
DiscoSnp-RAD: de novo detection of small variants for RAD-
Seq population genomics
Jérémy Gauthier 1 , Charlotte Mouden 1, 2 , Tomasz Suchan 3 , Nadir Alvarez 4, 5 , Nils Arrigo 4 , Chloé Riou 1 , Claire
Lemaitre 1 , Pierre Peterlongo Corresp. 1

1 Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes, France
2 INRA, BIOGECO, UMR1202, Cestas, France
3 W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
4 Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
5 Natural History Museum of Geneva, Geneva, Switzerland

Corresponding Author: Pierre Peterlongo
Email address: pierre.peterlongo@inria.fr

Restriction site Associated DNA Sequencing (RAD-Seq) is a technique characterized by the sequencing of
specific loci along the genome, that is widely employed in the field of evolutionary biology since it allows
to exploit variants (mainly Single Nucleotide Polymorphism - SNPs) information from entire populations at
a reduced cost. Common RAD dedicated tools, such as STACKS or IPyRAD, are based on all-versus-all
read alignments, which require consequent time and computing resources. We present an original
method, DiscoSnp-RAD, that avoids this pitfall since variants are detected by exploiting specific parts of
the assembly graph built from the reads, hence preventing all-versus-all read alignments. We tested the
implementation on simulated datasets of increasing size, up to 1000 samples, and on real RAD-Seq data
from 259 specimens of Chiastocheta flies, morphologically assigned to 7 species. All individuals were
successfully assigned to their species using both STRUCTURE and Maximum Likelihood phylogenetic
reconstruction. Moreover, identified variants succeeded to reveal a within-species genetic structure
linked to the geographic distribution. Furthermore, our results show that DiscoSnp-RAD is significantly
faster than state-of-the-art tools. The overall results show that DiscoSnp-RAD is suitable to identify
variants from RAD-Seq data, it does not require time-consuming parameterization steps and it stands out
from other tools due to its completely different principle, making it substantially faster, in particular on
large datasets.

License: GNU Affero general public license

[p]Availability: DiscoSnp-RAD belongs to the DiscoSnp repository https://github.com/GATB/DiscoSnp/[p]

PeerJ reviewing PDF | (2020:01:44958:1:1:REVIEW 27 Mar 2020)

Manuscript to be reviewed



DiscoSnp-RAD: de novo detection of small1

variants for RAD-Seq population genomics2
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ABSTRACT14

Restriction site Associated DNA Sequencing (RAD-Seq) is a technique characterized by the sequencing

of specific loci along the genome, that is widely employed in the field of evolutionary biology since it allows

to exploit variants (mainly Single Nucleotide Polymorphism - SNPs) information from entire populations at

a reduced cost. Common RAD dedicated tools, such as STACKS or IPyRAD, are based on all-versus-all

read alignments, which require consequent time and computing resources. We present an original

method, DiscoSnp-RAD, that avoids this pitfall since variants are detected by exploiting specific parts of

the assembly graph built from the reads, hence preventing all-versus-all read alignments. We tested the

implementation on simulated datasets of increasing size, up to 1000 samples, and on real RAD-Seq data

from 259 specimens of Chiastocheta flies, morphologically assigned to 7 species. All individuals were

successfully assigned to their species using both STRUCTURE and Maximum Likelihood phylogenetic

reconstruction. Moreover, identified variants succeeded to reveal a within-species genetic structure linked

to the geographic distribution. Furthermore, our results show that DiscoSnp-RAD is significantly faster

than state-of-the-art tools. The overall results show that DiscoSnp-RAD is suitable to identify variants from

RAD-Seq data, it does not require time-consuming parameterization steps and it stands out from other

tools due to its completely different principle, making it substantially faster, in particular on large datasets.

License: GNU Affero general public license

Availability: DiscoSnp-RAD belongs to the DiscoSnp++ repository https://github.com/GATB/

DiscoSnp/
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1 INTRODUCTION34

Next-generation sequencing and the ability to obtain genomic sequences for hundreds to thousands of35

individuals of the same species has opened new horizons in population genomics research. This has been36

made possible by the development of cost-efficient approaches to obtain sufficient homologous genomic37

regions, by reproducible genome complexity reduction and multiplexing several samples within a single38

sequencing run [1]. Among such methods, the most widely used over the last decade is “Restriction-39

site Associated DNA sequencing” (RAD-Seq). It uses restriction enzymes to digest DNA at specific40

genomic sites whose adjacent regions are then sequenced. This approach encompasses various methods41

with different intermediate steps to optimize the genome sampling, e.g. ddRAD [19], GBS [5], 2b-42

RAD [29], 3RAD/RADcap [11]. These methods share some basic steps: DNA digestion by one or more43

restriction enzymes, ligation of sequencing adapters and sample-specific barcodes, followed by optional44

fragmentation and fragment size selection, multiplexing samples bearing specific molecular tags, i.e.45

indices and barcodes, and finally sequencing. The sequencing output is thus composed of millions of46
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reads originating from all the targeted homologous loci. The usual bioinformatic steps consist in sample47

demultiplexing, clustering sequences in loci and identifying informative homologous variations. If a48

reference genome exists, the most widely used strategy is to align the reads to this reference genome49

and to perform a classical variant calling, focusing on small variants, Single Nucleotide Polymorphisms50

