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Three new chasmosaurines from the Kirtland Formation (~75.0 - 73.4 Ma), New Mexico,
form morphological and stratigraphic intermediates between Pentaceratops (~74.7 -
75Ma, Fruitland Formation, New Mexico) and Anchiceratops (~72 - 71Ma, Horseshoe
Canyon Formation, Alberta). The new specimens exhibit gradual enclosure of the parietal
embayment that characterizes Pentaceratops, providing support for the phylogenetic
hypothesis that Pentaceratops and Anchiceratops are closely related. This stepwise
change of morphologic characters observed in chasmosaurine taxa that do not overlap
stratigraphically is supportive of evolution by anagenesis. Recently published hypotheses
that place Pentaceratops and Anchiceratops into separate clades are not supported. This
phylogenetic relationship demonstrates unrestricted movement of large-bodied taxa
between hitherto purported northern and southern provinces in the Late Campanian,
weakening support for the hypothesis of extreme faunal provincialism in the Late
Cretaceous Western Interior.
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ABSTRACT

Three new chasmosaurines from the Kirtland Formation (~75.0 - 73.4 Ma), New Mexico, form
morphological and stratigraphic intermediates between Pentaceratops (~74.7 - 75Ma, Fruitland
Formation, New Mexico) and Anchiceratops (~72 - 71Ma, Horseshoe Canyon Formation,
Alberta). The new specimens exhibit gradual enclosure of the parietal embayment that
characterizes Pentaceratops, providing support for the phylogenetic hypothesis that
Pentaceratops and Anchiceratops are closely related. This stepwise change of morphologic
characters observed in chasmosaurine taxa that do not overlap stratigraphically is supportive of
evolution by anagenesis. Recently published hypotheses that place Pentaceratops and

Anchiceratops into separate clades are not supported. This phylogenetic relationship
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demonstrates unrestricted movement of large-bodied taxa between hitherto purported northern
and southern provinces in the Late Campanian, weakening support for the hypothesis of extreme

faunal provincialism in the Late Cretaceous Western Interior.

INTRODUCTION

Intermediate or “transitional” fossils are an expected product of evolution, and are especially
celebrated when they occur within major evolutionary transitions (Anderson and Sues, 2007;
Wellnhofer, 2010; Daeschler et al., 2006). However, morphological intermediates also occur
within the 'normal’ evolution that comprises the majority of the fossil record giving us key
insight into evolutionary mode, tempo, and trends, but also providing ancient examples of how
organisms respond to changes in their environment (Malmgren et al., 1984; Hull and Norris,

2009; Aze et al., 2011; Pearson and Ezard, 2014; Scannella et al., 2014; Tsai and Fordyce, 2015).

In dinosaurs, recognition of morphologic intermediates is confounded by a typically sparse fossil
record, characterized by taxa that may be widely separated in space and time, and often known
only from single specimens. Despite this, in the Upper Cretaceous rocks of North America a
combination of increasingly intensive sampling and newly refined stratigraphy is beginning to
fill in gaps in the dinosaur record. This is revealing hitherto unknown morphotaxa that link
previously disparate or misunderstood morphologies, and/or define new ‘end-members’ that
extend or emphasize stratigraphic morphological trends, challenging previously held
assumptions about the mode and tempo of dinosaur evolution (Horner et al., 1992; Sampson,
1995; Holmes et al., 2001; Ryan and Russell, 2005; Wu et al., 2007; Currie et al., 2008; Sullivan
and Lucas, 2010; Evans et al., 2011; Scannella and Fowler, 2014; Scannella et al., 2014).

Central to this emergent understanding are the Ceratopsidae: a North American (although see Xu
et al., 2010) clade of Late Cretaceous ornithischian dinosaurs that exhibit famously elaborate
cranial display structures (Hatcher et al., 1907). Differences in size or expression of these various
horns, bosses, and parietosquamosal frills are used to diagnose different taxa, with ~63 species
historically described within two families (the ‘short—frilled’@ntrosaurinae and ‘long-frilled’

Chasmosaurinae; Lambe, 1915), ~26 of which have been erected in the past 10 years. This
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explosion of new taxa has led some researchers (Sampson and Loewen, 2010; Sampson et al.,
2010) to propose that ceratopsids radiated through the Campanian-Maastrichtian into numerous
contemporaneous geographically-restricted species. However, it is becoming clear that
differences in cranial morphology are not always representative of (contemporaneous) diversity.
Cranial morphology has been shown to change significantly through ontogeny (H@Er and
Goodwin, 2006; Scannella and Horner, 2010), such that many historical taxa are now considered
growth stages of previously recognized forms. Furthermore, studies conducted within single
depositional basins have shown ceratopsid taxa forming stacked chronospecies that do not
overlap in time, demonstrating that cranial morphology evolves rapidly (in as little as a few
hundred thousand years), and supporting the hypothesis that much of what has been perceived as
diversity might instead represent intermediate morphospecies within evolving anagenetic

lineages (Horner et al., 1992; Holmes et al., 2001; Ryan and Russell, 2005; Mallon et al., 2012;
Scannella et al., 2014; Fowler, 2017).

Intermediate Campanian chasmosaurine ceratopsids were predicted by Lehman (1998; Fig. S1),

who showed successive hospecies of the Canadian genus Chasmosaurus (Dinosaur Park

Formation, Alberta; Midareto Upper Campanian) with a progressively shallowing embayment of
the posterior margin of the parietosquamosal frill. This was contrasted with an opposite trend
seen in Pentaceratops sternbergii (Fruitland Formation, New Mexico; Upper Campanian) to
Anchiceratops ornatus (Horseshoe Canyon Formation, Alberta; Lower Maastrichtian),
whereupon the midline embayment deepens and eventually closes (Lehman, 1993; Lehman,
1998; Fowler, 2010; Fowler et al., 2011; Wick and Lehman, 2013). This hypothesis matched the
stratigraphic occurrence of taxa known at the time, and is supported by new taxa described since
1998 (Vagaceratops (Chasmosaurus) irvinensis; Kosmoceratops richardsoni; Utahceratops
gettyi; and Bravoceratops polyphemus; Holmes et al., 2001; Sampson et al., 2010; Fowler, 2010;
Fowler et al., 2011; Wick and Lehman, 2013; although see Supporting Information 1).

