

1 **Bee diversity in secondary forests and coffee plantations in a transition between foothills**  
2 **and highlands in the Guatemalan Pacific Coast**

3

4 Ana Gabriela Armas-Quiñonez<sup>1,2</sup>, Ricardo Ayala Barajas<sup>3</sup>; Carlos Avendaño-Mendoza<sup>4</sup>; Roberto  
5 Lindig-Cisneros<sup>1</sup>; Ek del- Val<sup>1,5\*</sup>.

6

7 <sup>1</sup>Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma  
8 de México, Morelia, Michoacán, México

9 <sup>2</sup>Centro de Estudios Conservacionistas, Universidad de San Carlos de Guatemala, Guatemala

10 <sup>3</sup>Estación de Biología Chamela, Universidad Nacional Autónoma de México,Chamela, Jalisco,  
11 México

12 <sup>4</sup>Escuela de Biología, Universidad de San Carlos de Guatemala, Guatemala

13 <sup>5</sup> Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de  
14 México, Morelia, Michoacán, México

15 Corresponding author:

16 Ek del-Val

17 Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de La Huerta, C.P.

18 58190, Morelia, Michoacán, México

19 Email address: [ekdelval@iies.unam.mx](mailto:ekdelval@iies.unam.mx)

20

21

22

23

24

25 **Abstract**

26 **Background.** Although conservation of pristine habitats is recognized in many countries as  
27 crucial for maintaining pollinator diversity, the contribution of secondary forest conservation is  
28 poorly recognized in the Latin American context, such as in Guatemala. San Lucas Tolimán  
29 (SLT) is a high-quality coffee production region from the Atitlan Province, which has the second  
30 highest deciduous forest cover in Guatemala and pristine forest is prioritized for conservation. In  
31 contrast, secondary forest protection is undetermined, since these forests are normally removed  
32 or strongly affected by coffee farming practices. This situation may affect the diversity of native  
33 pollinators, mainly bees, which usually rely on the secondary forest for food resources.

34 **Methods.** We conducted a study to investigate the importance of secondary forests around the  
35 SLT coffee plantations for pollinators. We compared bee diversity (richness, abundance and  
36 composition) in secondary forests of different age in coffee plantations with diverse farming  
37 techniques. Being the first study of pollinators in Guatemalan coffee plantations, we also  
38 recorded data for an entire year in order to describe bee seasonality.

39 **Results.** We found significant differences in bee diversity between the coffee plantations and  
40 secondary forests, while forest type was not as determinant for bee diversity. In the early dry  
41 season, secondary forests showed the greatest native bee diversity. During the late dry season,  
42 when the coffee was flowering, honeybees were dominant in the same plots. This study provides  
43 important management insights to support the conservation of pollinators, since our results offer  
44 guidelines to improve coffee production by increasing native pollinator diversity.

45

46 Key words: pollination, native bee diversity, Megachillidae, secondary forest, insect  
47 conservation

48

49 **Introduction**

50 Rates of land-use change in primary forests are increasing worldwide, threatening biodiversity  
51 (Montero-Castaño and Vilà, 2012). As a result, secondary forests become alternative habitats and  
52 resource providers that promote a faunal diversity more characteristic of primary forest (Peters et  
53 al., 2013; Taki et al. 2013). In tropical forests, one of the most threatened groups of fauna  
54 interacting in both primary and secondary forests are the pollinators (Winfree et al., 2011;  
55 Cariveau and Winfree 2015), a fact that highlights the importance of also conserving secondary  
56 forests (Taki et al. 2013, Winfree et al., 2011).

57 The conservation strategy in Guatemala for the past twenty-five years has been to  
58 preserve primary forest *in situ* (National Congress Decrees, 1989) by creating protected areas  
59 without management strategies to preserve the primary forest surroundings. As a result of this  
60 policy, the people in Guatemala are unaware of the role or ascribe little importance to secondary  
61 forest in terms of conserving biodiversity. In San Lucas Tolimán in Sololá, Guatemala,  
62 secondary forest is also underestimated; here, the traditional and conventional coffee farmers  
63 focus their conservation efforts on the pristine forest, mainly to ensure ecosystem services such  
64 as pollination and water provision. This is a good strategy for the conservation of native  
65 pollinators who nest in this forest (Jha and Dick, 2010; Klein et al., 2003; Klein et al., 2008; Rao  
66 and Stephen, 2010; Ricketts, 2004; Ricketts et al. 2008). However, many native pollinators also  
67 require secondary forest to obtain food resources throughout the year (Jha and Dick, 2010;  
68 Badano and Vergara, 2011; Klein et al., 2008; Kremen et al., 2004) and these are also important  
69 for maintaining biodiversity in general (Jules and Shahani, 2003; Kohler, 2007; Kremen et al.,  
70 2004; Kremen et al., 2007; Mandelik and Roll, 2009).

71

72 As some authors have suggested (Klein et al., 2007; Kremen et al., 2002, Ollerton et al.,  
73 2011; Winfree et al, 2007), among the vertebrate and invertebrate pollinators, bees are the most  
74 important pollination agents. Bees are responsible for pollinating nearly two thirds of crops  
75 worldwide (Brauman and Daily, 2008, Kremen et al., 2002); however, climate change and  
76 habitat fragmentation have endangered bee diversity and reduced bee populations, leading to a  
77 food crisis worldwide. Conservation of pollinators has therefore emerged as an issue of great  
78 importance (Abrol et al., 2012; Ollerton et al. 2011).

79 In recent years, Guatemala has become the seventh largest coffee producer in the world  
80 and it is the most important crop in the country in terms of the employment and foreign exchange  
81 that it produces (Anacafé, 2014). Sololá is a high-quality coffee region and crop fields are  
82 gaining territory at the expense of the forest due to the high demand for coffee produced in the  
83 region (Anacafé, 2014; Fischer and Victor, 2014).

84 At present in San Lucas Tolimán, the secondary vegetation commonly known as “monte”  
85 is normally cut down or treated with herbicides to prevent the secondary growth. Conventional  
86 farmers argue that by keeping the surroundings of the coffee clean they reduce the incidence of  
87 coffee pests, although there is no scientific evidence to support this belief. They also believe that  
88 by maintaining some primary forests they can guarantee pollinator diversity. On the other hand,  
89 the indigenous people who practice traditional farming are aware of the importance of secondary  
90 vegetation (Armas-Quiñonez Pers. Obs.). Through their traditional knowledge, they know that  
91 these represent a habitat for numerous important species. However, they also cut down all the  
92 secondary growth in common areas, arguing that it is for the safety of the children and for  
93 aesthetic purposes. In both cases, the secondary vegetation is removed. As a consequence, the

94 area with secondary vegetation in the region could be insufficient to maintain the community of  
95 native bee pollinators, especially when the coffee is not in flower. In other words, the traditional  
96 and conventional coffee farmers are not aware of the critical importance of secondary forest to  
97 the preservation of the pollinators, a situation that must be addressed in Guatemala since it could  
98 lead to loss of biodiversity and subsequently to deficient coffee production (Philpott et al., 2008;  
99 Scheper et al., 2013; Steffan-Dewenter and Westphal, 2008).

100 In order to ensure production and obtain other income sources, coffee farmers of the  
101 Guatemalan highlands have introduced *Apis mellifera* hives into their farms. However, this  
102 practice may present some risk since it could have unknown impacts on native bee populations  
103 (Badano and Vergara, 2011; Garibaldi et al., 2011; Shavit et al., 2009; vanEngelsdorp and  
104 Meixner, 2010; Winfree et al., 2007), particularly in Guatemala where such interactions are  
105 poorly studied.

106 Coffee farming in Guatemala is very heterogeneous in terms of farming techniques. Big  
107 farms have changed from traditional management to conventional and highly intensive farming  
108 techniques that usually include higher inputs of agrochemicals, mainly pesticides, or on rare  
109 occasions have changed to integrated pest management (IPM). At the same time, traditional  
110 farmers use multi-farming techniques, where small coffee plantations are cultivated using  
111 intercropping with several banana hybrids (*Musa x paradisiaca*), papaya (*Carica papaya*),  
112 macuy (*Solanum americanum*), besides other crops. Traditional farmers usually cannot afford  
113 agrochemicals (pesticides, herbicides and fertilizers) to spray on their fields, and this  
114 management could therefore be contributing more than conventional coffee cultivation to the  
115 maintenance of bee diversity (Schmitt, 2006; Schuepp et al., 2012). However, in Guatemala,  
116 there have been no studies published that address this issue.