(SNPs) and small Insertion-Deletions (INDELs). However, RAD-Seq approaches are used on non-model51

organisms for which a reference genome does not exist or is poorly assembled. The fact that all reads52

sequenced from the same locus start and finish exactly at the same position makes it easy to compare53

directly reads sequenced from a same locus. To de novo build homologous genomic loci and extract54

informative variations, several methods have been developed, such as STACKS [2] and PyRAD [3], as well55

as its derived rewritten version IPyRAD [4], being the most commonly used in the population genomics56

community.57

The main idea behind these approaches is to group reads by sequence similarity into clusters rep-58

resenting each a distinct genomic locus. Since reads originating from the same locus start and end at59

the same positions, they can be globally aligned, sequence variations can then be easily identified and a60

consensus sequence is built for each locus. The key challenge is therefore the clustering part. To do so,61

the classical approach relies on all-versus-all alignments. To reduce the number of alignments to compute,62

the clustering is first performed within each sample independently, then sample consensuses are compared63

between samples. Nevertheless the number of alignments to perform remains very large in datasets64

composed of many large read sets.Importantly, analysis of RAD-Seq data is highly dependent on the65

chosen clustering method, the sequencing quality and the dataset composition, such as the presence of inter66

and/or intra-specific specimens or the number of individuals. Thus, existing tools allow customization of67

numerous parameters to fine-tune the analysis. Particularly, both methods have parameters controlling the68

granularity of clustering: the number of mismatches allowed between sequences of a same locus within69

and among samples for STACKS and the percentage of similarity for PyRAD. These can be arbitrarily70

fixed by the user, but have a significant impact on downstream analyses [24].71

We present here DiscoSnp-RAD, an utterly different approach to predict de novo small variants (SNPs72

and indels) from large RAD-Seq datasets, without performing any read clustering, avoiding all-versus-all73

read comparisons and without relying on a critical similarity threshold parameter. DiscoSnp-RAD takes74

advantage of the DiscoSnp++ approach [28, 18], that was initially designed for de novo prediction of75

small variants, from shotgun sequencing reads, without the need of a reference genome. The basic idea76

of the method is a careful analysis of the de Bruijn graph built from all the input read sets, to identify77

topological motifs, often called bubbles, generated by polymorphisms. Notably, those bubbles arise78

whatever the global similarity level between homologous reads, explaining why DiscoSnp-RAD is free of79

similarity-related parameters. Note that STACKS2 also uses a de Bruijn graph approach, but in a different80

way, as it is used to build a so-called “RAD-locus” contig catalog on which reads are aligned for calling81

SNPs [23].82

After validation tests on simulated datasets of increasing size, we present an application of the83

DiscoSnp-RAD implementation on double-digest RAD-Seq data (ddRAD) from a genus-wide sampling of84

parasitic flies belonging to Chiastocheta genus. Using DiscoSnp-RAD, the 259 individuals analyzed could85

be assigned to their respective species. Moreover, within-species analyses focused on one of these species,86

identified variants revealing population structure congruent with sample geographic origins. Thus, the87

information obtained from variants identified by DiscoSnp-RAD can be successfully used for population88

genomic studies. The main notable difference between DiscoSnp-RAD and concurrent algorithms stands89

in its easiness to use, without any parameter to tune, and its execution time, as it is substantially faster90

than STACKS and IPyRAD.91

2 MATERIAL AND METHODS92

2.1 DiscoSnp-RAD: RAD-Seq adaptation of DiscoSnp++93

Originally, DiscoSnp++ was designed for finding variants from whole genome sequencing data. To94

adapt to the RAD-Seq context, the core algorithm of DiscoSnp++ was extended and modified as shown95

Sections 2.1.1 and 2.1.2. Also, as presented Sections 2.1.3 and 2.1.4, specific features for post-processing96

were added to the whole pipeline.97

DiscoSnp++ basic algorithm. We first recall the fundamentals of the DiscoSnp++ algorithm, which98

is based on the analysis of the de Bruijn graph (dBG) [20], which is a directed graph where the set of99
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vertices corresponds to the set of words of length k (k-mers) contained in the reads, and there is an oriented100

edge between two k-mers, say s and t, if they perfectly overlap on k−1 nucleotides, that is to say if the101

last k−1 suffix of s equals the first k−1 prefix of t. In this case, we say that s can be extended by the last102

character of t, thus forming a word of size k+1. A node that has more that one predecessor and/or more103

than one successor is called a branching node. Small variants, such as SNPs and INDELs, generate in the104

dBG recognizable patterns called “bubbles”. A bubble (Fig.1(a)) is defined by one start branching node105

that has, two distinct successor nodes. From these two children nodes, two paths exist and merge in a stop106

branching node, which has two predecessors. The type of the variant, whether it is a single isolated SNP,107

several close SNPs (distant from one another by less than k nucleotides) or an INDEL, determines the108

length of each of the two paths of the bubble.109

Figure 1. Examples of bubbles detected by SNPs in a toy de Bruijn graph, with k = 4. In (a) the bubble

is complete: this corresponds to a bubble detected by DiscoSnp++. In (b), the bubble is symmetrically

truncated: it is composed of a branching node (“ACT G”) whose two successors lead to two distinct paths

that both have the same length and such that their last two nodes have no successor. Graph (c) shows an

example of two bubbles from the same locus. The leftmost bubble contains two symmetrically branching

crossroads.

