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ABSTRACT
Monkeypox (MPX) is a zoonotic disease similar to smallpox. Its fatality rate is about
11% and it is endemic to the Central and West African countries. In this paper, we
analyze a compartmental model of MPX dynamics. Our goal is to see whetherMPX can
be controlled and eradicated by voluntary vaccinations. We show that there are three
equilibria—disease free, fully endemic and previously neglected semi-endemic (with
disease existing only among humans). The existence of semi-endemic equilibrium has
severe implications should the MPX virus mutate to increased viral fitness in humans.
We find that MPX is controllable and can be eradicated in a semi-endemic equilibrium
by vaccination. However, in a fully endemic equilibrium, MPX cannot be eradicated
by vaccination alone.

Subjects Mathematical Biology, Global Health, Health Policy, Infectious Diseases
Keywords Monkeypox, Game theory, Nash equilibrium, Smallpox, Vaccination

INTRODUCTION
Monkeypox (MPX) is a zoonotic disease that has the potential to develop into one of the
most threatening humanOrthopoxvirus infections since the eradication of smallpox (Durski
et al., 2018). The causative agent of MPX is monkeypox virus (MPXV), found in the same
genus as the variola virus (smallpox), vaccinia virus, and cowpox virus (Shchelkunov,
Marennikova & Moyer, 2006; Sklenovská & Van Ranst, 2018). Common symptoms of
MPX, though relatively milder than smallpox, include fever, severe headaches, skin
lesions, and myalgia (CDC, 2003). Prevention of the disease has remained a challenge
for poverty-stricken rural areas with poor infrastructure that lack necessary sanitary
supervision (Sklenovská & Van Ranst, 2018).

MPX is endemic to Central Africa and West Africa (Weinstein et al., 2005; Yinka-
Ogunleye et al., 2018). West African and Central African strains of MPXV exist, the latter of
which ismore virulent and symptomatically severe (Likos et al., 2005;Mwamba et al., 2014).
In the Democratic Republic of the Congo (DRC) the mortality rate of the Central African
strain is 11% (Ježek et al., 1987). Since the first case of human infection in 1970, there have
been numerous outbreaks in the DRC (Eteng et al., 2018). Annually, the DRC reports over

How to cite this article Bankuru SV, Kossol S, Hou W, Mahmoudi P, Rychtář J, Taylor D. 2020. A game-theoretic model of Monkeypox
to assess vaccination strategies. PeerJ 8:e9272 http://doi.org/10.7717/peerj.9272

https://peerj.com
mailto:rychtarj@vcu.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.9272
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.9272


2,000 cases of suspected infections and is the only country in an endemic state (Mwamba
et al., 2014). This estimate may be modest, as MPX is often misdiagnosed as chickenpox
or other diseases that cause rashes (Ježek et al., 1988). Additionally, modern and robust
surveillance of MPX is neglected as a consequence of limited funds and resources (Rimoin
et al., 2010), and countries other than the DRC are not required to report all cases of
MPX (Durski et al., 2018). Thus, the disease may be more severe than previously estimated.

In 2003, 47 cases of MPX were reported across five states in the U.S., originating from a
shipment of animals from Ghana imported to Texas (CDC, 2003). In 2018, 3 cases of MPX
were reported in the United Kingdom, making it the first time since the 2003 United States
outbreak that the disease had reached a country outside of Africa (Eteng et al., 2018).

The clinical presentation of MPX can be found in Di Giulio & Eckburg (2004). The
incubation period for the virus ranges from five to 21 days. MPX infection is split into two
distinct phases: the invasion period and the skin eruption period. The invasion period starts
between 0–5 days and is characterized by fever, lymphadenopathy, intense asthenia, severe
headaches, and myalgia. The skin eruption period occurs 1–3 days after the appearance of
a fever or lymphadenopathy, and it is characterized by rash formation, which often begins
on the face and spreads to the rest of the body. The rash first appears as maculopapules
(lesions with flat bases) and progresses to fluid filled blisters called vesicles. The vesicles
then burst, forming pustules, and a crust forms over the affected area within 10 days. The
number of lesions formed can vary from a few to thousands across the body, with children
reportedly experiencing more severe symptoms than adults.