117 This study was therefore conducted in order to investigate the importance of secondary  
118 forests in maintaining pollinator diversity around the San Lucas Tolimán coffee fields. To  
119 accomplish this goal, the study was designed to compare bee diversity in plots featuring different  
120 stages of secondary forest and in coffee fields managed under a range of farming practices.

121

## 122 **Materials & Methods**

### 123 **Study sites**

124 This study was conducted from March 2013 through February 2014 in San Lucas Tolimán  
125 foothills region. San Lucas Tolimán is located at the limit between the central highlands and  
126 costal lowlands in southeastern Guatemala, where many Kaqchikel indigenous people live. San  
127 Lucas Tolimán is bordered by two volcanoes, Atitlán and Tolimán that range from 800 to 3500  
128 masl and produce a variety of microhabitats. According to the Villar classification, the primary  
129 vegetation of studied farms are within a subtropical humid forest, where broadleaf evergreen  
130 forest divides the mountain forest from the tropical humid savanna on the Pacific coast (Villar,  
131 1998). These biotic and topographic differences give the area a dynamic ecotone with high  
132 precipitation (Villar, 1998; 2003). According to the Guatemalan National Council of Protected  
133 Areas (Consejo Nacional de Áreas Protegidas, 2013), the department of Sololá, where San Lucas  
134 Tolimán is located, has 35% forest cover, making it the most forest-covered department in  
135 Guatemala. This fact is associated with the high degree of community conservation but is also  
136 due to the presence of private farms that normally have their own forest reserves.

137

### 138 **Sampling design**

139 Sampling was conducted at three coffee farms with different management types (Table 1). The  
140 farms harvest *Coffea arabica*, cultivar “catuera”. The three farms have secondary forests nearby.  
141 The names of these private farms must be withheld at the request of the owners.  
142 In each of the studied farms, three plots of 60 m<sup>2</sup> were established. Each plot was categorized as  
143 early secondary growth, late secondary growth or coffee plantation. Early secondary growth was  
144 characterized by early secondary forest with up to one year of development, mainly herbaceous  
145 vegetation with few bushes and an abundant incidence of light. Late secondary growth was  
146 characterized by late secondary forest with two to three years of succession, with mainly shrub  
147 vegetation and luminosity slightly restricted below the high bushes. Coffee plots were selected in  
148 patches of shaded coffee in the selected farms. Plot characteristics are presented in Table 1.

149

## 150 **Bee collection**

151 Bees were sampled every month from March 2013 to February 2014 in each plot, covering the  
152 two Guatemalan climatic seasons established as dry or summer from November to April and  
153 rainy or winter from May to October (CONAP, 2008). During three days each month, five  
154 people searched for bees and flowering plants in all of the selected plots. For each flowering  
155 plant species in each plot, bee sampling was conducted for 40 minutes at different times between  
156 8:00 to 12:00 p.m. The sampling schedule was done considering results of previous temperature  
157 and humidity monitoring where optimal conditions for bee activity in the area were established.  
158 Bee sampling was based on the direct search method on flowers, using net sweeping (Brosi et al.,  
159 2008; McGavin, 1997; McMullen, 1965). Bees captured from flowers were killed by freezing in  
160 individual containers. Native bee (no honey bee) specimens were mounted on insect pins labeled  
161 with field data and assigning a unique code for deposition in the “Colección de abejas nativas del

162 Centro de Estudios Conservacionistas de la Universidad de San Carlos de Guatemala". In  
163 contrast, honeybee specimens were sampled and recorded but not collected. Taxonomical keys  
164 were used for bee identification to genus or species (wherever possible) (Ayala 1999; Michener  
165 2000) and with the collaboration of Mabel Vásquez of the expert Ricardo Ayala.

166

167 **Data analysis**

168 **Seasonal richness and abundance.** In order to analyze bee and plant richness and bee  
169 abundance though time we used ANOVAs with the two known seasons as explanatory variables.  
170 In addition, a Pearson correlation was performed to evaluate the relationship between bee and  
171 plant richness.

172 Then we grouped the bees into honeybees, native bees and stingless bees, and we  
173 analyzed abundance and richness data per bee group per season (explanatory variable) with  
174 ANOVAs. Also, Pearson correlations were performed in order to determine whether bee  
175 richness, particularly honeybee incidence, was correlated with other native bee groups over the  
176 study seasons.

177

178 **Bees in coffee fields and the surrounding secondary forest.** Bee abundance, richness and  
179 diversity were evaluated by comparing the secondary forests and coffee plantations, with the  
180 three different farming techniques (Table 1). For richness, we used the Chao1 index and  
181 Abundance-based Coverage Estimator (ACE), in order to take both rare and abundant bee  
182 species into account. The incidence of both rare and common bee species was estimated with the  
183 Chao2 and Incidence Covered Estimator (ICE) indices. Diversity was calculated by Shannon-  
184 Wiener (H). These indices were calculated using the EstimateS Program (Colwell, 2013). Bee

185 abundance, richness, incidence and diversity estimation values (response variables) were  
186 compared with ANOVAs, taking into account the plot type and farming type (explanatory  
187 variables).

188 In addition, we built linear mixed-effect models to test the effect of vegetation (coffee  
189 plantation or secondary forest stage) with farming techniques (farms) on local bee abundance.  
190 Also, groups of bee abundance (honeybees, native bees, stingless bees and family bees) were  
191 made to evaluate with linear mixed-effect as a function of vegetation and of farming techniques  
192 (explanatory variables). A significant interaction term between explanatory variables in the  
193 models indicates and suggest how wild bees could be modulated. Models were performed in R  
194 Program (R Core Team, 2014) using the nlme library.

195

196 Finally, a cluster analysis with Euclidean distances with 100 bootstrap samples was  
197 performed, using the bee diversity data to look for similarities between the vegetation and  
198 farming techniques (farms) and to infer the importance of the coffee management for the bees.  
199 ANOVAs, Pearson correlations and cluster analysis were also performed using the R program (R  
200 Core Team, 2014).

201

## 202 **Results**

203 **Seasonal richness and abundance.** Over one year of study, 3,004 individual bees, belonging to  
204 102 species (Appendix 1) and 100 species of flowering plants with visiting bees (Appendix 2)  
205 were recorded. Bee and plant richness inside plots were significantly correlated ( $t_{36}=7.82$ ,  
206  $p=2.8e^{-9}$ ,  $cor=0.79$ ) showing a close relationship between them (Fig. 1a).

207 The study area showed a sparse flowering season from March to October 2013 and high  
208 flowering in the early dry season from November 2013 to February 2014, closely reflecting the  
209 two climatic seasons in Guatemala. A few months after the lowest records of bee abundance  
210 (March to October 2013), the rainy season promoted vegetative growth in the secondary forest,  
211 and it was correlated with the highest values of flowering plant richness with a 21% increase  
212 (Fig. 2 and Appendix 2).

213 Bee abundance differed significantly between seasons ( $F_{(1,36)}=4.66$ ,  $P=0.04$ ), as did  
214 honeybee abundance ( $F_{1,36}=6.47$ ,  $P=0.015$ ). In contrast, plant richness ( $F_{1,36}=2.62$ ,  $P=0.11$ ), bee  
215 richness ( $F_{1,36}=1.36$ ,  $P=0.25$ ), stingless bee abundance ( $F_{1,36}=3.38$ ,  $P=0.07$ ) and native bee  
216 abundance ( $F_{1,36}=1.27$ ,  $P=0.27$ ) did not differ between seasons (See Appendix 3). There was an  
217 interesting finding in February 2014 (Fig. 2) when bee richness increased by 57% (from 28 to 53  
218 species), presenting the highest value in the study, but out of phase with respect to the peak of  
219 local flowering plants (December 2013), coinciding with the beginning of drought, with the  
220 biggest drop of flowering (14%). In the following month when the coffee plants were flowering  
221 (March 2014), the greatest number of bees was recorded (437 records), but the native bee species  
222 began to decrease (10%).

223 Interestingly, honeybees and stingless bees were significantly and positively correlated  
224 ( $r=0.62$ ,  $t_{36}=4.78$ ,  $p=2.95e^{-05}$ , Fig. 1b), as were the honeybees and native bees ( $r=0.61$ ,  $t_{36}=4.61$ ,  
225  $p=4.84e^{-05}$ , Fig. 1c). Highlighting that for the three groups of bees, the availability of floral  
226 resources is important for their activity.