However, a recent phylogenetic analysis of chasmosaurines (Sampson et al., 2010) proposed a
starkly different relationship (Fig. S2) where a clade comprising Vagaceratops (Chasmosaurus)
irvinensis and Kosmoceratops richardsoni instead formed the sister group to a clade composed

of Anchiceratops and all other Maastrichtian chasmosaurines. This is significant as it implies that
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the clade [Vagaceratops + Kosmoceratops] is more closely related to Anchiceratops than is
Pentaceratops (i.e. the opposite to the relationship suggested in Lehman, 1998). Indeed, the
poorly known chasmosaurine Coahuilaceratops magnacuerna formed a second successive sister
taxon to the [ Vagaceratops + Kosmoceratops| + [Anchiceratops] clade, suggesting that
Pentaceratops is even more distantly related. Also, a Chasmosaurus clade [C. russelli + C. belli]
is recovered as separated from [Vagaceratops + Kosmoceratops] (Sampson et al., 2010), despite
Vagaceratops (Chasmosaurus) irvinensis being originally recovered as the most derived member
of a Chasmosaurus clade by Holmes et al. (2001), and the existence of morphological
intermediates between C. belli and V. irvinensis (e.g. cf. C. belli specimen YPM 201 later).
Subsequent analyses by Mallon et al. (2011; 2014; using an altered version of the data matrix
from Sampson et al., 2010) recovered cladograms (Fig. S2) that appear “upside down”, with the
Lower Maastrichtian taxa Anchiceratops and Arrhinoceratops occurring in a basal polytomy, and
some of the stratigraphically oldest taxa forming the most derived clade (Middle to Upper
Campanian [ Chasmosaurus belli + Chasmosaurus russelli]); a configuration that would require
considerable ghost lineages for many clades. Mallon et al. (2014; p.63) acknowledged their
unlikely topology, stating that "while the monophyly of the Chasmosaurinae is secure, its basic
structure is currently in a state of flux and requires further attention". This can only be resolved
by a combination of character reanalysis and the discovery of new specimens intermediate in

morphology between currently recognized taxa.

Here we describe new chasmosaurine material from the Kirtland Formation of New Mexico that
forms stratigraphic and morphologic intermediates between Pentaceratops and Anchiceratops.
This includes pnew taxa Navajoceratops sullivani and Terminocavus sealyi which, although based
on fragmentary specimens, both include the diagnostic posterior border of the parietal.
Geometric morphometric analysis supports the hypothesis that the posterior embayment of the
parietal deepens and closes in on itself over ~ 2 million years, and that Vagaceratops and
Kosmoceratops probably represent the most derived and successively youngest members of a
Chasmosaurus lineage. Phylogenetic analysis is less conclusive, but recovers Navajoceratops
and Terminocavus as successive stem taxa leading to Anchiceratops and more derived
chasmosaurines, and suggests a deep split within Chasmosaurinae that occurs before the Middle

Campanian. This is supportive of true speciation by vicariance occurring relatively basally
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within Chasmosaurinae, followed by more prolonged periods of anagenetic (unbranching)
evolution. Recent hypotheses of basinal-scale faunal endemism are not supported; however, it
appears likely that continental-scale latitudinal faunal variation occurred in the Campanian. The
new specimens document incipient paedomorphic trends that con’@ characterize more derived

chasmosaurines in the Maastrichtian, such as Triceratops.

Institutional abbreviations

AMNH, American Museum of Natural History, New York; CMN (was NMC), Canadian
Museum of Nature, Ottawa, Ontario; MNA, Museum of Northern Arizona, Flagstaff; NMMNH,
New Mexico Museum of Natural History and Science, Albuquerque; OMNH, Oklahoma
Museum of Natural History, Norman; PMU, Paleontologiska Museet, Uppsala University,
Sweden; SDNHM, San Diego Natural History Museum, California; SMP, State Museum of
Pennsylvania, Harrisburg; UKVP, University of Kansas, Lawrence; UMNH, Utah Museum of
Natural History, Salt Lake City; UNM, University of New Mexico, Albuquerque; USNM, United
States National Museum, Smithsonian Institution, Washington D.C.; UTEP, University of Texas
at El Paso.

Anatomical abbreviations

Ep, epiparietal numbered from 1 to 3 (e.g. epl) from medial to lateral; es, episquamosal.

GEOLOGICAL SETTING, MATERIALS and METHODS

Geological Setting

All newly described material was collected from the Upper Campanian Fruitland and Kirtland
Formations of the San Juan Basin, New Mexico (Figs. 1, 2). Further information on the Fruitland

and Kirtland Eormations can be found in Supporting Information 1.
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Fossil Materials and accepted taxonomy

In order to make proper comparisons with the new specimens, it is necessary to review the
taxonomy, stratigraphy, and morphology of historical and type specimens of Pentaceratops and
related chasmosaurines. This is discussed in greater detail in Supporting Information 1, and only

the following summary is provided here.

One of the problems facing any new analysis which includes the taxon Pentaceratops sternbergii
is that although the holotype (AMNH 6325; Osborn, 1923) is a mostly complete skull, it
unfortunately lacks the diagnostic posterior end of the parietal, making it difficult to reliably
refer other specimens to the taxon. However, it should be noted that the taxonomic importance of
the posterior bar was not strongly emphasized until the current work, and so many specimens
have been historically referred to P. sternbergii by other researchers (see Supporting Information
1). Therefore, we have neccessarily reviewed whether such taxonomic referrals are appropriate,
and consequently revised the referrals of many specimens, while simultaneously attempting to
preserve some semblance of taxonomic stability (especially regarding the original material). Itis
also-taken-into-account-that some specimens are currently under study by other workers (J. Fry,
S. G. Lucas, H. N. Woodward, pers. comm.), and so new names are not yet erected for some
specimens. In summary, we follow Lull (1933) and all subsequent workers in considering
AMNH 1624 and AMNH 1625 as specimens of cf. P. sternbergii. However, referred specimens
MNA P1.1747 and UKVP 16100 are moved into aff. Pentaceratops n. sp. along with the new
specimen NMMNH P-37880. Partial skull SDMNH 43470 is referred to aff. Pentaceratops sp.,
due to uncertainty concerning the relationship of its stratigraphic position, and immature
ontogenetic condition, to morphology. Many other fragmentary specimens previously referred to
P. sternbergii (e.g. AMNH 1622) are not considered diagnostic and so are here considered
Chasmosaurinae indet.. We follow Lehman (1998, the original description) in considering the
large skull and skeleton OMNH 10165 as aff. Pentaceratops sp., and not the new taxon
Titanoceratops ouranos (Longrich, 2011). Autapomorphies used to diagnose the new taxon
Pentaceratops aquilonius (Longrich, 2014) are shown to be invalid, and it should be considered

a nomen dubium.
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Concerning chasmosaurines other than Pentaceratops, we follow Maidment and Barrett (2011)
and Mallon et al. (2012) in considering Mojoceratops perifania (Dinosaur Park Formation,
Alberta; Longrich, 2010) as a junior synonym of Chasmosaurus russelli. However the taxonomy
of C. russelli has its own priority problems (see Supporting Information 1) and as such
specimens will be referred to as "Chasmosaurus russelli" and specimen numbers given. A
revision of the epiparietal numbering system is used for Vagaceratops (Chasmosa@s)
irvinensis (Dinosaur Park Formation, Alberta; Holmes et al., 2001; Sampson et al., 2010) and
Kosmoceratops richardsoni (Kaiparowits Formation, Utah; Sampson et al., 2010), based on
comparison to specimens of Chasmosaurus, especially C. belli YPM 2016 (Dinosaur Park
Formation, Alberta). Bravoceratops polyphemus (Javelina Formation, Texas; Wick and Lehman,
2013) is shown to be a nomen dubium as the element identified as the posterior end of the

parietal median bar is reidentified as the anterior end and is shown to be undiagnostic.