The predominant mode of MPX transmission is through human-animal interaction.
Direct contact with an infected animal’s blood, bodily fluids, or lesions can lead to infection.
Documented cases of MPX in Central and West Africa show that transmission can occur
via the handling of wild animals, predominantly monkeys (Reynolds et al., 2017). Cultural
influences, such as consumption of ‘‘bush meat,’’ can be a potential source of transmission.
Additionally, direct contact with an infected person’s bodily fluids and skin lesions can
lead to the transmission of the disease (McCollum & Damon, 2013).

Despite MPX’s high case fatality rate (Ježek et al., 1987) there are no known cures
(Eteng et al., 2018). Until recently, there were no disease-specific preventative measures
such as vaccines, though existing smallpox vaccines have historically been around 85%
successful (Eteng et al., 2018). However, administration of the smallpox vaccine has
ceased since the disease’s eradication in 1980, resulting in lowered immunity against
Orthopoxviruses in general. This has led to a supposed increase in population susceptibility
to MPXV (Sklenovská & Van Ranst, 2018). In 2019, the vaccine termed Jynneos R© was
approved by the US FDA for protection against VARV and MPXV (Meyer, Ehmann &
Smith, 2020).

It is possible that this lack of preventative measures is partially explained by a matching
lack of literature on the potential dangers of inter-human transmission of MPX (Rimoin
et al., 2010; Mwamba et al., 2014; Doshi et al., 2018; Sklenovská & Van Ranst, 2018). The
urgency for better research on MPX is exacerbated considering vaccination cessation
and immunocompromised populations in Central Africa, so a need for comprehensive
preventative strategies is apparent (WHO, 2017). The factors such as (1) a lack of an
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effective vaccination strategy from fixed bases, (2) a shortfall in the vaccine supply and (3)
logistical and security problems associated with the distance from the health centers, all
contribute to the challenges of vaccinating the whole population in Central and Western
Africa (Herp et al., 2003).

The identity of MPXV reservoir host(s) remains unknown (Di Giulio & Eckburg, 2004;
Falendysz et al., 2017). The seroprevalence of MPXV was found highest in a population
of moribund rope squirrels (Funisciurus anerythrus) in Zaire (now DRC), and the virus
was also found in sun squirrels (Heliosciurus rufobrachium) and non-human primates in
DRC (Khodakevich et al., 1987;Khodakevich, Ježek & Messinger, 1988) as well as inGambian
pouched rats (Cricetomys gambianus) (Doty et al., 2017; Doshi et al., 2019). In West Africa,
African dormice (Graphiurus sp.) and ground squirrels (Xerus sp.) were identified as
additional hosts (Reynolds et al., 2010). The majority of reported human cases originate
from an interaction with an infected animal (Arita et al., 1985). The transmission of MPX
among animals can be affected by environmental conditions (Brown & Leggat, 2016).
Deforestation and flooding could potentially increase or decrease the MPX reservoirs,
depending on how the animal population is affected by these conditions (Brown & Leggat,
2016). Long-distance transportation of potential MPX carriers may result in the expansion
of the geographical range of the MPX reservoir, as exemplified by the 2003 US outbreak.

Currently,MPXV likely needs the animal reservoir as the human-to-human transmission
chains of MPX are relatively short; the maximum number of generations reported in
literature is seven (Learned et al., 2005). Nevertheless, as demonstrated by the case of H1N1
influenza (swine flu), some virus mutations can increase viral fitness in humans (Elderfield
et al., 2014). We note that poxviruses have linear, double-stranded DNA genomes that
vary from 130 to 230 kbp (Moss, 2013) and as such are evolving much slower than H1N1.
Nevertheless, they can still adapt rapidly (Elde et al., 2012) and genetic engineering and
modern molecular biology already turned a mousepox virus into an unusually lethal
strain (Jackson et al., 2001; Di Giulio & Eckburg, 2004).

Epidemiologic compartmental models have been used to better understand the potential
implications of disease transmission and infection (Blackwood & Childs, 2018; Bidari &
Goldwyn, 2019). ForMPX, the framework for amathematicalmodel has been tentatively set,
but existing iterations have had shortcomings, failing to address someof the aforementioned
aspects of the disease in their entirety. Bhunu & Mushayabasa (2011) introduced a basic SIR
vector-borne compartmental model between humans and primates, yet deem an endemic
state solely in humans as trivial. Usman & Adamu (2017) build upon this framework by
introducing an SVEIR compartmental model to account for the disease’s incubation period
and potential vaccine.