227

228 **Bees in coffee plantations and the surrounding secondary forest.** The farms presented  
229 different bee richness and abundance. As is showed in Figure 3, farm 1 had the highest number

230 of bees followed by farm 2 and farm 3. Farms 1 and 2 presented the highest bee abundance in  
231 plots with secondary forest, while in farm 3 the coffee plantations presented the highest  
232 abundance.

233 Bee richness mainly comprises five families (Fig. 3). Most of the bees are Apidae  
234 (84.8%), followed by Halictidae (8.9%), Andrenidae (2.6%), Megachilidae (2.3%) and  
235 Colletidae (1.5%). Species from the five bee families were registered in the three farms. On farm  
236 3, 91% of captures belonged to Apidae, while farms 1 and 2 had a higher representation of  
237 Colletidae and Andrenidae. Bee family abundance per vegetation type (early secondary forests,  
238 late secondary forests and coffee plantations) showed a significant difference only for the  
239 Megachilidae family ( $F_{2,4}=7.005$ ,  $p=0.049$ ), particularly between early growth and coffee  
240 plantation (early growth with coffee:  $p=0.04$ ; according to the Tukey multiple comparisons test,  
241 see Fig. 4a).

242 Total bee richness per farm and vegetation type showed no significant differences  
243 ( $p>0.05$ ). Although differences were found between bee groups (Fig. 5), the stingless bees  
244 differed among farms ( $F_{2,4}=9.01$ ,  $p=0.03$ ), according to the Tukey multiple comparisons test, this  
245 difference was between farms 1 and 3 ( $p=0.03$ ; Fig. 4b).

246 The diversity estimators Chao1, ACE, ICE (Fig. 6 and Appendix 4) calculated per farm  
247 and vegetation type did not present any significant difference ( $p>0.05$ ). The Chao2 estimator  
248 showed significant differences among farms ( $F_{2,4}=7.2$ ,  $p=0.047$ ), between farms 1 and 3  
249 ( $p=0.044$ ; according to Tukey multiple comparisons test; Fig. 4c). The Shannon-Wiener diversity  
250 index ( $H$ ) did not present significant differences among farms. In farms 1 and 2, the richness  
251 estimators gave higher values to plots with early secondary forest, while the highest estimate  
252 value on farm 3 was for the coffee plantation. The species accumulation curves showed

253 stabilized curves that starting lie down in all plots (Fig. 7). Coffee plantations registered the  
254 lowest values in bee diversity, and accordingly, the richness estimators predicted the lowest  
255 number of species (Fig. 6 and 8). In farms 1 and 2, the coffee plantations registered most of the  
256 bee records during the coffee flowering season, otherwise, neither bee activity nor early growth  
257 vegetation were recorded because they clean adventive vegetation from coffee plantations,  
258 particularly in farm 2. On farm 3, the coffee was rarely cleaned in this manner, which  
259 contributed to the establishment of early secondary forest vegetation.

260 An important finding was the presence of a new species of bee genus *Rhathymus*  
261 Lepeletier & Serville, 1828, *Rhathymus atlitanicus*, described in Ayala, Hinojosa-Díaz &  
262 Armas-Quiñonez (2019). Those bees were only found in secondary forest of farm 1 and farm 3  
263 (Appendix 1).

264 With the linear mixed-effect models we found a significant interaction between farms  
265 (farming techniques) and vegetation type (coffee or secondary forest stage) for bee abundance  
266 (Table 2). We found a marked positive effect on total bee abundance and different bee groups in  
267 early secondary forests. However, in farm 3 a negative interaction of bee abundance without  
268 honey bee was found and a positive interaction with honey bee, suggesting an exclusive effect of  
269 each. Regarding particular bee families, a stronger and more positive effect was found for  
270 Apidae abundance in secondary forests. Halictidae and Andrenidae were more abundant in farm  
271 2.

272 Finally, the cluster analysis of bee diversity per vegetation type (Fig. 9) presents a  
273 significant pattern that groups the study plots into two significant aggregations. The strongest  
274 aggregation with 97% confidence is composed by the early secondary forests from farm 1 and  
275 farm 3 and the coffee plots of farm 3 (the farm that allows secondary forest plants into the coffee

276 plantation). The other aggregation with 97% confidence, is composed by the coffee and late  
277 secondary forests of all three farms. Within this group there are significant differences among the  
278 plots of farm 1, where coffee is harvested following traditional practices, and on the other side of  
279 the same group, is the late secondary forest linked with the coffee of farm 2. Cluster analysis  
280 shows that the early secondary forest in farm 2 is 77% different to the rest of the plots.

281

## 282 Discussion

283 **The effect of flowering seasonality on bees.** The bees recorded over the whole year in  
284 secondary forest and coffee fields could give an insight into the synchronization that exists  
285 between bees and phenology of flowering plants, due to the periods of highest bee abundance  
286 matching with flowering periods and the correlation between these parameters throughout the  
287 study. This correlation  previous findings (Brosi, 2009, Banks et.al, 2014, De Marco and  
288 Monteiro, 2004, Taki et al., 2013) about the great importance of secondary forests in the  
289 provision of resources to bees. This seasonality can have some important consequences for bee  
290 diversity but also for coffee production, since the highest abundances of native bees were  
291 observed during secondary forest flowering (March 2014), close to the coffee flowering that  
292 varies according to the first rains. Early flowering of coffee could coincide with secondary forest  
293 flowering, which would cause native bees to interact with the high honeybee abundance possibly  
294 giving rise to a saturated environment of pollinators for the coffee and secondary forest.  
295 However, the asynchrony of pollinators and flowering periods in coffee fields must be treated  
296 with care and taken into account in crop management as a priority for improved of coffee  
297 production (Boreux et. al., 2013).

298 When investigating the relationship between honeybee and native bee abundance, we  
299 found a positive correlation between them, as other studies in Mexican coffee plantations have  
300 found (Badano and Vergara, 2011). This fact suggests that honeybees may not yet have saturated  
301 this ecosystem, and that, according to Banks et al. (2013), the contribution of pollinators from  
302 nearby forests to the coffee plantations is still high. This notion can be supported by the fact that  
303 honeybees only maintain high populations during coffee flowering, otherwise, their cultured  
304 populations are kept to a minimum in the area. However, in the linear mixed-effect model in  
305 farm 3, where honey bee were more abundant, a very strong negative effect was found for native  
306 bee abundance. In this farm honey bees may be displacing native bees (Thomson, 2016).

307

### 308 Secondary forests as a coffee pollinator enhancers

309 The data of bee abundance, richness and diversity supports the importance of secondary forests  
310 for bee pollinators (Arnan 2010, Carvalheiro 2012, Banks et al. 2013, Brosi 2008; Boreux et al.  
311 2013), not only to maintain bee diversity, but also to improve coffee production in the Pacific  
312 Coast Foothills of Guatemala. The significant mixed effect model remarks how the first stage of  
313 secondary forest -early growth- interact positively with bee abundance (Table 2). Meanwhile, the  
314 presence of stingless bees in the secondary forests and also in the flowering coffee plants,  
315 suggests that these bees, which depend exclusively on the forest for nesting, also depend on  
316 secondary forests for the acquisition of essential resources (Winfree 2010, Vanddeler 2006).

317 Secondary forests showed that they can maintain and provide resources for the native  
318 bees during periods when the coffee is not flowering. The farmers that use conventional  
319 agriculture need to place greater emphasis on preserving secondary forests, rather than only  
320 pristine forests (Blanque 2006). Pollination tests are required in order to compare the pollination

321 efficiency of native bees and honeybees in these plantations. In this way, it would be possible to  
322 more definitively establish the importance of preserving native bees and the places where they  
323 obtain resources, such as the secondary forest for coffee production (Winfree 2010).

324

### 325 **Effect of farm management**

326 We found important differences in bee diversity between farms. Farm 1 shows the highest  
327 diversity values, suggesting that, despite the lack of high technology, traditional knowledge  
328 remains effective in preserving native bee diversity, especially for the stingless bees. The  
329 conventional farm with high-intensive management (farm 2) keeps the coffee plantations cleared  
330 of early secondary forest but maintains surrounding secondary vegetation on the farm; therefore,  
331 the presence of *Tephrosia* spp. could function as a provision plant for native bee species. A  
332 positive interaction between farm 2 and bee family abundance can suggest the importance of  
333 nearby forest, since the farm 2 manage their own forest reserve, providing the bees with a  
334 complex landscape that may enhance bee resource acquisition, as suggested previously by  
335 different authors (Carrié *et. al.* 2016, Winfree, *et al.*, 2009).