DiscoSnp++ first builds a dBG from all the input read samples combined, and then detects such110

bubbles. Sequencing errors or approximate repeats also generate bubbles, that can be avoided by filtering111

out kmers with a too low abundance in the read sets, and by limiting the type or number of branching112

nodes along the two paths. Detected bubbles are output as pairs of sequences in fasta format. The second113

main step of DiscoSnp++ consists in mapping original reads from all samples on these sequences, in order114

to compute for each variant, its read depth per allele and per read set. From this coverage information,115

genotypes are inferred and variants are scored. The final output is a VCF file, where each variant is116

associated to a confidence score (the rank) and is genotyped in each read set, thanks to its allele coverages117

(see [18, 28]).118

In DiscoSnp-RAD, these two main steps have been modified to adapt to the RAD-seq context and119

an additional third step has been developed in order to cluster the variants per locus and to output this120

information in the final VCF file. In short, DiscoSnp-RAD 1/ constructs the de Bruijn graph and detects121

bubbles whose topology correspond to SNPs or indels, 2/ maps back reads on found bubble sequences,122

thus assessing the read coverage per allele and per read set, and 3/ performs clustering on predicted123

sequences. Those three steps are described in the three following sections.124

2.1.1 Bubble detection with DiscoSnp-RAD125

A novel RAD-specific bubble model. In DiscoSnp++, variants distant from less than k bp from a126

genomic extremity could not be detected, as associated bubbles do not open and/or close. This effect127

is negligible in the whole genome sequencing context, however, in the RAD-Seq context, sequenced128

genomic regions are limited to a hundred or to a few hundreds nucleotides (the read size), and thus a large129

amount of variants are likely to be located at the extremities of the loci. For instance, with reads of length130

100bp, and k = 31 (which is a usual k value), on average 62% of the variants are located in the first or last131

k nucleotides of a locus and cannot be detected by DiscoSnp++.132

In the RAD-Seq context, all reads sequenced from the same locus start and end exactly at the same133

position. Thus, variants located less than k bp from loci extremities generate what we call Symmetrically134

Truncated Bubbles (Fig.1(b)). Such bubbles start with a node which diverges into two distinct paths that135

do not meet back, such that both of them cannot be extended because of absence of successor and both136
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paths have exactly the same length. Symmetrically, a variant located less that k bp apart from loci start137

generates a bubble that is right closed, but that starts with two unconnected paths of the same length.138

To further increase specificity of the truncated bubble model, we also constrain the last 3-mer of139

both paths to be identical. Although this prevents the detection of variants as close as 3 bp from a140

locus extremity, this enables to identify correctly the type of detected variant. Indeed, when the last141

L nucleotides of two locus sequences are different, several mutation events could have taken place in142

the genome resulting in the same observed differences: either an indel (of any size) or L successive143

substitutions or a combination of the two types. When L is small, all events may be equally parsimonious144

and we prefer to report none of these instead of a wrong one. Note that this does not prevent to detect loci145

containing such variants. The value L was set to 3 because it leads to a relatively low loss of recall (6%146

with reads of length 100), while the probability of observing by chance three successive matches is low147

(= 1
43 ≈ 1.56%). Note that this issue is also present in any mapping or clustering based approaches.148

The core of the DiscoSnp-RAD algorithm SNP bubble detection is sketched in Algorithm 1. Al-149

gorithm 1 is intentionally simplified and hides the process enabling to detect SNPs separated by less150

than k nucleotides and INDELs. The full and detailed algorithm is proposed in supplementary materials.151

Basically, after the graph construction, we loop over all its branching nodes (line 2), each branching152

node is then considered as a potential bubble extremity. The pair of paths that can be generated from153

this branching node are explored (lines 5 to the end). Notably, the two paths are created simultaneously154

nucleotide by nucleotide. The extension stops 1/ if the extension is impossible (line 10, if there exists no155

nucleotide α such that kmer1 and kmer2 can be extended with α); or 2/ if the bubble closes (line 11); or156

3/ if the bubble is truncated (line 7).157

Dealing with entangled bubbles. As RAD-Seq data often include a large number of individuals, this158

is likely that many SNPs are close to each other (separated by less than k nucleotides), and that a large159

number of distinct haplotypes co-exist. This situation generates bubbles that are imbricated in one another160

and what we call “Symmetrically Branching Crossroads” (SBCs), as shown in Fig.1(c). SBCs appear161

when more than one unique character may be used during extension. All possible extensions are explored162

