedure enables the evaluation of slice thickness in the hydrated state with minimal

distortion. To enhance contrast, brain tissue slices were stained with haematoxylin

(Sigma-Aldrich, Milan, Italy) prior to embedding (Fig. 1B).

Agarose-embedded slices were cut perpendicularly to their surface using a guillotine-

like custom slicer equipped with a microtome blade. The cross-sections were immediately

placed onto a glass slide and imaged with an Olympus IX81 optical microscope

(Olympus, Milan, Italy) at 1.25× magnification. Acquired images were processed with

a purposely-developed software implemented in Matlab® (The Mathworks Inc., Natick,

MA, USA), named STEGUN (after the mathematician Irene Stegun, the name also stands
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Figure 2 STEGUN: a semi-automated tool to evaluate slice thickness. After launching the GUI, the user
has to set the image pixel size by typing its value (in µm/pixel) within the dedicated box (white rectangle
in the left part of the GUI) and load the image to analyze using the LOAD button. The original image
appears in the leftmost panel and its corresponding binarized version in the central one. At this point the
user has to select the slice by dragging the mouse over the region of interest. STEGUN then returns the
cropped image in the rightmost panel. If necessary, the user can rotate the cropped image to vertically
align the slice by clicking on the ROTATE button: image rotation is defined by manually selecting the two
opposite extremities that identify the principal axis of the slice using the mouse cursor. Finally, the user
must select three different rectangular segments of the cropped image in the rightmost panel by clicking
and dragging the mouse. The three yellow rectangles shown in rightmost panel in the GUI represent
an example of three possible segments over which the thickness is calculated. As described in section
‘Thickness evaluation’, the results are returned to the user as mean thickness ± standard deviation.

for “Slice Thickness Evaluation GUi for Non-expert users”). The software is available for

download at http://www.centropiaggio.unipi.it/software.

STEGUN’s simple GUI allows a semi-automated evaluation of slice thickness in 4 simple

steps, as illustrated in Fig. 2. Briefly, after setting the pixel size and loading the image, the

latter is binarized through a thresholding algorithm, then the pixel values are inverted to

obtain a white object representing the slice (pixel level = 1) in a black background (pixel

level = 0). To evaluate the slice thickness, the user has to select three rectangular segments

including the slice from the processed binary image. For each of these three crops, the

slice thickness is automatically evaluated by summing the pixel values and normalizing the

result by the number of pixel rows of the crop. Finally, the computed result is multiplied by

the pixel size to obtain the slice thickness in microns. STEGUN stores all the data in a data

matrix and displays the result as the mean value ± standard deviation. In case of highly

irregular slices (i.e., when the coefficient of variation, calculated as the ratio of the standard

deviation to the mean value, is greater than 0.25) a warning message is returned to the user.

Data analysis
At least 6 independent tissue slices were analyzed for each step size and sectioning speed in-

vestigated. Results are reported as the mean ± standard deviation, unless otherwise noted.

For both porcine liver and PFA-fixed murine brain, the statistical significance between
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slice thicknesses obtained varying two different sectioning parameters (i.e., step size and

sectioning speed) was analyzed using two-way ANOVA. Slice thickness for fresh murine

brain was analyzed with one-way ANOVA, since only the slicing step size was varied,

keeping the sectioning speed at a constant value. Post-hoc multiple comparisons between

different groups of data were carried out using the Tukey’s honestly significant difference

test (Tukey’s HSD test). Statistical analysis was implemented in OriginPro 9.0 (OriginLab

Corporation, Northampton, Massachusetts, USA). Differences were considered significant

at p < 0.05. In addition, to quantify the average mismatch between experimental and

theoretical (nominal) slice thickness for a given tissue, all the step sizes and speeds

investigated were considered to obtain an overall thickness change. In particular, for each

of the step size-sectioning speed combinations the thickness change was calculated as

(average measured thickness–step size)/step size and expressed as a percentage. The values

thus obtained were averaged to get the overall thickness change for the tissue. Since only

2 animals were used per experiment, increasing the number of animals investigated may

improve the statistical accuracy and robustness of the results presented.

RESULTS AND DISCUSSION
Fresh porcine liver
We were unable to obtain slices using the 100 µm step size because the blade tended to

deform and scrape over the tissue rather than cut it, regardless of the sectioning speed.

This is likely due to the very labile and floppy nature of fresh liver (Mattei et al., 2014b).

Although the two-way ANOVA analysis showed that both the step size and sectioning

speed have a significant effect on the resultant thickness of fresh liver slices, 4 of the 6 step

size-sectioning speed combinations investigated (specifically 200-0.1, 200-0.4, 400-0.1 and

400-0.2 µm-mm/s) yielded similar slice thicknesses, with an average value of 540 ± 91 µm

(Fig. 3A). Moreover, the interaction between the two factors (i.e., step size and sectioning

speed) was not found to be significant: lines in Fig. 3B exhibit the same trend versus the

sectioning speed, regardless of the step size.

Overall, although precision-cut liver slices (i.e., with regular and reproducible thickness)

were obtained, the slice accuracy (here defined as the match between the nominal step

size chosen and the actual slice thickness obtained after sectioning and equilibration) was

poor. In particular, the actual slice thickness was found to be consistently higher than

the nominal set step-size selected for slicing the tissue likely because the very floppy and

compliant fresh hepatic tissue swells significantly during post-sectioning equilibration.

