The genome of the butternut canker pathogen, *Ophiognomonia clavigignenti-juglandacearum* shows an elevated number of genes associated with secondary metabolism and protection from host resistance responses.

Guangxi Wu*a, Taruna A. Schuelke*b, Gloria Iriarte*a,c, Kirk Broders*a,c

a Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States

b Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, California

c Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panamá.

Keywords

Canker pathogen, Efflux pump, Cytochrome P450, Juglans, Fagales
Abstract

Ophiognomonia clavigigentijuglandacearum (Oc-j) is a plant pathogenic fungus that causes canker and branch dieback diseases in the hardwood tree butternut, Juglans cinerea. Oc-j is a member of the order Diaporthales, which includes many other plant pathogenic species, several of which also infect hardwood tree species. In this study, we sequenced the genome of Oc-j and achieved a high-quality assembly and delineated its phylogeny of Oc-j within the Diaporthales order using a genome-wide multi-gene approach. We also further examined multiple gene families that might be involved in plant pathogenicity and degradation of complex biomass, which are relevant to a pathogenic life-style in a tree host. We found that the Oc-j genome contains a greater number of genes in these gene families compared to other species in the Diaporthales. These gene families include secreted CAZymes, kinases, cytochrome P450, efflux pumps, and secondary metabolism gene clusters. The large numbers of these genes likely provide Oc-j with an arsenal to cope with the specific ecological niche as a pathogen of the butternut tree.

Introduction

Ophiognomonia clavigigentijuglandacearum (Oc-j) is an Ascomycetous fungus in the family Gnomoniaceae and order Diaporthales. Like many of the other species within the Diaporthales, Oc-j is a canker pathogen, and is known to infect the hardwood butternut (Juglans cinerea) (Figure 1). The Diaporthales order is composed of 13 families [1], which include several plant pathogens, saprophytes, and endophytes [2]. Numerous tree diseases are caused by members of this order. These diseases include dogwood anthracnose (Discula destructiva), butternut canker (Ophiognomonia clavigigentijuglandacearum), apple canker (Valsa mali and Valsa pyri), Eucalyptus canker (Chrysoporthe autroafricana, C. cubensis and C.
Wu et al., 3, Oc-j genome

37 deuterocubensis), and perhaps the most infamous and well-known chestnut blight
38 (Cryphonectira parastica). Furthermore, several species of in the Diaporthales also cause
39 important disease of crops including soybean canker (Diaporthe aspalathi), soybean seed decay
40 (Diaporthe langicolla) and sunflower stem canker (Diaporthe helianthi). In addition to
41 pathogens, there are also a multitude of species that have a saprotrophic or endophytic life
42 strategy [3]. However, the saprophytic and endophytic species have not been studied as
43 extensively as the pathogenic species in the Diaporthales.

44 Like many of the tree pathogens in Diaporthales, Oc-j is an invasive species, introduced
45 into the U.S. from an unknown origin. This introduction caused extensive damage among the
46 butternut population in North America during the latter half of the 20th century. The first report
47 of butternut canker was in Wisconsin in 1967 [4], and in 1979, the fungus was described for the
48 first time as Sirococcus clavigignenti-juglandacearum (Sc-j) [5]. Recent phylogenetic studies
49 have determined the pathogen which causes butternut canker is a member of the genus
50 Ophiognomonia and was reclassified as Ophiognomonia clavigignenti-juglandacearum (Oc-j)
51 [6]. The sudden emergence of Oc-j, its rapid spread in native North American butternuts, the
52 scarcity of resistant trees, and low genetic variability in the fungus point to a recent introduction
53 of a new pathogenic fungus that is causing a pandemic throughout North America [7].

54 While Oc-j is a devastating pathogen of a hardwood tree species the butternut, Juglans
55 cinerea, many of the there are also several species in the genus Ophiognomonia that are
56 endophytes or saprophytes of tree species in the order Fagales and more specifically the
57 Juglandaceae or walnut family [8,9]. This relationship may support the hypothesis of a host
58 jump, where the fungus may have previously been living as an endophyte or saprophyte before
59 coming into contact with butternut. In fact, a recent study from China reported Sirococcus
Wu et al., 4, Oc-j genome

(Ophiognomonia) clavigignenti-juglandacearum as an endophyte of Acer truncatum, which is a maple species native to northern China [10]. The identification of the endophytic strain was made based on sequence similarity of the ITS region of the rDNA. A recent morphological and phylogenetic analysis of this isolate determined that while it is not Oc-j, this isolate is indeed more closely related to Oc-j than any other previously reported fungal species [11]. The endophytic isolate also did not produce conidia in culture in comparison to Oc-j which produces abundant conidia in culture. It is more likely that these organisms share a common ancestor and represent distinct species.