(line 12) in presence of SBCs. However, we limit the maximal number of traversals of SBCs per bubble163

to 5 by default (line 14). This value has been chosen as larger values lead toe longer computation time,164

larger false positive calls (due to repetitive genomic regions), while not changing significantly recall, as165

shown in the results. Depending on the user choice, we also propose a “high precision” mode in which166

bubbles containing one or more SBC(s) are not detected.167

Algorithm 1 Simplified overview of the DiscoSnp-RAD SNP bubble detection (Indel bubble detection

omitted)

1: Create a de Bruijn graph from all (any number ≥ 1) read set(s)

2: for Each right branching k-mer in the graph start do

3: for each couple of successor kmer1,kmer2 of k-mer start do

4: nb sym branching=0

5: while True do

6: Extend kmer1 and kmer2 with α ∈ {A,C,G,T}
7: if Both kmer1 and kmer2 have no successors then

8: if last 3 characters from kmer1 and kmer2 are equal then

9: Output bubble and break

10: if Extension is impossible then break

11: if kmer1 = kmer2 then Output bubble and break

12: if two or more possible extending nucleotides α then

13: Increase nb sym branching

14: if nb sym branching > 5 then break

15: else Explore recursively all possible extensions

2.1.2 Computing allele coverage and inferring genotypes168

In this second step, original reads from all samples are mapped on all bubble sequences, in order to provide169

the read coverage per allele and per read set. Importantly, this mapping step allows non-exact mapping,170

allowing a high number of substitutions (up to 10 by default), except on the polymorphic positions of171
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the bubble. As shown in results, this choice enables to maximize the sensibility by allowing numerous172

variations, while maintaining a high precision as no substitution is authorized on variant positions.173

These coverage information enables to infer individual genotypes and to assign a score (called rank) to174

each variant enabling to filter out potential false positive variants. Genotypes are inferred only if the total175

coverage over both alleles is above a min depth threshold (by default 3), using a maximum likelihood176

strategy with a classical binomial model [18, 16], otherwise the genotype is indicated as missing (”./.”).177

Variants with too many missing genotypes (by default more than 95 % of the samples) are filtered out.178

Paralogous genomic regions represent a major issue in population genomic analyses as DNA sections179

arising from duplication events can be aggregated in the same locus and thus, might encompass alleles180

coming from non orthologous loci. Allele coverage information across many samples can be used to181

filter out many of such paralog-induced variants. As the latter tend to occur in all the samples, their allele182

frequency is thus non discriminant between samples. An efficient scoring scheme, called the rank value in183

DiscoSnp++, reflects such discriminant power of variants. First, we define the Phi coefficient of a given184

variant for a given pair of samples, as

√

χ2

n
, with χ

2 being the chi-squared statistics computed on the allele185

read counts contingency table for this pair of samples, and n being the sum of read counts in this table.186

This is an association measure between two binary variables (here allele vs sample) ranging between187

0 (no association) and 1 (maximal association). Then, when more than two samples are compared, the188

rank value is obtained by computing the Phi coefficient of all possible pairs of samples and retaining the189

maximum value. We have shown in previous work [28, 18] that paralog-induced variants are likely to190

generate bubbles in the dBG but with very low rank values (< 0.4) contrary to real variants. This filter is191

particularly effective when many samples are compared, as in the RAD-seq context. Thus, by default,192

DiscoSnp-RAD discards all variants with such low rank values.193

2.1.3 Clustering variants per locus194

During the bubble detection phase, several independent bubbles can be predicted for the same RAD195

locus. For instance, Fig.1(c) shows a toy example of a the dBG graph associated to a locus. In this196

case, DiscoSnp-RAD detects two bubbles, that give no sign of physical proximity. In several population197

genomics analyses, such proximity information can be useful, such as in population structure analyses,198

where this is recommended to select only one variant per locus. In order to recover this information of199

locus membership, we developed a post-processing method to cluster predicted variants per locus.200

The method uses the fact that DiscoSnp-RAD is parameterized to output bubbles together with their201

left and right contexts in the graph, which correspond to the paths starting from each extreme node and202

ending at the first ambiguity (ie. a node with not exactly one successor). For instance, the leftmost203

bubble of Fig.1.c is output as sequences ACTGACCTAATtg and ACTGTCGTAATtg, where we represent204

the context sequences in lower case, and rightmost bubble of the same figure is output as sequences205

taATTGACCT and taATTGTCCT.206

By definition of these extensions, if a given locus contains several variants, each bubble of this locus207

extended with its left and right contexts shares at least one k−1-mer with at least one other so extended208

bubble of the same locus. For instance, the pairs of sequences of the two bubbles shown Fig.1.c share the209

k−1-mer TAA (among others).210

We exploit this property to group all bubbles per locus. For doing so, we create a graph in which a211

node is a bubble (represented by its pair of sequences including the extensions), and there is an undirected212

edge between two nodes Ni and N j if any of the two sequences of Ni shares at least one k−1-mer with213

any of the two sequences of N j. Those edges are computed using SRC linker [15].214