The electronic version of this article in Portable Document Format (PDF) will represent a
published work according to the International Commission on Zoological Nomenclature (ICZN),
and hence the new names contained in the electronic version are effectively published under that
Code from the electronic edition alone. This published work and the nomenclatural acts it
contains have been registered in ZooBank, the online registration system for the ICZN. The
ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
LSID for this publication is: urn:lsid:zoobank.org:pub:58996E7B-BB7E-44A8-827A-
57D4AEBFE2BF. The online version of this work is archived and available from the following
digital repositories: Peer], PubMed Central and CLOCKSS,

Phylogenetic analysis

Phylogenetic analysis was conducted using an adapted version of the character matrix from
Mallon et al. (2014). Edits were made to 22 characters; four new characters were added, making

a total of 156 characters (see Supporting Information 2 for further details).
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Morphometric analysis

Landmark-based geometric morphometric analysis was used to compare parietal shape among 19
specimens (~9 taxa) of chasmosaurine ceratopsids. The analysis was performed by the software
package “Geomorph” (version 2.1.1; Adams and Otarola-Castillo, 2013) within the R language
and environment for statistical computing, version 3.1.2 for Mac OSX (http://www.R-
project.org/; R_Core Team, 2014). 16 landmarks were plotted onto each image of a parietal in
dorsal view. Images used were a combination of photographs and specimen drawings, most of
which were taken directly from the literature. Landmarks were specifically selected to represent
morphological features that are observed to vary between specimens (Fig. 3). Only the left side
of the parietal was analysed. Specimens with well preserved left and right sides were sampled for
both side plotting the coordinates from the left side, then mirroring the image of the right

side so that it appears as a left, and analyzing those as a separate dataset.

Although the parietal of Agujaceratops mariscalensis (UTEP P.37.7.065, 070, 071) is
fragmentary, the reconstruction of Lehman (1989) is included for comparison, although only the
left side was analysed since it is only this side that is based on fossil material. Only the right
sides of Kosmoceratops richardsoni holotype UMNH VP 17000 and "Chasmosaurus russelli"
referred specimen TMP 1983.25.1 were analysed as the left sides were damaged and missing
critical areas. Only the left side of Chasmosaurus belli specimen AMNH 5402 was used as the
right side is unusually distorted.

Landmarks were digitized within the R program using “digitize2d” (version 2.1.1; Adams and
Otarola-Castillo, 2013). Parietals were rotated and scaled using Generalized Procrustes Analysis
(using the function “gpagen”) so that shape was the only difference among specimens.
Consequent Procrustes coordinates were analyzed in a Principal Components Analysis (function

“plotTangentSpace™).
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RESULTS

SYSTEMATIC PALAEONTOLOGY

DINOSAURIA Owen, 1842, sensu Padian and May 1993.
ORNITHISCHIA Seeley, 1887, sensu Sereno 1998.
CERATOPSIA Marsh, 1890, sensu Dodson, 1997.
CERATOPSIDAE Marsh, 1888, sensu Sereno 1998.
CHASMOSAURINAE Lambe, 1915, sensu Dodson et al., 2004.

Pentaceratops sternbergii (Osborn, 1923)

Type specimen - AMNH 6325 (Osborn, 1923), nearly complete skull, missing the mandible and
the posterior half of the parietal and squamosals.

Referred specimens - AMNH 1624, nearly complete skull, missing mandible and the medial
part of the parietal; AMNH 1625, nearly complete frill, missing anterior end of the parietal and

right squamosal, and most of the left squamosal. Referred to as cf. Pentaceratops sternbergii.

Locality and Stratigraphy - AMNH 6325, 1624, and 1625 were all collected by C. H.
Sternberg in 1922 and 1923 from the Fruitland Formation, San Juan Basin, New Mexico (Figs. 1

and 2; see Supporting Information 1 for discussion).

Diagnosis - Chasmosaurine ceratopsid characterized by the following combination of characters
(modified from Lehman, 1998; and Longrich, 2014): Posterior bar of the parietal M-shaped, with
well-developed median embayment. Arches of the M-shape angular, with apex of arch occurring
at locus ep2. Anteroposterior thickness of the parietal posterior bar uniform (or nearly so) from
medial to lateral. Three large subtriangular epiparietals. Epl curved dorsally or anterodorsally
and sometimes twisted such that the epiparietal contacts the posterior margin of the frill laterally,

and lies atop the frill medially. Parietal median bar with slender ovoid cross section. Frill long

Peer] reviewing PDF | (2019:11:43200:0:1:NEW 20 Nov 2019)

®l


JMallon
Cross-Out

JMallon
Inserted Text
third?

JMallon
Highlight

JMallon
Sticky Note
I'm having a hard time understanding what this means.


PeerJ

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

and narrow, broader anteriorly than posteriorly. Tem@l episquamosal enlarged relative to
penultimate episquamosal. Parietal fenestrae subangular in shape. Postobital horns present and
relatively slender, curving anteriorly (at least in adults). Epijugal spikelike, more elongate than in

other chasmosaurines, curving ventrally. Nasal horn positioned over the naris.

Can be distinguished from Chasmosaurus by the following characters: Lateral rami of the
parietal posterior bar meet medially at <90°, rather than >90°. Ep1 occurs within the embayment
of the parietal posterior bar, rather than at the lateral edges of the embayment. Ep1 typically
curved anteriorly and oriented anterolaterally, rather than pointing posteriorly. Ep2 oriented to
point posteriorly rather than posterolaterally. Ep2 triangular and symmetrical (or nearly so)
rather than asymmetrical. Posteriormost point of the parietal posterior bar (apex of the curved
lateral ramus) occurs at locus ep2 rather than epl. Maximum point of constriction for the parietal
median bar occurs approximately halfway along its length, rather than within the posterior third.
Frill broader anteriorly than posteriorly. Nasal horn positioned over the naris rather than 50% or
more positioned posterior to the naris. Premaxillary flange restricted to dorsal margin of
premaxilla, rather than along entire anterior margin of external naris. Postorbital horns elongate
and anteriorly curved (in large individuals assumed to represent adults), rather than abbreviated,
resorbed, and/or curved p@iorly (adapted from Forster et al., 1993; Maidment and Barrett,
2011; Longrich, 2014).