While the impact of members in the Diaporthales on both agricultural and forested ecosystems is significant [2], there has been limited information regarding the genomic evolution of this order of fungi. Several species have recently been sequenced and the genome data made public. This includes pathogens of trees and crops as well as an endophytic and saprotrophic species [12]. However, these were generally brief genome reports and a more thorough comparative analysis of the species within the Diaporthales has yet to be completed.

Here we report the genome sequence of Oc-j and use it in comparative analyses with those of tree and crop pathogens within the Diaporthales. Comparative genomics of several members of the Diaporthales order provides valuable insights into fundamental questions regarding fungal lifestyles, evolution and phylogeny, and adaptation to diverse ecological niches, especially as they relate to plant pathogenicity and degradation of complex biomass associated with tree species.

Methods

DNA extraction and library preparation
For this study, the \textit{ex}-type culture of \textit{Oc-}j (ATCC 36624) recovered isolated from an infected butternut tree in Wisconsin in 1978, was sequenced. For DNA extraction, isolates were grown on cellophane-covered potato dextrose agar for 7-10 d, and mycelia was collected and lyophilized. DNA was extracted from lyophilized mycelia using the CTAB method as outlined by the Joint Genome Institute for whole genome sequencing (Kohler A, Francis M. Genomic DNA Extraction, Accessed 12/12/2015 \url{http://1000.fungalgenomes.org/home/wp-content/uploads/2013/02/genomicDNAProtocol-AK0511.pdf}). The total DNA quantity and quality were measured using both Nanodrop and Qubit, and the sample was sent to the Hubbard Center for Genome Studies at the University of New Hampshire, Durham, New Hampshire. DNA libraries were prepared using the paired-end Illumina Truseq sample preparation kit, and were sequenced on an Illumina HiSeq 2500.

\textbf{Genome assembly and annotation}

We corrected our raw reads using BLESS 0.16 [33] with the following options: -kmerlength 23 -verify -notrim. Once our reads were corrected, we trimmed the reads at a phred score of 2 both at the leading and trailing ends of the reads using Trimmomatic 0.32 [34]. We used a sliding window of four bases that must average a phred score of 2 and the reads must maintain a minimum length of 25 bases. Next, \textit{de novo} assembly was built using SPAdes-3.1.1 [35] with both paired and unpaired reads and the following settings: -t 8 -m 100 --only-assembler. Genome sequences were deposited at ncbi.nlm.nih.gov under Bioproject number PRJNA434132.

Gene annotation was performed using the MAKER2 pipeline [36] in an iterative manner as is described in [37], with protein evidence from related species of \textit{Melanconium sp.}, \textit{Cryphonectria parasitica}, \textit{Diaporthe ampelina}, (from jgi.doe.gov) and \textit{Diaporthe helianthi} [19], for a total of three iterations. PFAM domains were identified in all the genomes using hmmscan with trusted
Wu et al., 6 Oc-j genome
cutoff [38]. Only nine species were included in the PFAM analysis. For the three *Chrysoporthe* species, *D. aspalathi*, and *D. longicolla*, protein sequences were not readily available for downloading online and e-mail requests were unsuccessful. Secondary metabolism gene clusters were identified using antiSMASH 4.0 [39].

Species phylogeny
Core eukaryotic proteins identified by CEGMA [40] were first aligned by MAFFT [41] and then concatenated. Only proteins that were present in all genomes and all sequences were longer than 90% of the *Saccharomyces cerevisiae* ortholog were used. This resulted in a total of 340 single-copy genes that were concatenated into a single alignment. Phylogeny was then inferred using maximum likelihood by RAxML [42] with PROTGAMMA used to estimate protein evolution, and with 100 bootstraps and then midpoint rooted.