336 Also, it is evident that the conventional farming with low-intensity management and a  
337 disturbed surrounding forest (farm 3) has the lowest bee diversity and, that it is the early  
338 secondary forest left in the coffee fields for a short time period, that  function as resource  
339 provider for the surrounding bee diversity. This could explain why, in the cluster analysis (Fig.  
340 9), the coffee of farm 3 was grouped together with the early secondary forest of farm 1 and 2.

341 None of the studied farms use honeybee breeding to pollinate coffee. Some neighboring  
342 farms, however, do have managed bee hives and it is possible that the honey bees recorded  
343 during the study came from those neighboring farms. The farm with the closest neighboring

344 honeybee hives was farm 3, which showed the lowest bee abundance, richness and diversity  
345 values as well as the highest honeybee abundance. This fact is highlighted in the linear mixed-  
346 effect model where farm 3 showed positive interaction with honey bee abundance but negative  
347 interaction with other bees. On the other hand, this farm (3) also shows a poor surrounding forest  
348 management providing few resources for native bees, contrary of farm 1 that promotes this  
349 mixed-landscape (Carrié *et. al.* 2016).

350 Another factor to consider that may affect bee diversity is the use of chemicals in the  
351 farms: the quantity of insecticides used for pest control inside (such as that used to control the  
352 Mediterranean fruit fly), but also those used outside farms in neighboring crops cultivated near  
353 coffee (Brittain et al. 2010; Schmitt 2009; Schuepp 2012).

354

## 355 **Conclusions**

356 In coffee plantations the presence of secondary forest in the early growth stage,  show a  
357 significant positive effect on bees, and taking into account the importance of bees in pollination  
358 this is a natural way to increase the pollinators. Regarding farm management, this study can be  
359 used to apply certain strategies that would benefit native bee diversity around the country.  
360 Through incorporating some traditional farming techniques into conventional coffee field  
361 management, such as letting the surrounding secondary forests grow at least in the early dry  
362 season, it can be demonstrated that these provide floral resources for native bees that will also  
363 visit the coffee during its flowering stage. Our results also support the value of traditional  
364 farming, which in this study demonstrated a high diversity of native bees, capable of pollinating  
365 small coffee plots and thus saving the cost of maintaining honeybee hives for pollinating small  
366 crops.

367

368

369 **Acknowledgements**

370 We gratefully acknowledge to the Posgrado en Ciencias Biológicas, Gabriela Armas is a doctoral  
371 student from Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma  
372 de México (UNAM). We also acknowledge to the farms personnel who help in the field work   
373 and the farm owners and communitarians who allow the  entrance and the data record on their  
374 properties.

375

376 **References**

377 Abrol DP, Shankar U, Chatterjee D, Ramamurthy VV. 2012. Exploratory studies on diversity of  
378 bees with special emphasis on non-*Apis* pollinators in some natural and agricultural plants of  
379 Jammu division, *India Current Science*. 103: 780-783.

380

381 Ayala R. 1999. Revisión de las abejas sin aguijón de México (Hymenoptera: Apidae:  
382 Meliponini). México: *Folia Entomológica Mexicana*.

383

384 Ayala, R., Hinojosa-Díaz, I. A., Armas-Quiñónez, A. G. 2019. A new species of *Rhathymus*  
385 Lepeletier & Serville, 1828 (Hymenoptera: Apidae: Rhathymini) from Guatemala. *Zootaxa* 4700  
386 (1): 132.138 DOI: 10.11646/zootaxa.4700.1.7.

387

388 Asociación Nacional del Café (ANACAFE). 2014. El Cafetal: La Revista del Caficultor.  
389 Guatemala, Edición No. 40: 1-24.

390

391 Badano EI, Vergara CH, 2011. Potential negative effects of exotic honey bees on the diversity  
392 of native pollinators and yield of highland coffee plantations. *Agricultural and Forest  
393 Entomology* 13: 365-372 DOI: 10.1111/j.1461-9563.2011.00527.x.

394

395 Banks JE, Hannon L, Hanson P, Dietsch T, Castro S, Urena N, Chandler M. 2013. Effects of  
396 proximity to forest habitat on hymenoptera diversity in a Costa Rican coffee agroecosystem.  
397 Pacific Coast Entomological Society. *Pan-Pacific Entomologist* 89(1): 60-68 DOI:  
398 10.3956/2012-28.1.

399

400 Banks JE, Hannon LM, Dietrich TV, Chandler M, 2014. Effects of seasonality and farm  
401 proximity to forest on Hymenoptera in Tarrazú coffee farms, *International Journal of*  
402 *Biodiversity Science Ecosystem Services Management* 10(2): 128-132 DOI:  
403 10.1080/21513732.2014.905494.

404

405 Blanque KR, Ludwing JA, Cunningham SA, 2006. Proximity to rainforest enhances pollination  
406 and fruit set in orchards. *Journal of Applied Ecology* 43: 1182-1187 DOI: 10.1111/j.1365-  
407 2664.2006.01230.x.

408

409 Boreux V, Kushalappa CG, Vaast P, Ghazoul J. 2013. Interactive effects among ecosystem  
410 services and management practices on crop production: Pollination in coffee agroforestry  
411 systems. *PNAS*. 110: 8387-8392. DOI: 10.1073/pnas.1210590110.

412

413 Brauman KA, Daily GC. 2008. Ecosystem Services. *Human Ecology* 1148-1154p.

414

415 Brittain C, Bommarco R, Vighi M, Barmaz S, Settele J, Potts SG. 2010. The impact of an  
416 insecticide on insect flower visitation and pollination in an agricultural landscape. *Agricultural*  
417 *and Forest Entomology* 12: 259-266 DOI: 10.1111/j.1461-9563.2010.00485.x.

418

419 Brosi, B.J., Daily, G.C., Shih, T.M., Oviedo, F., Durán, G., 2008. The effects of forest  
420 fragmentation on bee communities in tropical countryside. *Journal of Applied Ecology* 45: 773-  
421 783 DOI: 10.1111/j.1365-2664.2007.01412.x.

422

423 Brosi BJ. 2009. The complex responses of social stingless bees (Apidae: Meliponini to tropical  
424 deforestation. *Forest Ecology and Management* 2009: 1830-1837 DOI:  
425 10.1016/j.foreco.2009.02.025.

426

427 Cariveau DP, Winfree R. 2015. Causes of variation in wild bee responses to anthropogenic  
428 drivers. *Current Opinion in Insect Science* 10:104-109 DOI: 10.1016/j.cois.2015.05.004.

429

430 Carvalheiro LG, Seymour CL, Nicolson SW, Veldtman R. 2012. Creating patches of native  
431 flowers facilitates crop pollination in large agricultural fields: mango as a case study. *Journal of*  
432 *Applied Ecology* 49:1373-1383 DOI: 10.1111/j.1365-2664.2012.02217.x.

433

434 Colwell RK, 2013. *Statistical estimation of species richness and shared species from samples*.  
435 Version 9. Persistent URL: [purl.oclc.org/estimates](http://purl.oclc.org/estimates).

436

437 Consejo Nacional de Áreas Protegidas (CONAP). 2008. *Guatemala y su Biodiversidad: Un*  
438 *enfoque histórico, cultural, biológico y económico*. Documento Técnico 67 (06-2008): 1-51.

439

440 De Marco Jr, Monteiro P, Coelho F. 2004. Services performed by the ecosystem: forest remnants  
441 influence agricultural cultures' pollination and production. *Biodiversity Conservation* 13:1245-  
442 1255.

443

444 Donald PF. 2004. Biodiversity impacts of some agricultural commodity production systems.  
445 Issues in International Conservation. *Conservation Biology* 18(1): 17-37.

446

447 Enríquez E, Yurrita C, Ayala R, Marroquin A, Griswold T. 2012. *Diversidad de abejas silvestres*  
448 (*Hymenoptera: Apoidea*) de Guatemala. In: Enio B Cano and J. C. Schuster (Editors).  
449 Biodiversidad De Guatemala 2: 281-299.

450

451 Fischer EF, Victor B. 2014. High-end coffee and smallholding growers in Guatemala. Latin  
452 American Studies Association. *Latin American Research Review* 49: 155-177.