Finally, we partition this graph by connected component. Each connected component contains all215

bubbles for a given locus and this information is reported in the vcf file. By default, clusters containing216

more than 150 variants are discarded, as they are likely to aggregate paralogous variants from repetitive217

regions.218

2.1.4 Various optional filtering options219

The output of DiscoSnp-RAD is a VCF file containing predicted variants along with various information,220

such as their genotypes and allele read counts in all samples, their rank value and the cluster ID (locus)221

they belong to. This enables to apply custom filters at the locus level, as well as any variant level222

classical RAD-Seq filters (such as the minimal read depth to call a genotype or the minimal minor223

allele frequency to keep a variant). Several such RAD-seq filtering scripts are provided along with224
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the main program (https://github.com/GATB/DiscoSnp/tree/master/discoSnpRAD/225

post-processing_scripts).226

2.2 Testing environment227

The tests were performed on the GenOuest (genouest.org) cluster, on a node composed of 40 Intel228

Xeon core processors with speed 2.6 GHz and 252 GB of RAM.229

2.3 Validation on simulated datasets230

Note that all scripts used for simulations and validations are publicly available https://doi.org/231

10.5281/zenodo.3724518.232

Simulation protocol. RAD loci from Drosophila melanogaster genome (dm6) were simulated by233

selecting 150 bp on both sides of 43,848 PstI restriction sites resulting in 87,696 loci. Several populations,234

each composed of several diploid individuals were simulated as follows. For each simulated population,235

SNPs were randomly generated at a rate of 1%. A first subset of them (70%) was introduced in all samples236

from the population and represent shared polymorphism. The rest of these SNPs (30%) where distributed237

between samples by a random picking of 10% of them and assigned to each sample. For each sample,238

10% of the assigned SNPs, shared and sample specific, are introduced in only one of the homologous239

chromosomes to simulate heterozygosity. This process was repeated to generate from 5 to 50 populations240

each composed of 20 individuals. Finally, between 2,109,900 SNPs for 100 samples, and 2,547,337 SNPs241

for 1,000 samples, were generated. Forward 150bp reads were simulated on right and left loci, with 1%242

sequencing errors, with 20X coverage per individual (the complete pipeline is given in Supplementary243

Figure 1).244

Evaluation protocol. For estimating the result quality, predicted variants were localized on the D.245

melanogaster genome and output in a vcf file. To do so, we used the standard protocol of DiscoSnp++246

when a reference genome is provided, using BWA-mem [14]. The predicted vcf was compared to the247

vcf storing simulated variant positions to compute the amount of common variants (true positive or TP),248

predicted but not simulated variants (false positive or FP) and simulated but not predicted variants (false249

negative or FN). Recall is then defined as #T P
#T P+#FN

, and precision as #T P
#T P+#FP

.250

Comparison with other tools. For comparisons, STACKS v2.4 and IPyRAD v0.7.30 were run on the251

simulated datasets. STACKS stacks were generated de novo (denovo map.pl), with a minimum of 3252

reads to consider a stack (-m 3). On the simulated dataset composed of 100 samples, five values of the253

parameter -M governing stack merging (ie. 4, 6, 8, 10, and 12) were tested. On the remaining datasets, the254

parameter -M was fixed to 6 following r80 method [17]. All other parameters were set to default values.255

Similarly, IPyRAD was run using five values of clustering threshold on the dataset composed of 100256

samples (ie. 0.75, 0.80, 0.85, 0.90 and 0.95) and then fixed to 0.80, following r80 method [17], for larger257

datasets. The other parameters have been kept at the default values. Then, de novo tags from STACKS and258

loci from IPyRAD were mapped to the D. melanogaster genome using BWA-mem and variant positions259

were transposed on the genome positions with a custom script.260

2.4 Application to real data from Chiastocheta species261

Data origin. Tests on real data were performed on ddRAD reads previously obtained for the phylogenetic262

study of seed parasitic pollinators from the genus Chiastocheta (Diptera: Anthomyiidae). The dataset263

corresponds to the sequencing of 259 individuals sampled from 51 European localities generated by264

Lausanne University, Switzerland [26] (https://www.ebi.ac.uk/ena/data/view/PRJEB23593). A total of265

608,367,380 reads were used for the study with an average of 2.3 Million reads per individual.266

Variant prediction and filtering. DiscoSnp-RAD was run with default parameters, searching for at most267

five variants per bubble. For IPyRAD the same parameters as in the Suchan et al. study [26] have been268

applied including a percentage of identity of 75% for the clustering and a minimum coverage of 6. For269