Game theoretical models attempt to study complex scenarios in which self-interested
individuals will take an action based on the decisions of the rest of the population (Bauch
& Earn, 2004). The model is a predictive tool in populations for extracting an optimum
decision-making strategy (Chang et al., 2020). Game theory has been applied to
protection strategies to control diseases such as smallpox (Bauch, Galvani & Earn, 2003),
toxoplasmosis (Sykes & Rychtář, 2015), cholera (Kobe et al., 2018), measles (Shim et al.,
2012), rubella (Shim, Kochin & Galvani, 2009), influenza (Galvani, Reluga & Chapman,
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2007), African sleeping sickness (Crawford et al., 2015), malaria (Orwa, Mbogo & Luboobi,
2018; Broom, Rychtář & Spears-Gill, 2016), (Zika Padmanabhan, Seshaiyer & Castillo-
Chavez, 2017; Banuelos et al., 2019) (Polio Cheng et al., 2020), Ebola (Brettin et al., 2018),
chikungunya (SRM Klein, AO Foster, DA Feagins, JT Rowell, IV Erovenko, 2019,
unpublished data), meningitis (A Martinez, J Machado, E Sanchez, I Erovenko, 2019,
unpublished data), typhoid (C Acosta-Alonzo, IV Erovenko, A Lancaster, H Oh, J Rychtář,
D Taylor, 2020, unpublished data), Hepatitis C (Scheckelhoff, Ejaz & Erovenko, 2019) and
Hepatitis B (Chouhan et al., in press) among others. In this paper, we apply a similar
approach to MPX to investigate a scenario in which individuals have the option of
vaccinating to reduce the chance of contracting the virus. We further evaluate vaccination
strategies on an individual and population-wide level by discussing the vaccination rates
required to achieve herd immunity and Nash equilibrium.

In the present study, we build on the work of Usman & Adamu (2017), see also Lauko,
Pinter & TeWinkel (2018) for a simplified SIR version of the model. The mathematical
model of the MPX dynamics is shown in the next section. Then, we provide closed-form
formulas for equilibrium states of MPX dynamics; the formulas provided in Usman &
Adamu (2017) do not allow for direct calculations of the equilibria. We also show the
existence of a ‘‘semi-endemic’’ equilibrium. This was not previously discussed in Usman &
Adamu (2017), although it appears in Lauko, Pinter & TeWinkel (2018). We apply a game-
theoretic approach to evaluate individual and population-wide vaccination strategies on
the basis of cost and probabilistic disease acquisition and then we perform sensitivity
analysis. We conclude the study by a discussion.

MATHEMATICAL MODEL
We adopt the compartmental epidemiological model introduced in Usman & Adamu
(2017) and shown in Fig. 1. We consider squirrels to be the primary reservoir hosts. The
population is divided into squirrels and humans, denoted by s and h subscripts, respectively.
Individuals are born as Susceptible (S) at rate3. Susceptible humans vaccinate (move toVh)
at rate αh. Vaccinated humans are assumed to never contract the disease in the remainder
of their lifetime. Susceptible squirrels become Exposed (Es) by coming into contact with
infected squirrels with effective transmission rate βss. Susceptible humans become exposed
by coming into contact with either infected squirrels (with effective transmission rate βsh)
or infected humans (with effective transmission rate βhh). After an incubation period ν−1,
the exposed individuals become Infected (I ). Infected individuals are infectious. They
Recover (R) at rate ρ. Any individual may die due to natural causes at rate µ. Infected
individuals can also die from the disease at rate d . The notation is summarized in Table 1.
The model yields the following differential equations, see for example Blackwood & Childs
(2018).
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Figure 1 Scheme of mathematical model for humans and squirrels, adapted from Usman & Adamu
(2017).

Full-size DOI: 10.7717/peerj.9272/fig-1
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Table 1 Model parameters. The human MPX related death rate was taken as a solution to dh/(dh+ρh)= 0.1 where 10% is the MPX fatality (Ježek
et al., 1987). Similarly, squirrel MPX related death rate was taken as a solution to ds/(ds + ρs) = 0.6 where 60% is an estimate for the MPX fatality
found between 50–75% (Falendysz et al., 2017). We estimated the effective squirrel-to-squirrel transmission rate as βss = 40; this yields about 24%
of seropositive squirrels in the population, a number that agrees with estimates from Khodakevich, Ježek & Messinger (1988). The effective transmis-
sion rates between humans was estimated as βhh = 32.85 as follows. Arita et al. (1985) provide transmission risk p = 0.15 amongst household con-
tacts and p= 0.03 amongst other contacts. We assumed human-to-human contact rate γ = 365 (i.e., once a day) and obtained βhh = 365 0.15+0.03