453

454 Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA,  
455 Carvalheiro L, Chacoff N, Dudenhöffer J, Greenleaf S, Holzschuh A, Isaacs R, Krewenka, K,  
456 Mandelik Y, Mayfield M, Morandin L, Potts S, Ricketts T, Szentgyörgyi H, Viana B, Westphal  
457 C, Winfree R, Klein A. 2011. Stability of pollination services decreases with isolation from  
458 natural areas despite honey bee visits. *Ecology Letters* 14: 1062-1072 DOI: 10.1111/j.1461-  
459 0248.2011.01669.x.

460

461 Jha S, Dick CW. 2010. Native mediate long-distance pollen dispersal in a shade coffee landscape  
462 mosaic. *PNAS* Early Edition. 5pp.

463

464 Klein AM, Cunningham SA, Bos M, Steffan-Dewenter I. 2008. Advances in pollination ecology  
465 from tropical plantation crops. Ecological Society of America. *Ecology* 89(4): 935-943.

466

467 Klein AM, Vaissie`re B, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C. 2007.  
468 Importance of crop pollinators in changing landscapes for world crops. *Proceedings of the Royal  
469 Society B: Biological Science* 274:303–313.

470

471 Klein AM, Dewenter I, Tsccharntke T. 2003. Pollination of *Coffea canephora* in relation to local  
472 and regional agroforestry management. *Journal of Applied Ecology* 40: 837- 845.

473

474 Kremen C, Williams NM, Thorp RW. 2002. Crop pollination from native bees at risk from  
475 agricultural intensification. *PNAS*. Vol. 99, no. 26. 16812-16816 DOI: 10.1073/pnas.262413599.

476

477 Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW. 2004 The area requirements of an  
478 ecosystem service: crop pollination by native bee communities in California. *Ecology Letters*  
479 7:1109-1119 DOI: 10.1111/j.1461-0248.2004.00662.x.

480

481 Kremen C, Williams NM, Aizen MA, Gemmil-Herren B, LeBuhn G, Minckley R, Packer L,

482 Potts SG, Roulston T, Steffan-Dewenter IS, Vasquez D, Winfree R, Adams L, Crone EE,

483 Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH. 2007. Pollination and other

484 ecosystem services produced by mobile organisms: a conceptual framework for the effects of

485 land-use change. *Ecology Letters* 10: 299-314 DOI: 10.1111/j.1461-0248.2007.01018.x.

486

487 Mandelik Y, Roll U. 2009. Diversity patterns of wild bees in almond orchards and their

488 surrounding landscape. *Israel Journal Plant Science* 57: 185-191 DOI: 10.1560/IJPS.57.3.185.

489

490 McGavin GC. 1997. *Expedition Field Techniques: Insects and other terrestrial arthropods*.

491 Geography Outdoors: the center supporting field research, exploration and outdoor learning.

492 London. 1-96.

493

494 McMullen RD. 1965. *The insect collector's guide*. Entomological Society of Alberta. 1-24.

495

496 Michener CD. 2000. *The Bees of the world*. Baltimore: Johns Hopkins University Press.

497

498 Montero-Castaño A., Vilà, M. 2012. Impact of landscape alteration and invasions on pollinators:

499 a meta-analysis. British Ecological Society. *Journal of Ecology* 100: 884-893 DOI:

500 10.1111/j.1365-2745.2012.01968.x.

501

502 National Congress of Guatemala. 1989. *Congress Decrees*. No. 4-89. República de Guatemala.

503 1-44.

504

505 Ollerton J, Winfree R, Tarrant S, 2011. How many flowering plants are pollinated by animals?

506 Nordic Society Oikos. *Oikos* 120: 321-326 DOI: 10.1111/j.1600-0706.2010.18644.x.

507

508 Peters VE, Carroll CR, Cooper RJ, Greenberg R, Solis M. 2013. The contribution of plant

509 species with a steady-state flowering phenology to native bee conservation and bee pollination

510 services. *Insect Conservation Divers* 6: 45-56 DOI: 10.1111/j.1752-4598.2012.00189.x.

511

512 Philpott SM, Arendt WJ, Armbrecht I, Bichier P, Diestch TV, Gordon C, Greenbeerg R, Perfecto

513 I, Reynoso-Santos R, Soto-Pinto L, Tejeda-Cruz C, Williams-Linera G, Valenzuela J, Zolotoff

514 JM. 2008. Biodiversity loss in Latin American coffee landscapes: Review of the evidence on

515 Ants, Birds and Trees. *Conservation Biology* 22(5): 1093-1105.

516

517 Rao S, Stephen WP. 2010. Abundance and Diversity of Native Bumble Bees Associated with

518 Agricultural Crops: The Willmette Valley Experience. Hindawi Publishing Corporation. *Psyche*

519 354072:1-9 DOI:10.1155/2010/354072.

520

521 Ricketts TH, 2004. Tropical forest fragments enhance pollinator activity in nearby coffee crops.  
522 *Conservation Biology* 18(5): 1262-1271.

523

524 Ricketts TH, Tegets J, Steffan-Dewenter I, Cunningham SA, Bogdanski A, Gemmill-Herren B,  
525 Greenleaf SS, Klein AM, Mayfield MM, Morandi LA, Ochieng A, Viana BF. 2008. Landscape  
526 effects on crop pollination services: Are there general patterns? *Ecology Letters* 11: 499-515.  
527 DOI: 10.1111/j.1461-0248.2008.01157.x.

528

529 R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna,  
530 Austria, <http://www.R-project.org>

531

532 Shavit O, Dafni A, Ne'eman G. 2009 Competition between honeybees (*Apis mellifera*) and  
533 native solitary bees in the Mediterranean region of Israel - Implications for conservation, *Israel*  
534 *Journal of Plant Science* 57(3): 171-183 DOI:dx.DOI.org/10.1560/IJPS.57.3.171.

535

536 Scheper J, Holzschuh A, Kuussaari M, Potts SG, Rundlöf M, Smith HG, Kleijn D. 2013.  
537 Environmental factors driving the effectiveness of European agri-environmental measures in  
538 mitigating pollinator loss –a meta-analysis. *Ecology Letters* 16: 912-920 DOI:  
539 10.1111/ele.12128.

540

541 Schmitt CB, Senbeta F, Denich M, Preisinger H, Juergen Boechmer H. 2009. Wild coffee  
542 management and plant diversity in the montane rainforest of southwestern Blackwell Publishing  
543 Ltd. *African Journal of Ecology* 48: 78-86.

544

545 Schüepp C, Rittiner S, Entling MH. 2012. High Bee and Wasp Diversity in a Heterogeneous  
546 Tropical Farming System Compared to Protected Forest. *PLoS ONE* 7(12), e52109  
547 DOI:10.1371/journal.pone.0052109.

548

549 Steffan-Dewenter I, Westphal C. 2008. The interplay of pollinator diversity, pollination services  
550 and landscape change. British Ecological Society. *Journal of Applied Ecology* 45: 737-741 DOI:  
551 10.1111/j.1365-2664.2008.01483.x.

552

553 Taki H, Makihara H, Matsumura T, Hasegawa M, Matsuura T, Tanaka H, Makino S, Okabe K.  
554 2013. Evaluation of secondary forests as alternative to primary forests for flower-visiting insects.  
555 *Journal of Insect Conservation* 17, 549-556. DOI: 10.1007/s10841-012-9539-3.

556

557 vanEngelsdorp D, Meixner MD, 2010. A historical review of managed honey bee populations in  
558 Europe and the United States and the factors that may affect them. *Journal of Invertebrate*  
559 *Pathology* 103(2010): 580-595.

560

561 Thomson DM. 2016. Local bumble bee decline linked to recovery of honey bees, drought effects  
562 on floral resources. *Ecology Letters* 2016, 1-9. DOI: 10.1111/ele.12659.

563

564 Villar Anleu, L., 1998. *La flora silvestre de Guatemala*. USAC. Guatemala, 1-99.

565

566 Villar Anleu, L., 2003. *Guatemala, un paraíso de la naturaleza*. España, 1-143.

567

568 Winfree R, Williams NM, Gaines H, Ascher JS, Kremen C. 2008. Wild bee pollinators provide  
569 the majority of crop visitation across land-use gradients in New Jersey. *Journal of Applied  
570 Ecology* 45: 793-802.