STACKS we applied a minimum coverage by stack (-m) of 3, a maximum number of mismatches allowed270

among sample (-M) of 8 and a maximum number of mismatches allowed between sample (-n) of 8. On271

the output vcf from each tools, downstream classical filters were applied to follow as much as possible272

the filters used in the Suchan et al. study [26]: a minimum genotype coverage of 6, a minimal minor273

allele frequency of 0.01 and a minimum of 60% of the samples with a non missing genotype for each274
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variant. These filters remove less informative variants or those with an allele specific to a very small275

subset of samples. These filters were also applied at the intra-specific level in one of the seven sampled276

Chiastocheta species, i.e. C. lophota, on the same DiscoSnp++ output.277

Population genomic analyses. The species genetic structure was inferred using STRUCTURE [21]278

v2.3.4. This approach requires unlinked markers, thus only one variant by locus, randomly selected, has279

been kept. The STRUCTURE analysis was carried on the datasets generated by each tool. Simulations280

were performed with genetic cluster number (K) set from 1 to 10. Best K was identified using Evanno’s281

method [7]. We used 20,000 MCMC iterations after a burn-in period of 10,000. The output is the posterior282

probability of each sample to belong to each of the possible clusters. For C. lophota species, a multivariate283

analysis were used to investigate intra-specific genetic structure using adegenet R package [12].284

Phylogenomic analyses. Maximum likelihood (ML) phylogenetic reconstruction was performed285

on a whole concatenated SNP dataset using GTRGAMMA model with the acquisition bias correc-286

tion [13]. We applied rapid Bootstrap analysis with the extended majority-rule consensus tree stopping287

criterion and search for best-scoring ML tree in one run, followed by ML search, as implemented in288

RAxML v8.2.11 [25].289

3 RESULTS290

3.1 Results on simulated data291

DiscoSnp-RAD was first run on several simulated RAD-Seq datasets composed of an increasing number of292

samples (from 100 to 1,000) in order to validate the approach, to evaluate its speed and efficiency and to293

compare it with the other clustering approaches. This experiment shows that DiscoSnp-RAD predictions294

are accurate with a good compromise between recall and precision (see Figure 2).295
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Figure 2. Recall (A), precision (B), time (C) and space (D) evolution on simulated data with different

sampling sizes. For the sampling of 100 samples, five parameter sets were tested for IPyRAD and

STACKS (see Material and Methods for details).

On average, 84.6 % of the simulated variants are recovered with very few false positive calls, ie.296
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reaching a precision of 98.5 % on average. Importantly, these performances are not impacted by the297

number of input samples in the dataset. For instance, recall varies from 84.6% to 83.3% between the298

smallest and the largest datasets (100 vs 1.000 samples), and precision from 98.1 % to 98.5%.299

By comparison with other tools, for each of the tested population sizes, recall and precision are300

comparable between tools, with typically a recall lower than STACKS and IPyRAD and an intermediate301

precision, lower than IPyRAD and higher than STACKS. The loss of recall may be explained by the fact302

that DiscoSnp-RAD voluntary does not detect the variants within 3 bp of each locus end (see Methods).303

The amount of predicted loci are similar between all tools (Supplementary Table 2). The main differences304

between the tools concern the run time and the disk space usage. These differences increase with the305

number of samples in the dataset. For instance, on the largest dataset composed of 1,000 samples306

DiscoSnp-RAD is more than 3 times faster than STACKS and more than 5 times faster than IPyRAD.307

Moreover, if we consider the cumulative time required to test different parameters for STACKS and308

IPyRAD, i.e. five sets of parameters for each tool, DiscoSnp-RAD, without parameter setting is more than309

15 times faster than STACKS and more than 25 times faster than IPyRAD. Regarding the disk space used310

by the tool during the process, DiscoSnp-RAD requires only a small amount of space compared to the311

other tools. Full RAM memory, disk usage, and computation times of DiscoSnp-RAD are provided in312

Supplementary Table 1.313

Robustness with respect to parameters. A major advantage of DiscoSnp-RAD stands in the fact314

that it does not require fine parameter tuning. This is an important point as other state-of-the-art tools315

are extremely sensible to their parameters, especially those directly linked to the expected sequence316

divergence, and require time consuming processes to set them properly [24]. In DiscoSnp-RAD, the main317

parameter is the size of k−mers, used for building the dBG. As shown Figure 3, DiscoSnp-RAD results318

are robust with respect to k, the main parameter, and its fine choice is thus not crucial. This figure also319

highlights the results robustness with respect to other parameters such as the maximal number of predicted320

SNPs per bubble (5 by default), the maximal number of substitutions authorized when mapping reads on321

bubble sequences (10 by default), and the maximal number of symmetrically branching crossroads (also 5322

by default). Concerning this last parameter, Figure 3 also shows the advantages of the “high precision”323

mode which sets this parameter to zero, leading to a precision of nearly 100%.324