2 =

32.85. The effective squirrel-to-human transmission rate was estimated to be βsh = 0.05 as this yields about 1% of seropositive humans (Khodake-
vich, Ježek & Messinger, 1988). The actual cost of vaccine is $4.85 (Lambert de Rouvroit & Heegaard, 2016). While the vaccine is provided for free,
there are many other direct and indirect costs associated with vaccination (need to travel to the health center, associated security risk, loss of income
etc., see for example Herp et al. (2003)) and we estimated the cost of vaccination to be 4. We note that the previously approved smallpox vaccines
such as ACAM2000 could cause severe side effects (Wollenberg & Engler, 2004; Nalca & Zumbrun, 2010). It is not clear if the new vaccine, JYNNEOS,
is more effective to protect against MPXV infections in humans than ACAM2000 and what the potential side effects are.

Symbol Meaning Value Source

3h Human birth rate 0.0328 CIA (2019)
3s Squirrel birth rate 2 Hayssen (2008)
µh Human natural death rate 1/60 World Bank (2019)
µs Squirrel natural death rate 0.5 Khodakevich, Ježek & Messinger (1988)
dh Human MPX related death rate 3.12 Ježek et al. (1987)
ds Squirrel MPX related death rate 17.5 Falendysz et al. (2017)
ρh Human recovery rate 28.08 Di Giulio & Eckburg (2004)
ρs Squirrel recovery rate 12 Falendysz et al. (2017)
νh Human infection rate 30.42 Di Giulio & Eckburg (2004)
νs Squirrel infection rate 120 Falendysz et al. (2017)
αh Vaccination rate variable
βss Squirrel-to-squirrel transmission rate 40 Assumed based on Khodakevich, Ježek & Messinger (1988)
βsh Squirrel-to-human transmission rate 0.05 Assumed based on Khodakevich, Ježek & Messinger (1988)
βhh Human-to-human transmission rate 32.85 Arita et al. (1985)
CV Cost of vaccination 4 Herp et al. (2003)
CMPX Cost of MPX infection $100 Adam, Evans & Murray (2003)

RESULTS
Equilibrium states of the MPX dynamics
The basic reproduction numbers were derived by Usman & Adamu (2017) and are given
by

R0ss=βss ·
1

µs+ds+ρs
·

νs

µs+νs
(10)

R0hh=βhh ·
µh

αh+µh
·

1
µh+dh+ρh

·
νh

µh+νh
. (11)

As shown in Appendix 1, R0ss corresponds to a number of secondary squirrel infections
caused by a single infected squirrel in an otherwise healthy population. The meaning of
R0hh is similar.

There are three qualitatively distinct equilibria of the dynamics (1)–(9). First, ε0 is the
disease free equilibrium. It occurs when R0ss < 1 and R0hh < 1. Second, ε∗ is the fully
endemic equilibrium with disease occurring amongst humans as well as squirrels. The
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Table 2 Different equilibria of the MPX dynamics. The formulas for N ∗h and N †
h are too long for the table and are given in Appendix 1.

Disease-free (ε0) Fully endemic (ε∗) Semi-endemic (ε†)
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(
µh+dh+ρh
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.N †
h
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h
αh
µh
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(
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µh

)
.S†
h

Eh 0
(
µh+dh+ρh
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)
.I∗h

(
µh+dh+ρh

νh

)
.I †
h

Ih 0 3h−µhN ∗h
dh

3h−µhN
†
h

dh

Rh 0 ρh
µh
.I∗h

ρh
µh
.I †
h

equilibrium is stable when R0ss> 1. Finally, ε† is a semi-endemic equilibrium with disease
prevalent only amongst human population. It is stable when R0ss< 1 and R0hh> 1.

The closed form formulas are given in Table 2. Step-by-step derivation can be found in
Appendix 1.

Herd immunity and Nash equilibrium vaccination rates
The average cost of not vaccinating when the population vaccination rate is αh is denoted
CnotV (αh) and it is given as a product of the cost of the MPX infection (CMPX ) and the
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Figure 2 Cost versus vaccination rate. The vaccination rate (αh) is varied while all other parameter values
are as specified in Table 1.