Can be distinguished from Utahceratops gettyi by the following characters: nasal horn more
anterior than U. gertyi, being positioned over the naris rather than posterior to the naris.
Postorbital horns elongate and anteriorly oriented (in large individuals assumed to represent

adults), rather than abbreviated or resorbed and oriented anterolaterally.

Comment - The virtually complete parietosquamosal frill, AMNH 1625, is the most diagnostic of
the original referred materials. As AMNH 1624 is missing the central part of the parietal it can
only be tentatively referred to the same taxon as AMNH 1625 based on the following shared
diagnostic characters (which are not seen in aff; Pentaceratops n. sp. specimens; MNA Pl. 1747,
UKVP 16100, and NMMNH P-37880; see later)@ posteriormost point of the parietal posterior

bar is positioned at locus ep2. Ep2 is not positioned within the parietal median embayment. Ep2
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is oriented posteriorly. The lateralmost edge of the lateral rami of the parietal posterior bar is
slightly expanded in AMNH 1624, more so than in AMNH 1625, but less so than seen in MNA
P1.1747 and UKVP 16100. The M-shape of the posterior bar is slightly angular in AMNH 1624,
more similar to AMNH 1625 than the rounded M-shape in MNA P1.1747 and UKVP 16100.

Both AMNH 1624 and 1625 were referred to Pentaceratops sternbergii without comment by
Lull (1933; see Supporting Information 1). From 1933 to 1981, the defined morphology of P.
sternbergii was based on the combination of these specimens along with the holotype AMNH
6325, thus forming a hypodigm (Simpson, 1940). In 1981 Rowe et al. referred the then newly
discovered MNA P1.1747 and UKVP 16100 to P. sternbergii, but implicitly recognized that
these new specimens were distinct from the P. sternbergii hypodigm. They state (p. 40) that the
reconstructed frills of AMNH 6325 and 1624 were "on the basis of [MNA P1.1747], seen to be
incorrect". The frills of AMNH 6325 and 1624 were presumably reconstructed based on the
complete frill AMNH 1625 (which Rowe et al. 1981 acknowledge the extistence of, but had not
been able to locate, nor observe a photograph). Following this, based on the morphology of the
posterior end of the parietal, here we show that MNA P1.1747 and UKVP 16100 should be
referred to a different taxon from AMNH 1624 and 1625.

As the P. sternbergii holotype specimen AMNH 6325 lacks the diagnostic posterior bar of the
parietal, then we cannot currently know whether the holotype would have been more similar to
AMNH 1624 and 1625; MNA P1.1747 and UKVP 1; or a different morphology entirely. A
possible exception is that the preserved portion of the parietal median bar of AMNH 6325 is
narrow and particularly elongate, more so than the median bars of chasmosaurines recovered
from the Kirtland Formation (Navajoceratops, Terminocavus, new taxon C, and "Pentaceratops
fenestratus"). AMNH 6325, 1625, and 1624, MNA P1.1747, and UKVP 16100 are all recorded
as having been collected in the Fruitland Formation (with no better stratigraphic resolution
available for the AMNH specimens; see Supporting Information 1), so that stratigraphy is mostly

uninformative regarding their potential separation.

Despite the inadequacy of the holotype AMNH 6325, it is desirable to conserve the name
Pentaceratops, and P. sternbergii. In order to do so the original hypodigm of Lull (1933) is
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maintained here, and we thus refer to specimens AMNH 1624 and 1625 as cf. P. sternbergii. For
this to be formalized, it would be best to petition the ICZN to transfer the holotype to another
specimen, preferably AMNH 1625. Without transfer of the holotype, Pentaceratops and P.
sternbergii should be considered nomen dubia, and a new taxon erected for diagnostic specimen

AMNH 1625 and (possibly) 1624.

aff. Pentaceratops n. sp.

Referred specimens - MNA P1.1747, complete skull and partial postcranium; UKVP 16100,
complete skull; NMMNH P-37880, partial right lateral ramus of parietal posterior bar.

Locality and Stratigraphy - All specimens were collected from the upper part of the Fruitland

Formation, San Juan Basin, New Mexico (Figs. 1 and 2; see Supporting Information 1).

Diagnosis - Differs from cf. Pentaceratops sternbergii (principally, AMNH 1625) by possession
of the following characters; Arches of the M-shaped parietal posterior bar rounded rather than
angular. Apices of M-shaped arch more laterally positioned, occurring either between loci ep2
and ep3, or at locus ep3, rather than at locus ep2. Lateral rami of the parietal posterior bar
become more anteroposteriorly broad from medial to lateral, rather than being "strap-like" with

near-uniform thickness. Locus ep2 positioned on thjieralmost edge within the embayment,

oriented medioposteriorly. Lateral bars more stronglyaeveloped.

Comment - UKVP 16100 and MNA P1.1747 have historically been referred to Pentaceratops
sternbergii (e.g. Rowe et al., 1981; Lehman, 1993, 1998; Longrich, 2011; 2014), but are here
shown to differ from the historical hypodigm (Lull, 1933; see above). NMMNH P-37880 is

described for the first time in Supporting Information 1.
Morphological features known to indicate relative maturity in chasmosaurines (Horner and

Goodwin, 2006, 2008) suggest that referred specimens of aff. Pentaceratops n. sp. are not fully
mature (MNA P1.1747, subadult or adult; UKVP 16100, subadult; and NMMNH P-37880,
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subadult; see Supporting Information 1). Since AMNH 1625 exhibits features supportive of full
adult status (see Supporting Information 1), then this raises the possibility that any
morphological differences between cf. P. sternbergii and aff. Pentaceratops n. sp. are
ontogenetic rather than taxonomic. This is possibly supported by stratigraphic data as AMNH
1625 is thought to have been collected from below the Bisti Bed sandstone, as were MNA PI.
1747, UKVP 16100, and NMMNH P-37880. However, given the close similarity in size and
ontogenetic status of AMNH 1625 and MNA P1.1747, we prefer to consider their morphological
differences as taxonomic, although remain open to the ontogenetic hypothesis. Further discovery

of mature material with stratigraphic data would help resolve this question.

Navajoceratops sullivani gen. et sp. nov.

urn:lsid:zoobank.org:act:765215F5-8 1 E4-4DC9-9900-49BC9B07B3A2

Etymology - Navajoceratops, ‘Navajo horned face', after the Navajo people indigenous to the
San Juan Basin; sullivani, after Dr. Robert M. Sullivan, leader of the SMP expeditions to the San

Juan Basin that recovered the holotype.

Holotype - SMP VP-1500; parietal, squamosal fragments, fused jugal-epijugal, other
unidentified cranial fragments. Collected in 2002 by Robert M. Sullivan, Denver W. Fowler,

Justin A. Spielmann, and Arjan Boere.