Secreted CAZyme prediction
SignalP [43] was used to predict the presence of secretory signal peptides. CAZymes were predicted using CAZymes Analysis Toolkit [44] based on the most recent CAZY database (www.cazy.org). Proteins that both contain a signal peptide and are predicted to be a CAZyme are annotated as a secreted CAZyme.

Results and Discussion
Genome assembly and annotation of Oc-j
The draft genome assembly of *Oc-j* contains a total of 52.6 Mbp and 5,401 contigs, with an N50 of 151 Kbp (Table 1). The completeness of the genome assembly was assessed by identifying universal single-copy orthologs using BUSCO with lineage dataset for Sordariomycota [13]. Out of 3,725 total BUSCO groups searched, we found that 3,378 (90.7%) were complete and 264
Wu et al., 7, Oc-j genome

(7.1%) were fragmented in the Oc-j genome, while only 83 (2.2%) were missing. This result indicates that the Oc-j genome is relatively complete.

Genome-wide multi-gene phylogeny of Diaporthales

A total of 340 genes were used to generate a multigene phylogeny of the order Diaporthales. All sequenced species in Diaporthales (one genome per species for 12 species) were used. These species include: Cryphonectria parasitica (jgi.doe.gov), Chrysoporthe cubensis [14], Chrysoporthe deuterocubensis [14], Chrysoporthe austroafricana [15], Valsa mali [12], Valsa pyri [12], Diaporthe ampelina [16], Diaporthe aspalathi [17], Diaporthe longicolla [18], Diaporthe helianthi [19], and Melanconium sp. The outgroups used were Neurospora crassa [20] and Magnaporthe grisea [21]. We show that the order Diaporthales is divided into two main branches. One branch includes Oc-j, C. parasitica, and the Chrysoporthe species (Figure 2), in which Oc-j is located basally the outlier, indicating its early divergence from the rest of the branch. The other branch includes the Valsa and Diaporthe species.

Gene content comparison across the Diaporthales

To examine the functional capacity of the Oc-j gene repertoire, the PFAM domains were identified in the protein sequences (Supplementary Table 1). For comparison, we also examined eight of the above mentioned 13 related species, where protein sequences were successfully retrieved (see Methods for details).

CAZymes are a group of proteins that are involved in degrading, modifying, or creating glycosidic bonds and contain predicted catalytic and carbohydrate-binding domains [22]. When secreted by fungal pathogens, CAZymes can participate in degrading plant cell walls during colonization by fungal pathogens; therefore, a combination of CAZyme and protein secretion prediction was used to identify and classify enzymes likely involved in cell wall degradation in
Overall, the Oc-j genome contains 576 putatively secreted CAZymes, more than any of the other eight species included in this analysis, and 60 CAZymes more than D. helianthi, the species with the second most (Figure 3, Suppl. Table 1). Given that all except the bread mold species N. crassa, which has the lowest number of secreted CAZymes, are plant pathogens, this result indicates that Oc-j contains an especially large gene repertoire for cell wall degradation. However, it is not the greatest among members of the kingdom fungi. For instance, the saprophytic species Penicillium subrubescens and Podospora anserina have been found to have 719 and 590 CAZymes, respectively [23]. This pattern also holds true when compared to other tree pathogens that have a latent period and an extended host range that. For instance, Botryosphaeria dothidea, which is a pathogen of many woody species and has a prolonged latent and endophytic phase during the infection process, was reported to have 623 CAZymes [24]. Other studies have also found an elevated number of CAZymes in multi-host pathogens of woody plant species including Eutypa lata and Neofusicoccum parvum which had 484 and 413 CAZymes, respectively [22, 23]. In a recent comparative genomic analysis of tree pathogens, it was reported that the black walnut pathogen, Geosmithia morbida, had 406 CAZymes, the lodgepole pine pathogen Grosmania clavigera had 530 CAZymes, and the plane tree canker pathogen, Ceratocystis platani, had 360 CAZymes [23]. Since secreted CAZymes are involved in degrading plant cell walls [22], the large number of secreted CAZymes in Oc-j and other pathogens of woody plants might help facilitate its a life-style infecting multiple species of perennial woody plants with a wide array of both preformed and infection-induced resistance responses and colonizing butternut trees.
Among a total of 77 kinase related PFAM domains were found in the nine above mentioned species. Of these, 61 domains are present in more genes more abundant in Oc-j than the average of the eight related species, while only eight domains are present in fewer genes less abundant in Oc-j (Figure 3, Suppl. Table 1). Given that kinases are involved in signaling networks, this result might indicate a more complicated signaling network in Oc-j. One example of kinase gene family expansion is the domain family of fructosamine kinase (PF03881). Oc-j contains 29 genes (Figure 3). Almost nothing is known about the function of f-fructosamine kinases in fungi. In other eukaryotes, it is involved in protein deglycation by mediating phosphorylation of fructoselysine residues on glycated proteins. While plants and fungi both produce an array of glycated proteins it is unclear if Oc-j is producing fructosamine kinase to function in deglycation of proteins produced by the plant host. Fructosamine kinases are extracellular serine-proteases, and are implicated in the pathogenic activity of several fungal pathogens of mammals [25], including Aspergillus fumigatus [26]. Whether or not fructosamine kinase functions are important for plant pathogens remains unknown.