Full-size DOI: 10.7717/peerj.9272/fig-2

probability of moving from the Sh compartment to the Ih compartment, i.e.,

CnotV (αh)=CMPX ·


(
βsh

Is
Ns
+βhh

Ih
Nh

)
(
βsh

Is
Ns
+βhh

Ih
Nh

)
+µh

 ·( νh

νh+µh

)
. (12)

As the vaccination rate αh increases, R0hh decreases by Eq. (11). Furthermore, the
fraction Ih

Nh
at the appropriate equilibrium also decreases. Consequently, the cost of not

vaccinating decreases. In the semi-endemic equilibrium, the cost eventually becomes 0
when the vaccination rate reaches

αHI =max
{
0,

νhβhhµh

(µh+dh+ρh)(µh+νh)
−µh

}
. (13)

At that point, herd immunity is achieved and the disease is eradicated from the population.
In the fully endemic equilibrium, there is always a reservoir of MPX in the squirrel
population. This reservoir causes an influx of MPX infections amongst humans. Therefore
the disease can never be fully eradicated and the cost of not vaccinating will never reach 0,
see Fig. 2.

When the vaccination rate is such that CnotV (αh)=CV , the vaccination rate is at Nash
equilibrium, αNE . When αh <αNE , it is beneficial for the individual to vaccinate; when
αh>αNE , it is beneficial for the individual not to vaccinate.

Figure 3 shows a scenario where βhh= 60. While this value is unrealistically high, we
investigated this hypothetical scenario to see what would happen if MPXV mutates as
was the case of H1N1 influenza (swine flu) or is genetically engineered as was the case
of mousepox (Jackson et al., 2001; Di Giulio & Eckburg, 2004). When βhh is large enough,
specifically when

βhh>
αh+µh

αh
· (µh+dh+ρh) ·

µh+νh

νh
(14)
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Figure 3 Costs vs. Vaccination rate when the effective human-to-human transmission rate is high, βhh =
60. (A) The fully endemic state. (B) The semi-endemic state (βss = 30< (µs + ds + ρs) · µs+νsνs

). The same
scenario occurs when βsh = 0 and βss is arbitrary. In both figures, the vaccination rate (αh) is varied while
all other parameter values are as specified in Table 1.

Full-size DOI: 10.7717/peerj.9272/fig-3

MPX no longer needs squirrels to persist in the human population. In particular, it can
become endemic even in countries without natural squirrel population (i.e., even when
βsh= 0). At the same time, in the semi-endemic equilibrium, the disease can be controlled
through vaccination. Note that there is almost no difference between the Nash equilibrium
rate αNE (a solution to CnotV (αh)=CV ) and the rate αHI needed for herd immunity (a
solution to CnotV (αh)= 0).

Sensitivity analysis
As shown in Fig. 2, as αh increases, CnotV (αh) approaches an asymptote. Consequently,
the value of αNE , a solution to CnotV (αh)=CV can be very sensitive to CV when CV ≈ 3.
Any small decrease of CV can cause a significant increase of αNE . The same sensitivity
is demonstrated in Fig. 3. Figure 4 shows the sensitivity analysis and how αNE depends
on variation of different parameters. We can see the high sensitivity of αNE on the
squirrel-to-human transmission rate, βsh, and on the cost of vaccination, CV , for low
values of CV . Moreover, the figure demonstrates that αNE can be quite sensitive on the
effective transmission rate amongst squirrels, βss and the squirrels recovery rate, ρs. For
βss< (µs+ds+ρs) · µs+νs

νs
, there is a semi-endemic equilibrium and αNE = 0. However, as

βss increases above that threshold value, αNE rapidly increases and, when βss> 45, there
is no Nash equilibrium vaccination rate. Similarly, when ρs is large enough to have a
semi-endemic equilibrium, the optimal vaccination rate is 0. However, for small ρs, there
is no Nash equilibrium and the change is relatively abrupt as in the case of βss.

Model validation
For the parameters in Table 1, the proportion of seropositive squirrels, given as Is+Rs

Ns
,

is 24.44% which generally agrees with Khodakevich, Ježek & Messinger (1988). Also, the
proportion of seropositive people, Ih+Rh

Nh
, is 1.06%, again agreeing with Khodakevich, Ježek

& Messinger (1988).
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Figure 4 Dependence of αNE on different parameter values (A–L). Unless varied, the parameter
values are as specified in Table 1. For those parameters, αNE = 0.0419 and the sensitivity index,
SIx =

(
x
αNE

)(
∂αNE
∂x

)
derivatives of αNE with respect to parameters are as follows: SIβhh = 1.415,

SIβsh = 3.472, SIβss = 10.911, SIµs = 0.932, SIρs = −7.120, SIρh = −1.258, SIνs = 0.077, SIνh = 0.004,
SIds =−5.917, SIdh =−0.141, SICV =−3.518, SICMPX = 3.603.