Locality and Stratigraphy - SMP VP-1500 was collected from a medium brown-grey mudstone
at SMP locality 281 ("Denver's Blowout"), Ahshislepah Wash, San Juan Basin, New Mexico
(Sullivan, 2006; detailed locality data available on request from NMMNH). The locality occurs
in the lower part of the Hunter Wash Member of the Kirtland Formation (Fig. 2), ~43 m
stratigraphically above the uppermost local coal, and ~ 6 m stratigraphically above the top of a
prominent sandstone thought to represent the Bisti Bed (SMP locality 396; "Bob's Bloody
Bluff"; Sullivan, 2006). Hence SMP VP-1500 occurs stratigraphically higher than specimens
referred to cf. Pentac@ops sternbergii and aff. Pentaceratops n. sp. which all occur below the

Bisti Bed sandstone.
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Most elements of SMP VP-1500 were collected as weathered surface material, with the
exception of the parietal, which was only partly exposed and required excavation. The parietal
was preserved dorsal-side up with the median bar broken and displaced ~ 10 cm anteriorly (see
Fig. S4), and the distal part of the right ramus of the posterior bar broken and displaced ~ 20 cm

posterolaterally.

Diagnosis - Can be distinguished from aff. Pentaceratops n. sp. by the following characters:
Lateral rami of the parietal posterior bar meet medially at a more acute angle (~60°, rather than
87 or 88°). Median embayment of the parietal posterior bar especially deep, extending anterior to
the posteriormost extent of the parietal fenestrae (which consequently overlap anteroposteriorly

slightly with ep2).

Description

Parietal - The parietal (Fig. 4) is missing the lateral bars and most of the anterior end, but is
otherwise relatively complete. Deep vascular canals are visible across the dorsal and ventral
surfaces, and are especially well developed on the ventral surface. The posterior and medial
borders of both parietal fenestrae are well preserved; enclosing the parietal fenestrae that are
large and subangular. Six epiparietal loci are interpreted to occur on the posterior bar, numbered

epl-3 on each side.

The preserved portion (~60%) of the median bar measures 37.4 cm in length, and tapers
anteriorly, measuring 4.1 cm wide at the anteriormost end. The dorsal and ventral surfaces of the
median bar are convex, with lateral margins of the median bar tapering to give a lenticular cross
section. These tapering lateral edges broaden posteriorly. The dorsal surface bears no prominent
medial crest, ridge, or bumps (such features are restricted to the anteriormost third of the median
longitudinal bar in other chasmosaurines; e.g. Anchiceratops, Brown, 1914, Mallon et al., 2011;
"Torosaurus" utahensis, Gilmore, 1946; "Torosaurus" sp., Lawson, 1976; "Titanoceratops",
Longrich, 2011; Triceratops, Hatcher et al., 1907; see discussion in Supporting Information 1 on
"Bravoceratops", Wick and Lehman, 2013). Two fragments found during excavation may

represent parts of the anterior end of the median bar. The largest fragment bears parallel vascular
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traces along its length, suggesting it is indeed part of the midline of the anterior end of the

parietal.

The median bar and lateral rami of the posterior bar form a Y-shape, with the rami of the
posterior bar meeting at an angle of 60°, forming a deep U-shaped median embayment that
incises 13.2 cm anterior to the posteriormost extent of the parietal fenestrae. The lateral rami are
slightly wavy rather than straight, and form an M-shape with the curved apices of the M
occurring between epiparietal loci ep2 and ep3. The lateral rami of the posterior bar vary in
anteroposterior thickness, being relatively thick at the contact with the median bar (R: 11.5 cm;
L: 12.8 cm), reaching their narrowest point slightly medial of the apex (R: 9.37 cm; L: 9.17 cm),
broadening at the apex (R: 20.2 cm; L: 20.0 cm), then narrowing again laterally towards the

contact with the squamosal.

There are two raised areas on either side of the anteroventral margin of the posteromedial
embayment. During excavation, the lateral rami bore an especially thick concretion in this area,
suggesting bone underneath the surface (see Fig. S4); however, if present, all of this bone was
lost during preparation. A very similar raised area is considered as representing epl in
Utahceratops referred specimen UMNH VP 16671 (Sampson et al., 2010). This raised area is
also considered as an attachment point of epl in aff. Pentaceratops n. sp. specimen UKVP 16100
and aff. P. sternbergii specimen SDNHM 43470, and is the attachment site for a fused outwardly
turned epl in specimens MNA P1.1747, and the left side of AMNH 1625. Therefore it is
tentatively suggested that these raised areas are the attachment sites for ep1. Both the left and
right ep2 are preserved imperceptibly fused to the posterior bar and project posteromedially into
the embayment, almost touching medially. Ep2 on both sides is a rounded D-shape, rather than
triangular. There is no evidence of ep3, which might be expected to occur at the lateralmost
edges of the lateral rami. However, although ep3 is typically reconstructed as occurring in this
position in Pentaceratops sterbergii (e.g. Lehman, 1998), only AMNH 1624 and 1625 actually
preserve an ep3, and in these specimens it abuts or straddles the squamosal-parietal margin
(although see notes on MNA P1.1747 in Supporting Information 1). An isolated D-shaped frill

epiossification (Fig. S5) was recovered adjacent to the parietal during excavation of SMP VP-
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1500. It is unlike the spindle-shaped or triangular episquamosals, and so may be an unfused

eplor ep3.

Squamosal - SMP VP-1500 includes pieces of at least one squamosal (probably a left), but most
of these are too small and fragmentary to impart much morphological knowledge. The two
largest fragments are shown in Figure S6. The first fragment (Fig. S6A, B) is roughly triangular
in shape and preserves part of the lateral margin, which is thicker than the more medial area.
Two episquamosals are preserved fused to the lateral margin. Both episquamosals are trapezoidal
or D-shaped. The second large fragment (Fig. S6C, D) is also triangular, but is narrower than the
first fragment and as such might be part of the distal blade of the squamosal. Few features are
diagnostic on the second fragment, although a relatively complete straight edge may represent
the medial margin where the squamosal articulates with the parietal. Both of the large fragments

exhibit the woven, vascularized surface texture typical of ceratopsid skull ornamentation.

Jugal / Epijugal or Episquamosal - A ~10 cm fragment (SMP VP-1813) bearing a pointed
epiossification possibly represents the ventral margin of a fully fused right jugal, quadratojugal,
and epijugal (Fig. S7). It was collected as float from the same locality as SMP VP-1500 and
possibly pertains to the same individual. The epijugal is relatively stout, but not unusually so, nor
is it especially long or pointed ("

eha%aeteré@-ef—Sampsen—et—al—%O—l—O-)— An alternative identification of this element is a large

episquamosal. Regardless, the specimen is not especially diagnostic.

Terminocavus sealeyi gen. et sp. nov.

urn:lsid:zoobank.org:act:1B71F56A-B196-4BFA-B75B-C6680F1255CA

Etymology - Terminocavus, ‘cl cavity’ after the nearly-closed parietal embayment; sealeyi

after Paul Sealey who discovered the holotype specimen.