Cytochrome P450s (CYPs) are a superfamily of monooxygenases that play a wide range of roles in metabolism and adaptation to ecological niches in fungi [27]-[24]. Due to their participation in a large number of detoxification reactions as well as in the metabolism of specific xenobiotics which may be co-assimilated as carbon source, CYPs are thought to be critical for the colonization of new ecological niches [ref 28]. Among the nine species included in the PFAM analysis, N. crassa has only 31 CYPs, while the other eight plant-pathogenic species have between 104 – 223 CYPs. This result likely reflects that the ecological niche of N. crassa, a bread saprophyte, is more favorable for fungal growth than live plants with active defense.
mechanisms, thus fewer CYPs are needed for *N. crassa* to cope with relatively simple substrates. The *Oc*-j genome contains 223 CYPs (Figure 3, Suppl. Table 1), more than any of the other seven plant-pathogenic fungal species. This may be an evolutionary response to the number and diversity of secondary metabolites, such as juglone, produced by butternut as well as other *Juglans* species, that would need to be metabolized by any fungal pathogen trying to colonize the tree. Other pathogens of woody plants species are also known to have an increased number of CYPs. The grapevine canker pathogens *E. latata* and *N. parvum* have 205 and 212 CYPs respectively [22]. According to the Fungal Cytochrome P450 Database (FCPD) [29], very few fungal species have more CYPs than *Oc*-j. The brown rot and pathogenic fungi in the basidiomycota have the greatest number of CYPs in the fungal kingdom. The brown rot fungus *Postia placenta* has the greatest number of CYPs with 345 CYPs, while the cacao pathogen *Moniliophthora perniciosa* and root rot pathogen *Armillaria mellea* have 300 and 245 CYPs respectively [29]. The one characteristic all of these fungi have in common is their association with dead, dying or living trees and the need to breakdown or resist the multitude of chemical compounds produced by tree species.

Efflux pumps. To overcome host defenses, infect and maintain colonization of the host, fungi employ efflux pumps to counter intercellular toxin accumulation [30][25]. Here, we examine the presence of two major efflux pump families, the ATP-binding cassette (ABC) transporters and transporters of the major facilitator superfamily (MFS) [30] in the Diaporthales genomes. ABC transporters (PF00005, pfam.xfam.org) are present in all of the nine species included in the PFAM analysis, ranging from 25 genes in *N. crassa* to 51 genes in *V. mali*, while *Oc*-j has 47 genes (Figure 3, Suppl. Table 1). The major facilitator superfamily membrane proteins are expressed ubiquitously in all kingdoms of life for the import or export of
target substrates. The MFS is a clan that contains 24 PFAM domain families (pfam.xfam.org).

The Oc-j genome contains 653 MFS efflux pump genes, the most among all nine species included in the PFAM analysis (Figure 3, Suppl. Table 1). *Cryphonectria* parasitica has 552 genes, the second most. Interestingly, it was recently shown that the secondary metabolite juglone extracted from *Juglans* spp. could be used as potential efflux pump inhibitors in *Staphylococcus aureus*, inhibiting the export of antibiotics out of the bacterial cells [31]. In line with this previous finding, our results suggest that Oc-j genome contains a large arsenal of efflux pumps likely due to the need to cope with hostile secondary metabolites such as the efflux pump inhibitor juglone.