3.2 Results on real data325

In this section, we present an application of the DiscoSnp-RAD implementation on ddRAD sequences326

obtained from the anthomyiid flies from the Chiastocheta genus. In this genus, classical mitochondrial327

markers are not suitable for discriminating the morphologically described species [6]. Although RAD-328

sequencing dataset phylogenies supported the species assignment [26], the interspecific relationships329

between the taxa could not be resolved with high confidence due to high levels of incongruences in gene330

trees [9, 26]. The dataset is composed of 259 sequenced individuals from 7 species. Results obtained on331

DiscoSnp-RAD were compared to the prior work of Suchan and colleagues, based on pyRAD analysis [26].332

In addition, we provide a performance benchmark of STACKS, IPyRAD and DiscoSnp-RAD run on this333

dataset.334

Recovering all Chiastocheta species. Variant calling was run on the 259 Chiastocheta samples with335

DiscoSnp-RAD. Before filtering, 115,920 SNPs were identified. After filtering, 4,364 SNPs, located in336

1,970 clusters, were retained and used for population genomic analyses. The total number of clusters is337

coherent with the 1,672 loci from Suchan et al. [26].338

Then, following the requirements of the STRUCTURE algorithm, only one variant per cluster was339

retained, resulting in a dataset composed of 1,970 SNPs. The most likely value of K is 7 (data not shown)340

and corresponds to the seven species described in [26]. STRUCTURE successfully assigned samples341

to the seven species, consistent with the morphological species assignment and previously published342

results [26] (Fig.4). The assignment values represent the probability with which STRUCTURE assigns a343

sample to a cluster, depending on the information carried by the variants. The assignment values are high344

with an average of 0.992 (sd 0.022) across samples and a minimum assignment of 0.810. These values are345

comparable to the assignment values obtained by Suchan et al. [26] with an average of 0.977 (sd 0.042)346

and a minimum of 0.685. Genetic structure has also been investigated for the two other tools and give347

very similar population assignations (Supplementary Figure 2).348

The phylogeny realized with RAxML on the 4,364 SNPs obtained after filtering, is congruent with the349
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substitutions while mapping reads on predicted variants sequences, and D. maximal number of

symmetrically branching crossroads. Dashed vertical line represents on each plot the chosen default

value.

one obtained by Suchan and colleagues [26] (Fig.4). The internal branches separating the seven species350

are well supported by high bootstrap values.351

Recovering phylogeographic patterns. To assess the utility of DiscoSnp-RAD results for investigating352

the intra-specific genetic structure, we then focused the analysis on 40 samples of C. lophota species.353

From the same vcf file obtained with the 259 samples, the 40 C. lophota samples were extracted and the354

same filters, i.e. MAF, missing etc., were applied on this C. lophota dataset.355

We obtained 1,306 SNPs by selecting one variant per locus extracted from 4,364 variants identified in356

this species. The multivariate analysis of this dataset identify three populations comprising respectively357

31, 5 and 4 samples. (Fig.4). Notably, the genetic structure follows the geographic distribution of the358

samples, with samples from one population originating from western locations, another population from359

eastern locations and an intermediate population. Geographic structuring is the most frequent structuration360

factor observed in population genetics, pointing to the geographical isolation of divergent lineages. This361

clear geographic structuring is another hint that DiscoSnp-RAD recovers real biogeographic signal.362

Breakthrough in running time. DiscoSnp-RAD run on the 259 Chiastocheta samples took about 30363

hours. This comprises the whole process from building the dBG to obtaining the final filtered vcf file364

with 1 SNP per locus. To compare the DiscoSnp-RAD performances with STACKS and IPyRAD on real365

data, we ran each of these tools using default parameters on the 259 Chiastocheta samples and measured366

running time and maximum memory usage. The difference is remarkable, DiscoSnp-RAD is more than367

4.65 times faster than STACKS (running time 138 hours) and 2.8 times faster than IPyRAD (running time368

82 hours) to perform the whole process. Moreover, contrary to DiscoSnp-RAD, STACKS and IPyRAD369

should be run several times to explore the parameters which represent a considerable amount of time and370

memory. For instance, in Suchan et al. [26], IPyRAD was run with 5 different combinations of parameter371
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Figure 4. A. RAxML phylogeny realized on all variants predicted by DiscoSnp-RAD. Bootstrap node

supports > 80 are shown denoted by gray dots, bootstrap node supports > 90 are shown denoted by black

dots. B. STRUCTURE results obtained with SNP only and all variants on the seven Chiastocheta species.