571

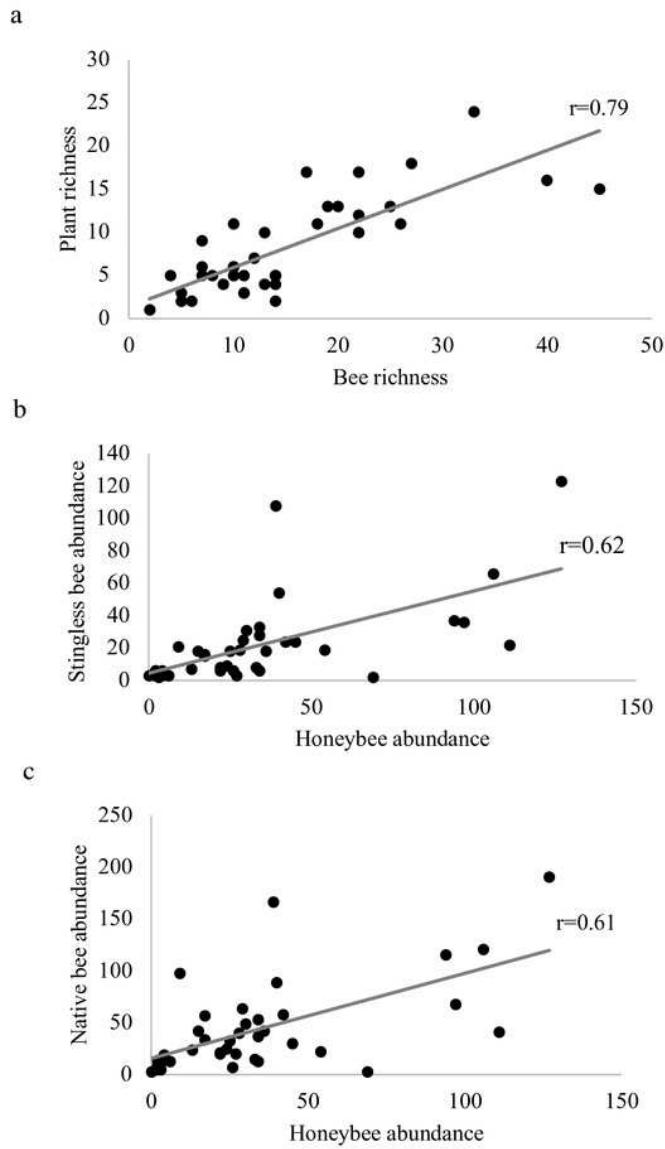
572 Winfree R, Williams NM, Dushoff J, Kremen C, 2007. Native bees provide insurance against  
573 ongoing honey. *Ecology Letters* 10: 1105-1113 DOI: 10.1111/j.1461-0248.2007.01110.x

574

575 Winfree R, Aguilar R, Vázquez DP, LeBuhn, G, Aizen MA, 2009. A meta-analysis of bees'  
576 responses to anthropogenic disturbance. *Ecology* 90(8): 2068-2076.

577

578 Winfree R. 2010. The conservation and restoration of wild bees. New York Academy of  
579 Sciences. *Annals of the New York Academy of Sciences* 1195: 169–197 DOI: 10.1111/j.1749-  
580 6632.2010.05449.x.

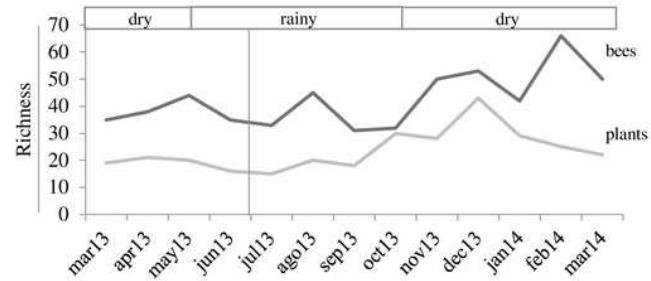

581

582 Winfree R, Bartomeus I, Cariveau DP. 2011. Native pollinators in anthropogenic habitats.  
583 *Annual Review of Ecology, Evolution and Systematics* 42, 1-22. DOI: 10.1146/annurev-ecolsys-  
584 102710-145042.

# Figure 1

## Bee richness and plant richness

Pearson correlations between: (a) Bee richness and plant richness ( $r=0.79, p=2.8e^{-09}$ ). (b) Honeybee and stingless bee abundance ( $r=0.62, p=2.95e^{-05}$ ). (c) Honeybee and native bee abundance ( $r=0.61, p=4.84e^{-05}$ )

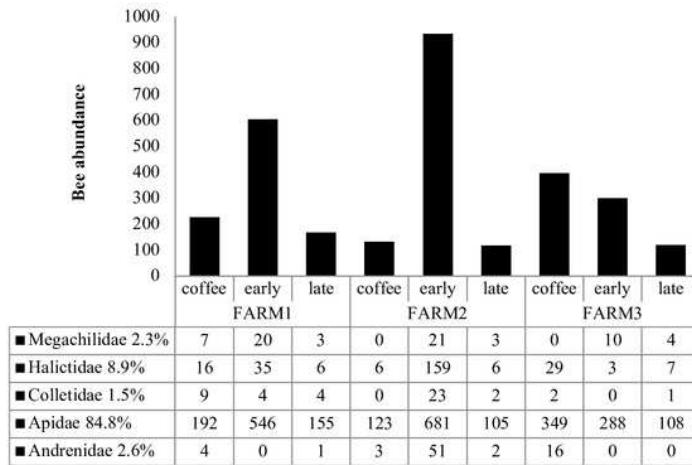



**Figure 1.** Pearson correlations between: (a) Bee richness and plant richness ( $r=0.79$ ,  $p=2.8e^{-09}$ ). (b) Honeybee and stingless bee abundance ( $r=0.62$ ,  $p=2.95e^{-05}$ ). (c) Honeybee and native bee abundance ( $r=0.61$ ,  $p=4.84e^{-05}$ ).

## Figure 2

Bee and flower through time

Variation of bee and flowering plant richness through time, showing the two growing seasons in the region.

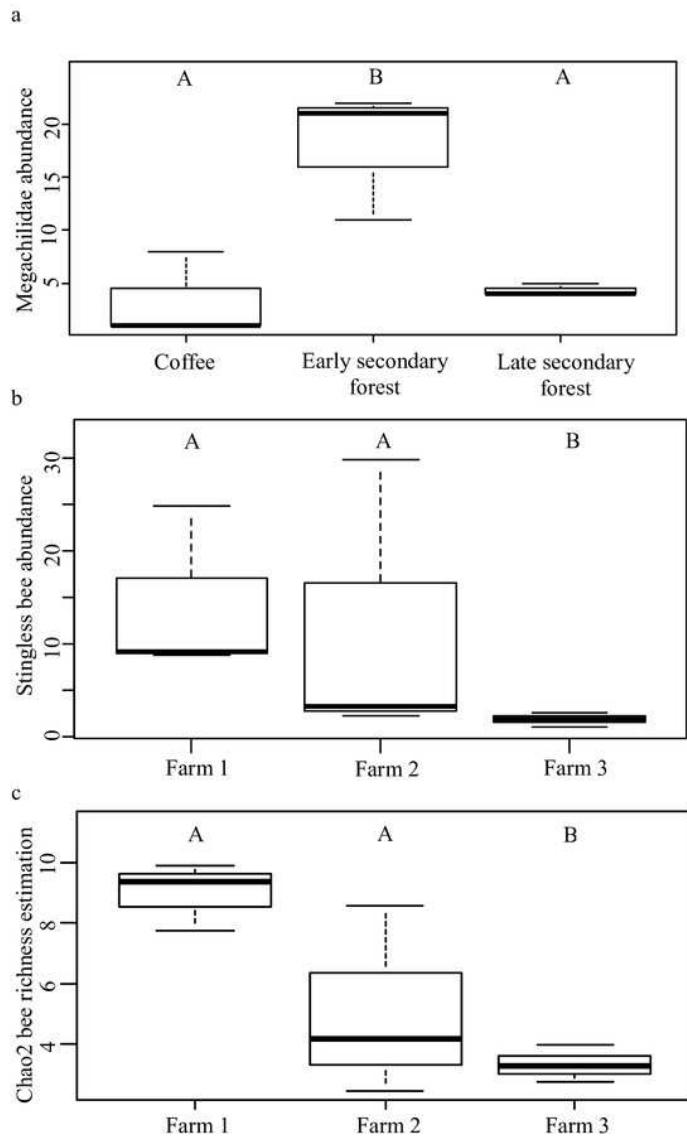



**Figure 2.** Variation of bee and flowering plant richness in months in which the samplings were conducted and the two seasons

## Figure 3

Total bee abundance per farm and vegetation type

Total bee abundance per farm and vegetation type. Cumulative abundance records per farm and plot are shown in the upper part of the figure. The lower table shows the total abundance of records per bee family

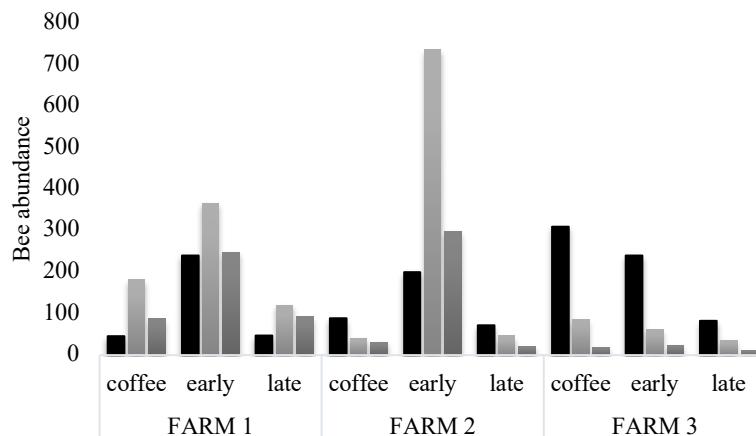



**Figure 3.** Total bee abundance per farm and type plots. Cumulative abundance records per farm and plot are shown in the upper part of the figure. The lower table shows the total abundance of records per bee family.