Holotype - NMMNH P-27468; parietal, jugal, epijugal, partial quadratojugal, partial sacrum,
vertebral fragments. Collected in 1997 by Paul Sealey.
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Locality and Stratigraphy -. NMMNH P-27468 was collected from a grey siltstone beneath a
white channel sandstone (locality NMMNH L-3503; precise locality data available from
NMMNH upon request) in the middle of the Hunter Wash Member, stratigraphically
intermediate between ash 2 (75.02 = 0.13 Ma) and ash 4 (74.57 = 0.62) (Fowler, 2017). Although
in Fig. | NMMNH L-3503 appears to be approximately halfway between these radiometrically
dated horizons, it occurs in a topographic high between Hunter Wash and Alamo Wash, placing
it stratigraphically closer to ash 4. Trigonometric calculations place the locality at ~83 m
stratigraphically above ash 2, and ~48 m stratigraphically below ash 4 (based on a northeast dip
of 1°). This agrees quite well with Bauer (1916) who published a thickness of 1031 feet (314 m)
for the Hunter Wash Member (then called the Lower Shale Member) at Hunter Wash itself.
However, in their description of the ashes, Fassett and Steiner (1997) suggest that the ashes are
separated stratigraphically by only ~45 m. This would appear to be an underestimate, based on
both Bauer (1916) and on the fact that ash 4 is ~130 ft (40 m) topographically higher than ash 2,
and ~5 km NE (basinwards, parallel to 1-3° dip).

It is worth mentioning that the locality is only ~0.6 km SE of another ash (JKR-54) that was
dated by Brookins and Rigby (1987). The large margin of error for their K / Ar date of 74.4 +
2.6 Ma (sanidine) places it within the expected range based on the more precise Ar/ Ar
recalibrated dates of Fassett and Steiner (1997, recalibrations by Fowler, 2017). Although the K /
Ar date of Brookins and Rigby (1987) is imprecise and not really usable, the JKR-54 horizon

would be useful to resample in future San Juan Basin research.

Comment - NMMNH P-27468 has only previously been mentioned in an abstract by Sealey et
al. (2005) where it was identified as an aberrant specimen of Pentaceratops sternbergii.
NMMNH P-27468 is the only diagnostic chasmosaurine specimen from the middle or upper part
of the Hunter Wash Member of the Kirtland Formation; other Kirtland Formation chasmosaurine
specimens collected by C.H. Sternberg in the 1920s (described by Wiman, 1930; including the
holotype of "Pentaceratops fenestratus"; see Supporting Information 1) are mostly undiagnostic

or fragmentary, and lack detailed locality and stratigraphic data.
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Diagnosis - Differs from Navajoceratops holotype SMP VP-1500 by the following characters:
Posterior bar flattened and plate-like (i.e. not bar-like). Lateral rami of the parietal posterior bar
strongly expanded anteroposteriorly both medially and laterally. Maximum anteroposterior
thickness of the posterior bar ~35% of the parietal maximum width (compared with <30 % in
Navajoceratops and ~19-30% in aff. Pentaceratops n. sp.). Median embayment of the posterior

bar narrower and more notch-like. Parietal fenestrae subrounded rather than subangular.

Description

Parietal - The parietal of NMMNH P-27468 (Fig. 5) is missing ~50% of the anterior end, but is
otherwise relatively complete forming a rounded-M or heart-shape reminiscent of later occurring
chasmosaurines such as the holotype of "Torosaurus gladius" YPM 183 1. The parietal is not
formed of obvious narrow bars as seen in stratigraphically older chasmosaurines, rather, it is
expansive, flat, and more plate-like. The parietal is comparatively thin (typically ~1-2 cm in
thickness), although this may reflect postburial compression. Bone surfaces have a thin
concretion of sediment that obscures most fine surface detail, although shallow vascular canals
are visible on some areas of the dorsal surface. The ventral surface is mostly either obscured by
concreted sediment or damaged, but in some places longitudinal vascular canals can be observed,
similar to those in Navajoceratops and other chasmosaurines. The posterior and medial borders
of both parietal fenestrae are well preserved. However, the posterior, median, and lateral bars are
expanded at the expense of the parietal fenestrae, which are thus slightly reduced in size relative
to stratigraphically preceding chasmosaurines. The fenestrae are subrounded in shape,
comparable to derived chasmosaurines such as Anchiceratops and triceratopsins, but unlike the

subangular- or angular-shaped fenestrae of stratigraphically older chasmosaurines.

The preserved portion of the median bar measures 31.1 cm in length and tapers anteriorly. The
dorsal surface of the midline bar is convex, lacking a medial crest, ridge, or bump. The ventral
surface of the median bar is flat to weakly convex. The lateral margins of the median bar taper to
give a lenticular cross section. The median bar bears small flanges that run along both the lateral

edges, and are directed laterally into the fenestrae. Although broken anteriorly, the flanges are
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more laterally extensive than in Navajoceratops and other stratigraphically preceding

chasmosaurines.

The left and right lateral bars are incomplete and probably represent only ~50% of their original
length. The preserved portions are of nearly equal antero-posterior length, and are almost
parallel, suggesting the anterior end of the parietal was slightly narrower than the posterior, or at
least narrowed in its midline (as in c.f. Pentaceratops sternbergii MNA PI. 1747; Rowe et al.,
1981). Both lateral bars are convex dorsally, and flat to weakly convex ventrally. Dorsoventral
thickness decreases laterally such that they are moderately lenticular in cross section. The lateral
edges which articulate with the squamosal are thin and plate-like. Each lateral bar bears a
relatively large (diameter ~5Smm) blood vessel groove that runs anteroposteriorly to the lateral
rami of the posterior bar. However, like other blood vessel traces on this specimen, the grooves

are shallow and difficult to trace onto the lateral rami.

The lateral rami of the posterior bar meet medially at an angle of 73°, which is steeper than in
stratigraphically preceding chasmosaurines, however, it is awkward to measure as the lateral

rami are curved rather than being straight lines (see Supporting Information Fig. S1 for details of

measurement). The lateral rami are anteroposteriorly thicker than those of Srahiceratops,
Pentaceratops, and Navajoceratops, but less so than in Anchiceratops. They vary in
anteroposterior thickness from medial to lateral, being at their narrowest medially, at the contact
with the median bar (@.Z cm; L: 12.2 cm), reaching their broadest point at the apex (R: 23.4

cm; L: 23.6 cm), then narrowing again laterally towards the contact with the squamosal.