C. Plot of the two first PC from a multivariate analysis on C. lophota samples and, D. their geographic

distribution.

values, DiscoSnp-RAD being thus 14 times faster than IPyRAD.372

4 DISCUSSION373

DiscoSnp-RAD efficiency. DiscoSnp-RAD produced relevant results on ddRAD data from Chiastocheta374

species. SNPs identified allowed us to successfully i) distinguish the seven species based on the STRUC-375

TURE algorithm, and ii) reconstruct the phylogenetic tree of the genus, congruent with the previously376

published one [26]. Moreover, on the intra-specific scale, we obtained geographically meaningful results377

within C. lophota species. The variants identified by DiscoSnp-RAD can be used to study the species or378

population genetic structure and could be used to investigate deeper the mechanisms at the origin of this379

structure such as potential gene flow between populations or their demographic histories. In addition,380

DiscoSnp-RAD is also able to identify INDELS [18]. They were not used in this study but are available381

for users.382

Furthermore, the use of DiscoSnp-RAD presented considerable advantages in the run-time, and383

parameters choice, compared to other common de novo RAD analysis tools, as described below.384

Run-time. The use of DiscoSnp-RAD dramatically decreased the overall time for discovering and385

selecting relevant variants, as compared to other tools. This is made possible thanks to the use of a unique386

indexing data structure, the dBG built from all the reads. To build this graph, reads do not need to be387

compared to each other. DiscoSnp-RAD speed depends on the graph size and at a lesser extend on the388

number of reads. Importantly, it is not expected to increase quadratically with the dataset size.This can389

likely be anticipated that with the drop of sequencing costs, RAD projects will grow in size, either by390

using higher frequency cutting enzymes to obtain a dense genome screening, by increasing the sequencing391

depth to compensate sequencing variation or by increasing the number of samples. In this context,392

DiscoSnp-RAD will more easily scale to such very large datasets.393
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Easy parameter choice. Another substantial advantage of using DiscoSnp-RAD is the fact that param-394

eters are not directly linked to the level of expected divergence of the compared samples. In fact, they395

impact the number and type of detected variants, but are not related to the subsequent clustering step. As396

a result, same parameters can be used whatever the type of analysis (for example, intra or inter-specific),397

contrasting with classical tools in which parameters govern loci recovering. Indeed, in STACKS, the398

parameters governing the merge of the stacks can compromise the detection of relevant variants if they are399

not adapted to the studied dataset [24]. Therefore, the authors recommend to perform an exploration of400

the parameter space before downstream analyses [17]. This is extremely time consuming, up to one month401

as confessed by the authors [22], and may not always result in interpretable conclusions. In IPyRAD, the402

similarity parameter for clustering also impacts variant detection, and usually several values have to be403

tested to choose the best, as exemplified by Suchan and colleagues who tested five different values [26].404

By-locus assembly. DiscoSnp-RAD output is a vcf file including pseudo-loci information, that allows405

the application of standard variant filtering pipelines. One next objective is to recover loci consensus406

sequences, that could be used for phylogenetic analysis based on full locus sequences. This could be407

achieved by performing local assemblies per individual, from all bubbles contained in a cluster.408

Potential applications. DiscoSnp-RAD can handle all types of RAD data including original RAD-Seq,409

GBS, ddRAD, etc. In addition it is able to use reads 2 from original RAD-Seq data that are often difficult410

to analyse. These reads do not start and finish at the same position. Properly recovery of loci is therefore411

not possible with read stacking approaches. This problem does not exist when using DiscoSnp-RAD, and412

variants present in reads 2 can also be called. Indeed, the DiscoSnp-RAD method, being not based on413

stacks of reads, is able to detect any variants that generate bubble motifs in the dBG, thus even if present414

in reads whose starting positions differ.415

This ability of DiscoSnp-RAD to handle reads that do not necessary start at the same genomic position416

makes it particularly well suited to analyze the datasets produced by another group of genome-reduction417

techniques, namely sequence capture approaches [10]. In these techniques, DNA shotgun libraries are418

subject to enrichment using short commercially-synthesized [8] or in-house made [27] DNA or RNA419

fragments acting as ’molecular baits’, that hybridize and allow separation of homologous fragments420

from genomic libraries. One of such promising approaches is HyRAD, a RAD approach combining421

the molecular probes generated using ddRAD technique and targeted capture sequencing, designed for422

studying old and/or poor quality DNA, likely to be too fragmented for RAD-sequencing [27]. In HyRAD,423

capturing randomly fragmented DNA results in reads not strictly aligned and covering larger genomic424

regions than RAD-Seq. Therefore RAD tools can not be used to reconstruct such loci, and the current425

analysis consists in building loci consensuses from reads, and then calling variants by mapping back the426

reads on it. The use of DiscoSnp-RAD should simplify this process in a single de novo calling step, well427

adapted to the specificities of data generated by reduction approaches: many compared samples, high428

polymorphism and clustering by locus.429

5 CONCLUSION430

We propose DiscoSnp-RAD, an original method dedicated to the de-novo analyse of RAD-Seq data. We431

have shown that on simulated data, the quality of the results is comparable to those obtained by state-of-the432

art tools, STACKS and IPyRAD. On real data, DiscoSnp-RAD provides relevant results, enabling the433

structuring at inter- and intra-level species, accurate enough for recovering the phylogeographic patterns.434

Due to its methodological approach which is utterly different from existing methods, DiscoSnp-RAD435

drastically reduces computation times and memory requirements. Another key difference stands in the436

fact that DiscoSnp-RAD does not rely on fine tuning of parameters, contrary to existing methods that rely437

on critical parameters, as those related to the input sequence similarity.438
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