## Figure 4

### Bee diversity differences

Tukey Multiple Comparison test, significant results. (a) Differences between landscape type plots according to Megachilidae bee family abundance. (b) Differences between farms according to the Chao2 richness estimator. (c) Differences among farms and stingless bee abundance. Different upper-case letters denote significant differences between evaluated groups.



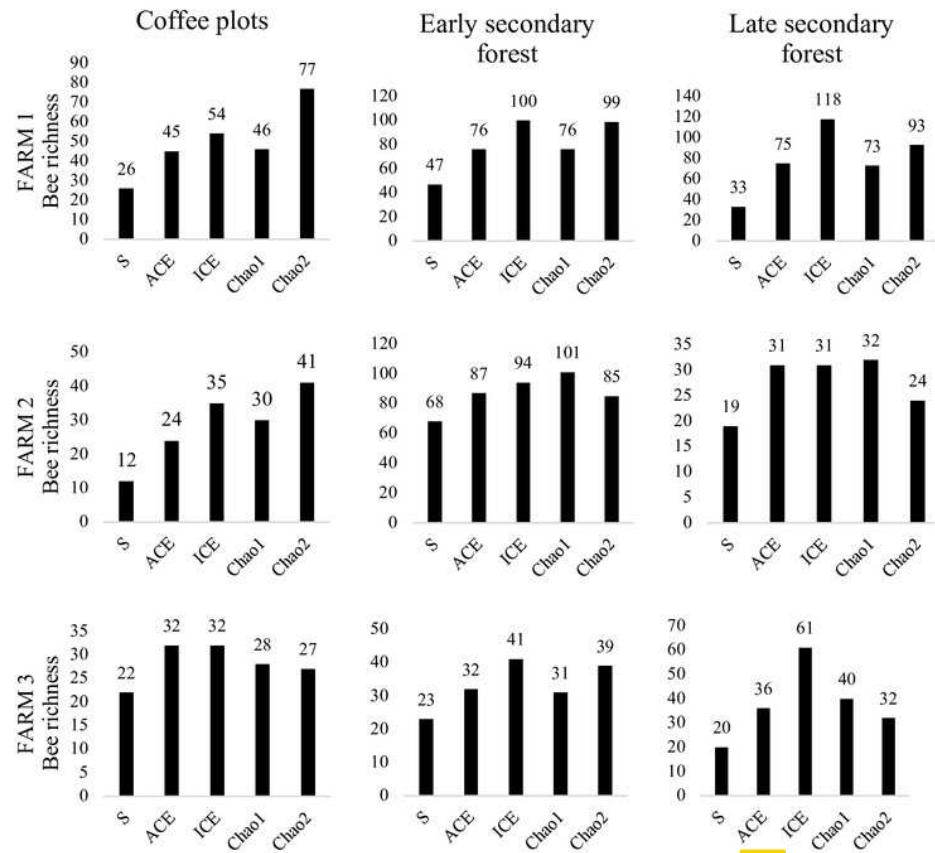

**Figure 4.** Tukey Multiple Comparison test, significant results. (a) Differences between landscape type plots according to Megachilidae bee family abundance. (b) Differences between farms according to the Chao2 richness estimator. (c) Differences among farms and stingless bee abundance. Different upper-case letters denote significant differences between evaluated groups.

**Figure 5**(on next page)

Bee abundance per farm and vegetation type

Bee abundance per farm and vegetation type. Honeybee abundance is shown in black, native bee abundance in light grey and stingless bee abundance in dark grey.



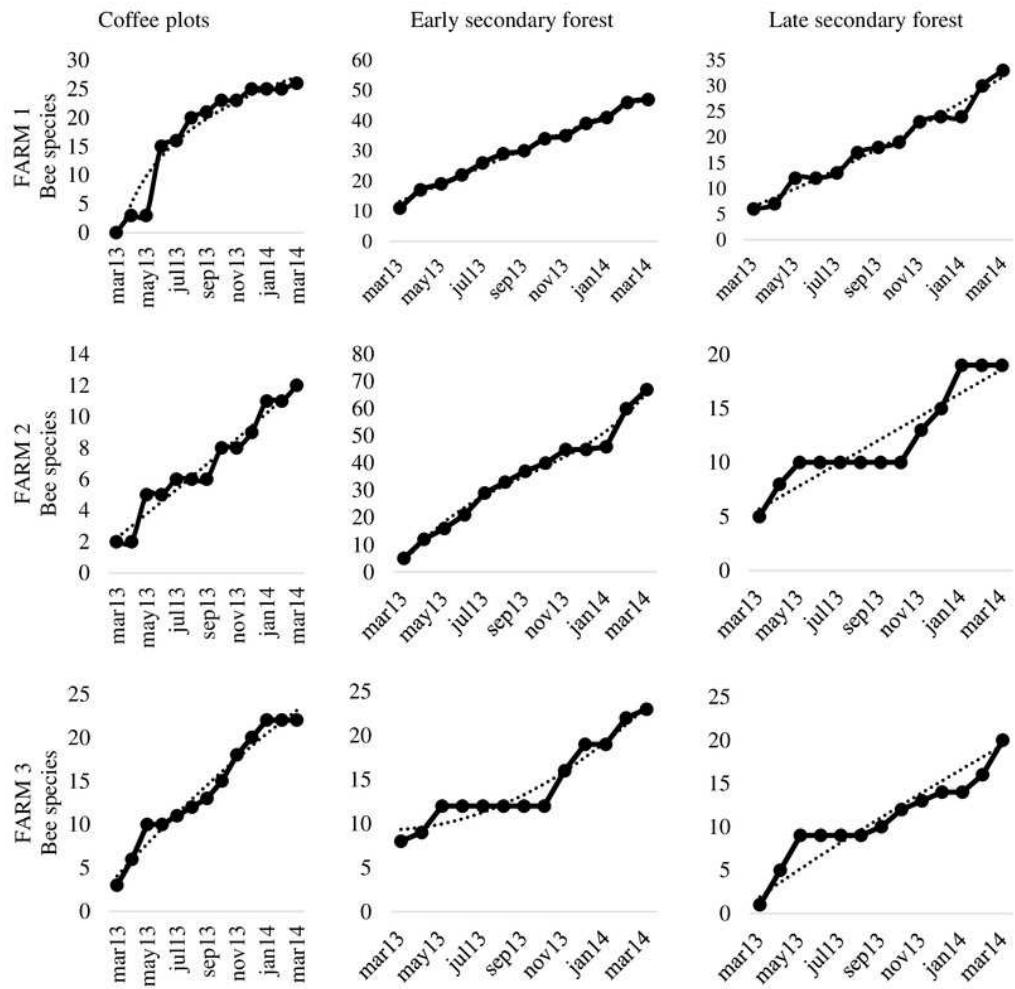

**Figure 5.** Bee abundance per farm and landscape type plots. Honeybee abundance is shown in black, native bee abundance in light grey and stingless bee abundance in dark grey.



## Figure 6

Bee richness and diversity estimators per farm and vegetation type

Bee species richness per farm and vegetation type.  $S$  represents the bee richness found, ACE represents the abundance-base coverage richness estimator ( $S_{ACE}$ ), ICE represents the incidence coverage estimator ( $S_{ICE}$ ), Chao1 richness estimator ( $S_{Chao1}$ ), and Chao2 incidence estimator ( $S_{Chao2}$ ).