The median embayment is narrower than in preceding chasmosaurines, forming a notch that is
almost enclosed by the first pair of epiparietals. The embayment does not extend anterior to the
posteriormost border of the parietal fenestrae. The anterior edge of the embayment is notably
thickened, similar to that seen in c.f. Utahceratops gettyi specimen UMNH VP-16671 (Sampson
et al., 2010). On the left lateral ramus, the thickened border of the embayment is extended
continuously in a posterior direction helping form the anteromedial edge of the left epl (see
below). However, on the right side, the thickened border is discontinuous, forming a small

prominent bump below the main part of the epl. A similar double bump at the ep1 locus is seen
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on the left side of c.f. U. gettyi specimen UMNH VP-16671 where it is labeled as a "dorsal

parietal process", with the right side continuous (Sampson et al., 2010).

Five epiparietals are preserved fused to the parietal, with at least @missing, which is therefore
probably representative of three pairs of epiparietals (ep1-3) as is typical for chasmosaurines.
The medialmost pair of epiparietals is considered to represent locus epl, and is positioned on the
medial margin of the median embayment, as it is in specimens referred to cf. Pentaceratops
sternbergii, atf. Pentaceratops n. sp., and cf. Utahceratops gettyi. The left epl is triangular,
whereas the right epl was probably also triangular but is missing the distal tip, instead exhibiting
a shallow, possibly pathological trough. This is of interest because if the right ep1 tip was present
then the epiparietals are close enough (separated by only ~5 mm) that they would probably have
touched (especially if they bore keratinous sheaths). Epl is the only epiparietal that does not lie
flat within the plane of the parietal. Both left and right ep1 are deflected slightly dorsally, similar
to the epl on the right side of cf. Pentaceratops sternbergii specimen AMNH 1625 and parietal
fragments referred to "Pentaceratops aquilonius" (CMN 9814; Longrich, 2014; see Supporting
Information 1). Ep2 is preserved on both sides, although it is broken slightly on the right side.
Ep2 is triangular and projects posteromedially from the posterior bar, laying flat within the plane
of the rest of the parietal. Ep3 is only preserved on the left side where it is fused to the posterior
bar. There is an empty space at locus ep3 on the right side. Ep3 is more D-shaped than triangular
and projects posteriorly laying flat within the plane of the rest of the parietal. There is no
indication of an epiparietal more lateral than the ep3 locus, despite there probably being enough
space for an additional epiossification (as seen in some specimens of Anchiceratops; Mallon et

al., 2011).

Right Squamosal - The preserved right squamosal (Fig. S8) comprises a nearly complete
anterior end (including the narrow processes that articulate with the quadrate and exoccipital),
the anteriormost episquamosal, and most of the medial margin of the squamosal blade. Almost
the entire lateral margin and the posterior end are not preserved. The medial margin is robust and
forms whatis-termed the squamosal bar. Although incomplete, the squamosal bar is long enough
to suggest that the squamosal itself was elongate, as seen in most adult chasmosaurines, rather

than short and broad, as seen in young chasmosaurines (Lehman, 1990; Scannella and Horner,
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2010); the preserved portion measures 83 cm in length, and the conservative reconstruction (Fig.
S8) is 94 cm. Lateral to the squamosal bar, the squamosal dorsoventrally thins and is broken. The
single preserved episquamosal is fused to the anterolateral border and represents the anteriormost
episquamosal. It is common in chasmosaurine specimens for the anteriormost episquamosal to be
fused to the anterolateral border of the squamosal, suggesting that it is one of the first
episquamosals to fuse through ontogeny (Godfrey and Holmes, 1995). The episquamosal is very

rugose and not obviously triangular in shape.

Jugal / Epijugal - NMMNH P-27468 also has a fused left jugal, epijugal, and quadratojugal
(Fig. S9). The orbital margin of the jugal is not preserved, and only a little remains of the
anterior process. The ventral part of the jugal is tongue shaped, terminating in the
indistinguishably fused epijugal. The epijugal is large and robust, but not notably long. Only the
ventralmost part of the quadratojugal is preserved, fused to the epijugal. Similar to the parietal,

surface texture is partly obscured by sediment, but some shallow vascular grooves are visible.

Chasmosaurinae sp. "taxon C"

Material - NMMNH P-33906; parietal median bar, epijugal, indeterminate skull fragments,

vertebral fragments.

Locality and Stratigraphy - NMMNH P-33906 was collected in 2001 by Thomas E.
Williamson at NMMNH locality L-4715, from the De-na-zin Member of the Kirtland Formation
at South Mesa, San Juan Basin, New Mexico (Figure 1, 2; precise locality coordinates are
available from NMMNH). Two radiometrically dated ashes (at Hunter Wash, ~10 km to the
northwest) bracket the age of the De-na-zin Member of the Kirtland Formation. Ash H (73.83 +/-
0.18 Ma) occurs less than 5 m above the basal contact of the De-na-zin Member with the
underlying Farmington Member (Fassett and Steiner, 1997; Sullivan et al., 2005). Ash J (73.49
+/- 0.25 Ma) occurs 4.9 m below the upper contact of the De-na-zin Member with the overlying

Ojo Alamo Sandstone (Fassett and Steiner, 1997; both radiometric dates recalibrated by Fowler,
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2017, from Fassett and Steiner, 1997). NMMNH P-33906 therefore occurs between 73.83 Ma
and 73.49 Ma.

Comment - Although fragmentary, the previously undescribed specimen NMMNH P-33906
represents one of the few records of chasmosaurines from the De-na-zin Member of the Kirtland
Formation, and preserves the median bar of the parietal, which is diagnostic enough to permit

comparison to other chasmosaurines.

Diagnosis - Differs from Utahceratops, cf. Pentaceratops sternbergii, aff. Pentaceratops n. sp.,
Navajoceratops, and Terminocavus by the following characters: Median bar bears extensive
lateral flanges extending into the parietal fenestrae. Flanges are extensive such that the cross

section of the median bar is a broad flat lenticular shape, rather than being narrow and strap-like.

Description

Parietal - The preserved portion measures 31 cm in length and represents most of the parietal
median bar (Fig. 6). As with many vertebrate fossils from the De-na-zin Member, NMMNH P-
33906 has a thin covering of pale-colored concretion, and many adhered patches of hematite.
This obscures fine surface details, although most morphological features can be discerned. The
dorsal side is gently curved laterally, but otherwise has no obvious surface features (i.e. it lacks a
prominent medial crest, ridge, or bumps). In contrast, the ventral side bears a raised central bar
with lateral flanges which extend laterally into the fenestrae. The lateral flanges are much more
strongly developed than in Pentaceratops, Navajoceratops, and Terminocavus, but overall the
median bar is less broad than in Anchiceratops (with the possible exception of referred specimen
CMN 8535; Sternberg, 1929; Mallon et al., 2011). The cross section is different at either end of
the median bar, which is used to infer orientation. At the inferred anterior end, the cross section
is concave-convex, with a shallowly concave ventral side. At the inferred posterior end, the cross
section is biconvex and lenticular in shape. In other chasmosaurines the anterior end of the
parietal median bar can be slightly concave ventrally (e.g. aff. Pentaceratops n. sp., MNA PI.
1747; Rowe et al., 1981; Chasmosaurus belli holotype CMN 491; Hatcher et al., 1907), so we
have identified the ventrally concave end as anterior in NMMNH P-33906. The median bar is

expanded laterally at both ends; this is typical of chasmosaurine median bars, but is important as
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it helps constrain the size that the fenestrae would have been. Lateral expansion is more notable
at the posterior end, although this is probably due to the anterior end being less complete. At its

narrowest point, the median bar is 9 cm wide.