Murine brain
PFA-fixed brain
Two-way ANOVA analysis indicates that the thickness of PFA-fixed brain slices depends

on the step size only, yielding 3 different groups of slice thicknesses, regardless of the

sectioning speed (Fig. 4A). As observed for fresh liver, the interaction between the step size

and the sectioning speed was not significant (Fig. 4B).
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Figure 3 Fresh liver slice thicknesses. (A) Bar plot: different letters indicate significant differences
between samples (p < 0.05). Different bar fillings indicate different step sizes. (B) Two-way ANOVA
interaction plot: the interaction between the step size and the sectioning speed is not significant. Error
bars represent standard deviations.

Figure 4 PFA-fixed brain slice thicknesses. (A) Bar plot: different letters indicate significant differences
between samples (p < 0.05). Different bar fillings indicate different step sizes. (B) Two-way ANOVA
interaction plot: the interaction between the step size and the sectioning speed is not significant. Error
bars represent standard deviations.

Although again generally higher than nominal values, the thickness of PFA-fixed brain

slices matched the vibratome step sizes better than those obtained for fresh liver. This tissue

is in fact stiffer than the fresh liver, hence easier to accurately cut in thin regular and more

precise slices and swells less than fresh liver during equilibration.

Fresh brain
No slices were obtained using the 100 µm step size, once again because of the floppy

and compliant nature of non-fixed soft tissues. One-way ANOVA analysis showed

that the resultant thickness of fresh brain slices depends significantly on the step size

chosen (Fig. 5). Again, the actual slice thicknesses were found to be higher than nominal

vibratome step sizes. These results are in agreement with those obtained for both fresh

pig liver and PFA-fixed murine brain, as expected since the stiffness of the non-fixed brain

tissue is between those of the other two tissues investigated in this work.
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Figure 5 Fresh brain slice thicknesses. Bar plot: different letters indicate significant differences between
samples (p < 0.05). Different bar fillings indicate different step sizes. Error bars represent standard
deviations.

CONCLUSIONS
Precision-cut tissue slices from fresh porcine liver as well as from PFA-fixed and fresh

murine brain were characterized in their thickness through a semi-automated slice analysis

GUI implemented in Matlab R⃝. Although precision-cut slices (i.e., with regular and

repeatable thickness) were obtained for all the tissues investigated, the results presented

in this work suggest that the match between the nominal step size chosen and the actual

slice thickness obtained (i.e., slice accuracy) increases with tissue stiffness, from fresh

liver to PFA-fixed brain. In particular, considering all the step size-sectioning speed

combinations investigated for each tissue, the overall actual thickness change decreases

from +100.8% for fresh pig liver, to +59.2% and +38.8% for non-fixed and PFA-fixed

murine brain, respectively (Table 1). Since the block advance calibration tests show that

the vibratome slicing is accurate to within 5%, the change in thickness is mainly due to

swelling of slices during equilibration. In particular, the softer the tissue the higher the

difference between the nominal step size and the actual thickness, as expected from the

inverse relation between stiffness and swelling exhibited by most soft materials (Beamish

et al., 2010; Cha et al., 2011). These results suggest that tissue stiffness, which increases

from fresh pig liver to PFA-fixed murine brain tissue, plays a key role in determining the

accuracy of vibratome-sliced sections. Both the oscillation amplitude and blade angle

variables should be considered to complete the analysis of the effect of different vibratome

sectioning parameters on the resultant slice thickness; however, they are likely to have a

minor impact on the latter. Therefore, they were set to a constant value in the present work,

in accordance with other reports (Zimmermann et al., 2009; Vaira et al., 2010).
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Table 1 Slice thickness errors obtained for the different step size-sectioning speed combinations investigated. Errors are also reported as overall
values for each tissue. The results show that slice accuracy increases from pig liver to fresh brain to fixed brain, suggesting that it is correlated with
tissue stiffness.

Slicing parameters Actual thickness (µm) Thickness error =

(Mean value for actual
thickness-step size)/step

size

Step-size
(µm)

Sectioning speed
(mm/s)

Mean Std. Dev. (%) Overall
(%)

100 0.1 – – –

100 0.2 – – –

100 0.4 – – –

200 0.1 460.4 103.8 130.2

200 0.2 407.3 81.9 103.65

200 0.4 549.8 63.9 174.9

400 0.1 575.6 70.0 43.9

400 0.2 591.5 63.9 47.875

Fresh pig liver

400 0.4 819.2 142.7 104.8

100.8

100 0.2 – – –

200 0.2 320.3 55.7 60.15Fresh murine brain

400 0.2 633.4 124.6 58.35

59.2

100 0.05 148 36.5 48

100 0.2 161.1 45.2 61.1

200 0.05 233.2 42.5 16.6

200 0.2 266.2 44.5 33.1

400 0.05 562.6 56.9 40.65

PFA-fixed murine brain

400 0.2 533.5 39.1 33.375

38.8

The agarose-embedding strategy used to characterize the actual slice thickness after

vibratome sectioning and equilibration better preserves sample geometry in the fully

hydrated state (i.e., that of tissue slices during in vitro cultures) with respect to the widely

used paraffin embedding technique. The latter is likely to result in significant sample

shrinkage during the inclusion process which inevitably leads to an underestimation of the

slice thickness, and may explain why several papers report a reduction in thickness with

respect to the nominal vibratome step size.

The method we report here enables the evaluation of slice thickness in the hydrated state

typical of tissue culture experiments. Similar results cannot be obtained using classical

techniques such as step advance calibration (which does not consider deformation or

swelling after cutting) and paraffin embedding (which involves sample dehydration). In

conclusion, given the potential benefits and advantages of precision-cut slices in many

biological and biomedical engineering applications, the quantitative evaluation of the

effects of the vibratome’s sectioning parameters on the actual thickness performed in this

work can be very helpful for establishing the most suitable slicing setup for a given tissue.
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