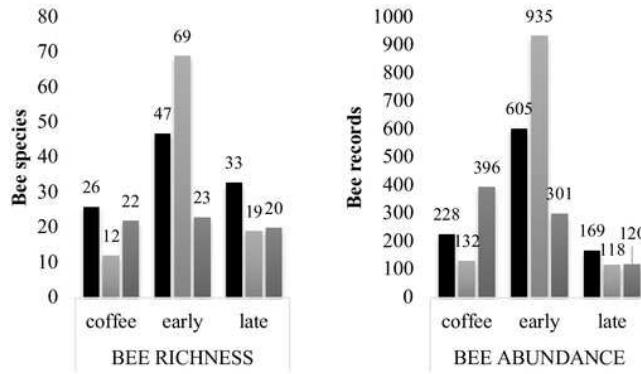



**Figure 6.** Bee species richness per farm and landscape type plots. (B) Bee richness. (ACE) Abundance-base coverage richness estimator -  $S_{ACE}$ . (ICE) Incidence coverage estimator -  $S_{ICE}$ . (Chao1) Richness estimator -  $S_{Chao1}$ . (Chao2) Incidence estimator -  $S_{Chao2}$ .

## Figure 7

Bee species accumulation curves

Species accumulation curves for bee richness obtained in the study per farm and vegetation type



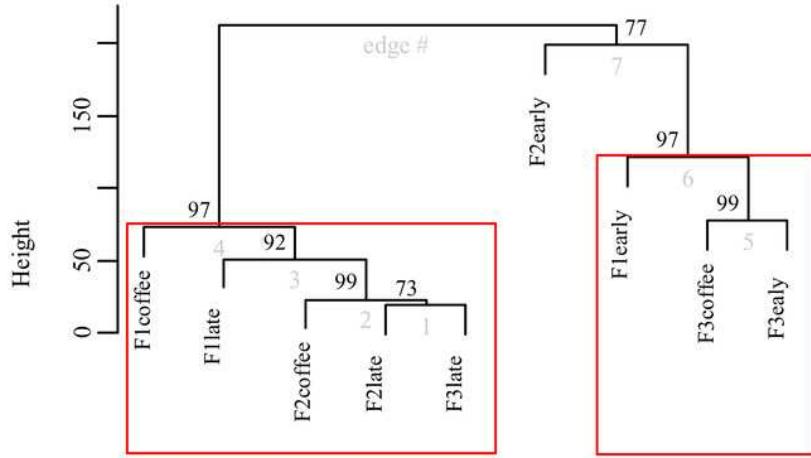

**Figure 7.** Species accumulation curves of bee richness obtained in the study per farm and type plots.

## Figure 8

Bee richness and abundance registered per vegetation type plots.

Bee richness and abundance registered per vegetation type plots. Black bars show farm 1 data, light grey bars show farm 2 data and dark grey bars show farm 3 data. The total richness and abundance values are shown in the numbers above the bars




**Figure 8.** Bee richness and abundance registered per landscape type plots. Black bars show farm 1 data, light grey bars show farm 2 data and dark grey bars show farm 3 data. The total richness and abundance values are shown in the numbers above the bars.

## Figure 9

Dendrogram showing differences in bee species communities

Dendrogram showing total bee species abundance recorded between plots of the three farms (cluster analysis calculated in R using Vegan and Pvclust packages and Euclidean distance).

The p-value is shown at the top of each edge, presented as a percentage value of confidence, in which a value of 95 or higher represents a significant supported data aggregation. In the red is shown the two significantly groups found.



**Figure 9.** Cluster dendrogram of bee species abundances recorded between plots of the three farms (cluster analysis calculated in R using Vegan and Pvclust packages and Euclidean distance). The *p*-value is shown at the top of each edge, presented as a percentage value of confidence, in which a value of 95 or higher represents a significant supported data aggregation. In the red is shown the two significantly groups found. 

**Table 1**(on next page)

Description of plots for the three studied sites.

In each farm vegetation type, coffee farming management and adjacent forest management is described

1 **Table 1.** Description of plots for the three studied sites.

| 1 | Coffee                                       | Type of plots             | Coffee farming          |                   | Adjacent forest |       |
|---|----------------------------------------------|---------------------------|-------------------------|-------------------|-----------------|-------|
|   | plantation                                   |                           | techniques              |                   | management      |       |
|   | farms                                        |                           |                         |                   |                 |       |
|   | <b>Early:</b> short height                   | Traditional               | farming:                | Community         | forest          |       |
|   | secondary forest                             |                           | traditional methods of  | management.       | The             |       |
| 1 | <b>Late:</b> medium height                   | pest removal, rare use of | community               | regulates         |                 |       |
|   | secondary forest                             | chemical fertilizers and  | and controls            | the use           |                 |       |
|   | <b>Coffee:</b> traditional coffee            | pesticides.               | of the forest, creating |                   |                 |       |
|   | field, shaded with native                    |                           | a preserved forest.     |                   |                 |       |
|   | species                                      |                           |                         |                   |                 |       |
|   | <b>Early:</b> short height                   | Conventional              | with                    | Private           | reserve.        |       |
|   | secondary forest                             |                           | high intensity farming  | Forest            | with            | low   |
| 2 | <b>Late:</b> medium height                   | practices: controlled     | human                   | disturbance       |                 |       |
|   | secondary forest                             | production, integrated    | and no access           | granted           |                 |       |
|   | <b>Coffee:</b> shaded coffee with            | pest control with         | to the local            | people,           |                 |       |
|   | <i>Grevillea robusta</i> and <i>Inga</i> sp. | minimum use of            | creating                | in a              |                 |       |
|   |                                              | pesticides                | and                     | preserved forest. |                 |       |
|   |                                              | herbicides.               |                         |                   |                 |       |
|   | <b>Early:</b> short height                   | Conventional with low     | Private                 | reserve.          |                 |       |
|   | secondary forest                             | intensity                 | farming                 | Forest            | with            | human |
| 3 | <b>Late:</b> medium height                   | practices: uncontrolled   | intervention            | and low           |                 |       |
|   | secondary forest                             | production and pest       | control of              | access for        |                 |       |
|   | <b>Coffee:</b> shaded coffee with            | control, occasional use   | local                   | people,           |                 |       |
|   | <i>Grevillea robusta</i> .                   | of pesticides and         | producing               | a disturbed       |                 |       |
|   |                                              | herbicides.               |                         | forest.           |                 |       |

2

**Table 2**(on next page)

Significant interactions found in generalized linear mixed-effect model

Significant interactions found in generalized linear mixed-effect model assessing the effect of Farm and vegetation type on total bee abundance an abundance per bee group, with and without honey bees.

1 **Table 2.** Significant interactions found in generalized linear mixed-effect model.

2

| Response variable                      | Variables<br>(farm.landscape) | Estimate      | SE    | p-value |
|----------------------------------------|-------------------------------|---------------|-------|---------|
| <b>TOTAL BEE ABUNDANCE</b>             | Early secondary forest        | <b>28.41</b>  | 5.40  | 0.000   |
| <b>BEE GROUPS</b>                      |                               |               |       |         |
| <b>Honey bee abundance</b>             | Farm3                         | 8.65          | 3.08  | 0.0062  |
|                                        | Early secondary forest        | 6.24          | 2.99  | 0.0400  |
| <b>Bee abundance without honey bee</b> | Farm3                         | <b>-12.61</b> | 4.2   | 0.0042  |
|                                        | Early secondary forest        | <b>22.11</b>  | 4.17  | 0.0000  |
| <b>Stingless bee abundance</b>         | Early secondary forest        | <b>17.33</b>  | 4.89  | 0.0001  |
| <b>Social bee abundance</b>            | Early secondary forest        | <b>17.52</b>  | 4.04  | 0.0000  |
| <b>BEE FAMILIES</b>                    |                               |               |       |         |
| <b>Andrenidae abundance</b>            | Farm2                         | 1.483         | 0.551 | 0.0085  |
| <b>Apidae abundance</b>                | Early secondary forest        | <b>22.222</b> | 4.36  | 0.0000  |
| <b>Halictidae abundance</b>            | Farm2                         | 3.329         | 1.012 | 0.0014  |
|                                        | Early secondary forest        | 3.83          | 0.974 | 0.0002  |
| <b>Megachilidae</b>                    | Early secondary forest        | 1.147         | 0.34  | 0.0011  |

3

4