Full-size DOI: 10.7717/peerj.9272/fig-4
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DISCUSSION
The phylogenetic relatedness between MPXV and variola virus grants the smallpox vaccine
an 85% effectiveness in preventing MPX (Reynolds & Damon, 2012). Poxviruses from the
Orthopoxvirus genus have cross-reactive antibodies, meaning that vaccinated individuals
would have a much lower risk of infection and mortality compared to unvaccinated
individuals (Louten, 2016). The imperfect prevention rate of the vaccine was omitted in
the design of the mathematical model for the sake of simplicity. As noted in Wu, Fu &
Wang (2011), imperfect protection aggravates the dilemma of voluntary protective actions
as lower vaccine effectiveness can lead to better vaccine coverage and smaller free-riding
effects; however, the impact of the epidemic can be harder to mitigate.

It is of interest to identify and evaluate possible preventative measures in addition
to vaccination that would have a measurable effect on the transmission of MPX. For
instance, decreasing the animal-to-human contact and launching an education campaign
about dangers of eating raw meat which seems to be the main culprit behind squirrel-to-
human transmission Khodakevich, Ježek & Messinger (1988) would significantly decrease
the animal-to-human transmission rate. It could still come at a considerable individual cost
(such as decrease of meat supply) but it would not require a complex or well-developed
healthcare infrastructure needed for the vaccination, thus providing the general population
with an easily accessible preventative measure. The mathematical model for such a measure
would become more complex. The main idea would follow the spirit of Kobe et al. (2018)
that investigated a situation for cholera prevention where individuals could either vaccinate
or avoid drinking potentially contaminated water.

The reservoir host formonkeypox remains unclear (Di Giulio & Eckburg, 2004; Falendysz
et al., 2017). We focused on a moribund rope squirrel, Funisciurus anerythrus, but we note
that the disease has also been confirmed in other animals (Arita et al., 1985; Khodakevich,
Ježek & Messinger, 1988; Reynolds et al., 2010). As noted in Falendysz et al. (2017), in a
recent outbreak of MPX in DRC, no association was found between contact with rope
squirrels and human infection (Nolen et al., 2015). Additionally, a recent survey of 34
villages in the Tshuapa region of DRC did not detect contact with a rope squirrel carcass
in the previous 30 days, although they reported contacts with red-legged sun squirrel,
Heliosciurus rufobrachium, (Monroe et al., 2015) which was identified in Khodakevich, Ježek
& Messinger (1988) as another frequent host of monkeypox.

CONCLUSIONS
We modeled MPX dynamics using the compartmental model of Usman & Adamu (2017).
As one of our major contributions, we provided closed form formulas of the equilibrium
states of the dynamics. Moreover, we also showed a potential existence of the semi-endemic
equilibrium, in which there is no infection in the squirrel population and the disease still
persists in the human population. Currently, MPX does not seem to have the viral fitness
to become endemic solely through human transmission. Yet, simple mutations in viral
proteins could still occur and increase successive inter-human cases as seen in the H1N1
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virus outbreak (Le et al., 2009). Should this mutation occur, a careful understanding of the
semi-endemic equilibrium will be needed.

In addition, we applied a game-theoretical approach to assess vaccination decision-
making developed by Bauch & Earn (2004). Individuals in any population susceptible to
MPX have the choice to vaccinate against the disease or risk the possibility of contracting
the disease. Naturally, it is in the individual’s best interest to choose the option with the
smaller expected cost. The model quantifies the costs and benefits of getting smallpox
vaccine. We found that the optimal vaccination rate is about 0.04, i.e., individuals should
vaccinate about once every 25 years.

We must note that the parameter values we used are only estimates based on available
literature. In reality, the parametersmay be quite different, in large part because the reservoir
hosts are different as discussed above. The performed sensitivity analysis allows us to gain
insight into how our results depend on the specific parameter values. We observed that
the optimal vaccination rate, αNE , is about 10 times more sensitive to parameters related
to animal hosts than to a corresponding parameter related to humans. It is therefore
important to establish more accurate parameters. Consequently, greater efforts are needed
to track the true prevalence and recurrent cases of MPX in all populations rather than
relying on suspected cases.