Secondary metabolism gene clusters. Secondary metabolite toxins play an important role in fungal nutrition and virulence [32]. To identify gene clusters involved in the biosynthesis of secondary metabolites in Oc-j and related species, we scanned their genomes for such gene clusters. We found that the Oc-j genome contains a remarkably large repertoire of secondary metabolism gene clusters, when compared to the closely related *C. parasitica* and the *Chrysoporthe* species (Figure 3, Suppl. Table). While *C. parasitica* has 44 gene clusters and the *Chrysoporthe* species have 18 – 48 gene clusters, the Oc-j genome has a total of 72 gene clusters (Supplementary Table 1), reflecting a greater capacity to produce various secondary metabolites. Among the 72 gene clusters in Oc-j, more than half are type 1 polyketide synthases (t1pks, 39 total, including hybrids), followed by non-ribosomal peptide synthetases (nrps, 14 total, including hybrids) and terpene synthases (9) (Supplementary Table 1).

When compared to all species included in this study, we found that Oc-j has the third highest number of clusters, only after *D. longicolla* and *Melanconium* sp.; however, when normalized by total gene number in each species, Oc-j is shown to have 6.4 secondary metabolism gene clusters...
per 1000 genes, the highest among all species included in this study. The *D. helianthi* genome contains only six clusters, likely due to the poor quality of the genome assembly with an N50 of ~6 kbps (Figure 3, Suppl. Table 1). Cluster numbers can vary greatly within the same genus.

Conclusion

We constructed a high-quality genome assembly for *Oc-j*, and delineated the phylogeny of the Diaporthales with a genome-wide multi-gene approach, revealing two major branches. We then examined several gene families relevant to plant pathogenicity and complex biomass degradation. We found that the *Oc-j* genome contains large numbers of genes in these gene families. These genes might be essential for *Oc-j* to cope with its niche in the hardwood butternut (*Juglans cinerea*). Future research will need to focus on understanding the prevalence of these genes associated with complex biomass degradation among other members of the *Ophiognomonia* genus which include endophytes, saprophytes and pathogens. It will be interesting to know which of these different classes of genes are important in the evolution of distinct fungal lifestyles and niche adaptation. Future research will also focus on comparing the butternut canker pathogen to canker pathogens of other tree species which produce large numbers of secondary metabolites known to be important in host defense. Our genome also serves as an essential resource for the *Oc-j* research community.

Conflicts of interest

The authors have no conflict of interest.

Acknowledgements

Special thanks to Dr. Matt MacManus. This started as an in-class project for PhD student TS and provided the basis for this final manuscript. Funding from this project was provided from grant number 14NB49 from the National Geographic Society. Dr. Broders was also supported by the Simon’s Foundation Grant number 429440 to the Smithsonian Tropical Research Institute.
References

Wu et al., 14, Oc-j genome

Wu et al., 17, Oc-j genome

management tool for second-generation genome projects, BMC Bioinformatics. 12:491.

Genome Sequence of Penicillium solitum RS1, Which Causes Postharvest Apple Decay,

comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids

[40] Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in

sequence alignment based on fast Fourier transform, Nucleic Acids Res. 30:3059–3066.

[42] Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of

peptides from transmembrane regions, Nat. Methods. 8:785. doi:10.1038/nmeth.1701.

Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active
Table 1. Assembly statistics of the butternut canker pathogen and other Diaporthales analyzed.

Supplementary Table 1. PFAM and antiSMASH annotation of Oc-j and related species

Figure 1. Symptoms of infection caused by Oc-j on the A) leaves, B) branches and C) trunk as well as D) signs of asexual fructing bodies on an infected branch.

Figure 2. Phylogeny of Diaporthales and related species inferred using maximum likelihood by RAxML [37] with 1000 bootstraps and then midpoint rooted. The first and second numbers in parentheses represent the genome sizes in Mb and the number of predicted protein models, respectively

Figure 3. Abundance of genes in specific classes including ABC transporters, Cytochrome P450, Kinases, CAZymes, and MFS Efflux pumps present in nine species within the order Diaporthales
Wu et al., 19, Oc-j genome