Though not perfect in practice, mathematical modeling of diseases remains a powerful
tool that grants a more profound understanding how MPX operates under certain
conditions. The scope of epidemiological modeling and game-theoretic cost analysis
is wide. As cases of MPX become increasingly reported among humans (Antwerpen et al.,
2019), we hope that the models may serve as a predictive tool to better study the spread of
MPX.
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APPENDIX 1. STEP-BY-STEP SOLUTIONS TO EQUILIBRIUM
STATES
In this section we find the equilibrium states of the system (1)–(9). We will look for
solutions of the following system.
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0=3s−

(
µs+βss

Is
Ns

)
Ss (15)

0=βss
Is
Ns

Ss− (µs+νs)Es (16)

0= νsEs− (µs+ds+ρs)Is (17)

0= ρsIs−µsRs (18)

0=3h−

(
µh+

(
βsh

Is
Ns
+βhh

Ih
Nh

)
+αh

)
Sh (19)

0=αhSh−µhVh (20)

0=
(
βsh

Is
Ns
+βhh

Ih
Nh

)
Sh− (µh+νh)Eh (21)

0= νhEh− (µh+dh+ρh)Ih (22)

0= ρhIh−µhRh (23)

where (15)–(18) are equations for the squirrels and (19)–(23) are for the humans.
We will distinguish three equilibrium states ε0, ε∗ and ε† depending on the existence

of infection among squirrels and humans. However, by (16), (18), (20), (21) and (23), no
matter which equilibrium state, the following formulas will always be valid.

Es=
µs+ds+ρs

νs
Is (24)

Rs=
ρs

µs
Is (25)

Vh=
αh

µh
Sh (26)

Eh=
µh+dh+ρh

νh
Ih (27)

Rh=
ρh

µh
Ih (28)

Disease-free equilibrium, ε0
Assume I 0h = I 0s = 0. It follows from (24) that E0

s = 0, from (25) that R0
s = 0 and from (15)

that S0s =
3s
µs
. Also, by (27), E0

h = 0 and, by (28), R0
h= 0. It follows from (19) that

S0h=
3h

αh+µh
. (29)

and thus, by (26),

V 0
h =

3h

µh
·

αh

αh+µh
. (30)

The stability of ε0 was discussed and the basic reproduction numbers were derived in
Usman & Adamu (2017) using the next-generation matrix method of Van den Driessche
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&Watmough (2002). Here we present an alternative derivation of the basic reproduction
numbers.

Assume there is an infected squirrel in an otherwise disease-free population. The squirrel
stays infected for a period of (µs+ds+ρs)−1 during which it exposes susceptible individuals
at the rate βss

S0s
N 0
s
= βss. The newly exposed individuals end up in the Is compartment with

probability νs
µs+νs

. Consequently, the number of secondary infections from a single infected
squirrel in an otherwise disease free equilibrium is given by

R0ss=βss ·

(
1

µs+ds+ρs

)
·

(
νs

µs+νs

)
. (31)

Similarly, we can derive that the number of secondary infections caused by a single infected
human in otherwise disease-free population is

R0hh=βhh
S0h
N 0
h
·

(
1

µh+dh+ρh

)
·

(
νh

µh+νh

)
=

νhβhhµh

(µh+dh+ρh)(µh+νh)(αh+µh)
. (32)

Case when Is >0
By adding (15)–(18), we get 0=3s−µsN ∗s −dsI

∗
s which yields

I ∗s =
3s−µsN ∗s

ds
. (33)

By (24), (16) becomes

0=
βssI ∗s S

∗
s

N ∗s
− (µs+νs) ·

µs+ds+ρs
νs

· I ∗s (34)

and since we are assuming I ∗s > 0, we can divide by Is and get

S∗s =N ∗s ·
(µs+νs)(µs+ds+ρs)

βssνs
=

N ∗s
R0ss

. (35)

Consequently,

N ∗s = S∗s +E
∗

s + I
∗

s +R
∗

s

=
N ∗s
R0ss
+

(
µs+ds+ρs

νs
+1+

ρs

µs

)
·

(
3s−µsN ∗s

ds

)
(36)

which yields

N ∗s =
3s ·

(
µs+ds+ρs

νs
+1+ ρs

µs

)
µs ·

(
µs+ds+ρs

νs

)
+µs+ρs+ds

(
1− 1

R0ss

) . (37)
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Fully endemic equilibrium, ε*, human population
Adding (19)–(23) yields

0=3h−µhN ∗h −dhI
∗

h (38)

and consequently

I ∗h =
3h−µhN ∗h

dh
. (39)

Substituting (39) into (23), (21), (19), (20) we get

R∗h=
ρh

µh
·

(
3h−µhN ∗h

dh

)
(40)

E∗h =
(
µh+dh+ρh

νh

)
·

(
3h−µhN ∗h

dh

)
(41)

S∗h=
(µh+νh) ·

(
µh+dh+ρh

νh

)
·

(
3h−µhN ∗h

dh

)
βsh

(
I∗s
N ∗s

)
+βhh

3h−µhN
∗
h

dh
N ∗h

(42)

V ∗h =
αh

µh
·

(µh+νh) ·
(
µh+dh+ρh

νh

)
·

(
3h−µhN ∗h

dh

)
βsh

(
I∗s
N ∗s

)
+βhh

3h−µhN
∗
h

dh
N ∗h

. (43)

Since N ∗h = S∗h+V
∗

h +E
∗

h + I
∗

h +R
∗

h, we get

N ∗h =
ρh

µh

(
3h−µhN ∗h

dh

)
+

(
µh+dh+ρh

νh

)
·

(
3h−µhN ∗h

dh

)

+
3h−µhN ∗h

dh
+

(µh+νh) ·
(
µh+dh+ρh

νh

)
·

(
3h−µhN ∗h

dh

)
βsh

(
I∗s
N ∗s

)
+βhh

3h−µhN
∗
h

dh
N ∗h

+
αh

µh
·

(µh+νh) ·
(
µh+dh+ρh

νh

)
·

(
3h−µhN ∗h

dh

)
βsh

(
I∗s
N ∗s

)
+βhh

3h−µhN
∗
h

dh
N ∗h

. (44)

This yields that N ∗h is a positive root of the equation AN 2
h +BNh+C = 0, i.e.,

N ∗h =
−B+

√
B2−4AC
2A

(45)

where

A= g ·dh+k · c ·dh ·µh

(
1+

αh

µh

)
+g ·µh(1+z+k) (46)

B= dh ·βhh ·3h−
(
g ·3h−βhh ·3h ·µh

)
(1+z+k)−k · c ·dh ·3h

(
1+

αh

µh

)
(47)

C =−32
h ·βhh(1+z+k) (48)
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and

k=
µh+dh+ρh

νh
(49)

g = dhβsh

(
I ∗s
N ∗s

)
−βhhµh (50)

c =µh+νh (51)

z =
ρh

µh
. (52)

The positive solution for N ∗h from (45) can then be recursively substituted into (39),
(40), (41), (42), and (43) to get closed-form formulas for equilibrium values.

Semi-endemic equilibrium
Here, Is = 0. As above, by adding all equations (19)–(23) we get 0=3h−µhN

†
h −dhI

†
h

which yields

I †h =
3h−µhN

†
h

dh
. (53)

Substituting Eq. (53) into Eqs. (23), (21), (19) we get

R†
h=

ρh

µh
·

(
3h−µhN

†
h

dh

)
(54)

E†
h =

(
µh+dh+ρh

νh

)
·

(
3h−µhN

†
h

dh

)
(55)

S†
h=

(µh+νh) ·
(
µh+dh+ρh

νh

)
·

(
3h−µhN

†
h

dh

)
βsh

(
I†s
N †
s

)
+βhh

3h−µhN
†
h

dh

N †
h

. (56)

Since I †s = 0, we get

S†
h=N †

h ·
(µh+dh+ρh)(µh+νh)

νhβhh
(57)

and consequently, by (20),

V †
h =N †

h ·

(
αh

µh

)
·
(µh+dh+ρh)(µh+νh)

νhβhh
. (58)

Finally, summing up (53)–(58), we obtain the closed-form formula

N †
h =

3h ·
(
ρh
µh
+
µh+dh+ρh

νh
+1
)

dh+µh ·
(
ρh
µh
+
µh+dh+ρh

νh
+1
)
−dh ·

(
µh+dh+ρh

νh

(
µh+νh
βhh

)
+

αh
µh

(
µh+dh+ρh

νh

)(
µh+νh
βhh

))
(59)
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which can be used to calculate equilibrium values.
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