Epijugal - NMMNH P-33906 includes an epijugal which is fused to the jugal (and probably the
quadratojugal). However, the jugal and quadratojugal are almost entirely missing, with the only
remaining parts being small pieces that are fused to the base of the epijugal. The epijugal

measures ~10 cm long, and is moderately pointed in shape.

Ontogenetic assessment

Significant morphologic change thrqueh ontogeny can strongly affect the phylogenetic

placement of a specimen (Campione<ral., 2013). It is therefore important to determine the
ontogenetic status of new specimens so that appropriate comparisons can be made. No limb
bones are preserved with the new specimens described here, so the age in years of individuals
cannot be determined. Ontogenetic change in cranial phology is not well studied in non-
triceratopsin chasmosaurines (although see Lehman, , although it has been intensively
studied in the derived chasmosaurine Triceratops (Horner and Goodwin, 2006; 2008; Scannella
and Horner, 2010; 2011; Farke, 2011; Horner and Lamm, 2011; Longrich and Field, 2012;
Maiorino et al., 2013). Based, this prior work, a combination of ontogenetically variable cranial
features (size, sutural fusion, shape and fusion of epiossifications, frill surface texture, squamosal
elongation) are here hypothesized to also be indicative of subadult or adult status in SMP VP-
1500, NMMNH P-27468, and NMMNH P-33906.

Size - Size is an unreliable measure of maturity, as individual body size variation has been
shown to be considerable in some dinosaurs (Sander and Klein, 2005; Woodward et al.,@)ress).
Nevertheless, large size is often used as a rough gauge of maturity (and conversely, small size of
immaturity), and this is a reasonable approach when used in combination with other
morphological features that are ontogenetically informative. The holotype parietal of
Navajoceratops, SMP VP-1500, is of comparable size to other specimens of Pentaceratops and

related chasmosaurines (Fig. 7). The holotype parietal of Terminocavus, NMMNH P-27468, was
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described as small in the abstract by Sealey et al. (2005), but it is only slightly smaller than
specimens of Pentaceratops (Fig. 7). The squamosal of NMMNH P-27468 has a reconstructed
length of 94 cm, which is slightly smaller than MNA P1.1747 (127 cm, J., Fry pers. comm.), but
larger than the juvenile aff. Pentaceratops SDMNH 43470 (77 cm; Diem and Archibald, 2005);
the only other complete Pentaceratops squamosal is AMNH 1624, which is undescribed. The
jugal of NMMNH P-27468 is only slightly smaller than Utahceratops referred specimen UMNH
VP-12198 (Fig. 15), which is a large and aged individual (fused frill epiossifications that are
mediolaterally elongate, spindle-shaped, and blunt; resorbed postorbital horns; fused epijugal;
Sampson et al., 2010; pers. obs.). The median bar of NMMNH P-33906 (Taxon C) is much
broader than the median bar of any specimen of Pentaceratops, Navajoceratops, or Utahceratops
(Fig. 7). At 10 cm long, the epijugal of NMMNH P-33906 is also of similar size to the epijugal
of UMNH VP-12198.

Cranial fusion - Fusion of cranial sutures is often used as an indicator of maturity, but this is
fraught with problems as the timing of suture closure may not be consistent between taxa (for
example, the nasals and epinasal fuse relatively early in young subadult specimens of
Triceratops horridus, whereas the congeneric 7. prorsus these elements fuse in late
subadulthood, to adulthood; Horner and Goodwin, 2006; 2008; Scannella et al., 2014). However,
similar to size, degree of cranial fusion can be informative when used in conjunction with other
data. Fusion of the epijugal to the jugal and quadratojugal is observed in all three of the new
specimens (albeit based only a tentative identification in SMP VP-1500). In Triceratops, fusion
of the epijugal to the jugal and quadratojugal occurs relatively late in ontogeny, as a subadult or
adult (Horner and Goodwin, 2008). A similar survey has not been conducted for more basal
chasmosaurines, although the small-sized purportedly immature aff. Pentaceratops specimen
SDMNH 43470 (Diem and Archibald, 2005) includes an unfused jugal and quadratojugal, but no
epijugal as it was unfused and not recovered with the rest of the skull. Larger specimens of
Pentaceratops and related taxa exhibit fusion of the epijugal to the jugal (holotype AMNH 6325,
AMNH 1625, UKVP 16100; J. Fry, pers. comm.). From this, fusion of the epijugal in NMMNH
P-27468 and P-33906 (also, tentatively SMP VP-1500; Figs. S7, S9) is considered supportive of

subadult or adult status.
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Frill epiossifications - Shape and fusion of frill epiossifications varies through ontogeny in
chasmosaurines. In Triceratops, the episquamosals fuse first, followed by the epiparietals

(Horner and Goodwin, 2008).

Godfrey and Holmes (1995) suggest that in Chasmosaurus, fusion of the episquamosals begins at
the anterior end of the squamosal, and proceeds posteriorly through ontogeny. This pattern is
similarly observed in Pentaceratops and related taxa, notably in aff. Pentaceratops n. sp. MNA
Pl. 1747 (Rowe et al., 1981) and aff. P. sternbergii SDMNH 43470 (Diem and Archibald, 2005)
in which only the anterior episquamosals are fused. Fusion of episquamosals in SMP VP-1500
(probably from the middle of the squamosal; Fig. S6) supports the identification of this specimen
as a subadult or adult. NMMNH P-27468 only preserves the anteriormost fused episquamosal
(the rest of the squamosal lateral border is damaged; Fig. S8), so it is consistent with subadult or
adult status, but this cannot be confirmed without additional material or data on the timing of the

fusion of the first episquamosal.

The order of epiparietal fusion is not studied in basal chasmosaurines and a specific pattern has
not yet been identified for Triceratops. However, a survey of specimens referred to
Pentaceratops (and related taxa) reveals a general pattern where epl fuses first, followed by ep2,
then ep3. Epl is fused in the four largest specimens (cf. P. sternbergii AMNH 1625, aff.
Pentaceratops n. sp. MNA Pl. 1747, UKVP 16100, and cf. Utahceratops UMNH VP-16671 and
16784; Fig. 7), but is unfused in the aff. P. sternbergii small specimen SDMNH 43470, and in
newly described parietal fragment NMMNH P-37890 (see Supporting Information 1). Ep2 is
fused in AMNH 1625, MNA PIl. 1747, UMNH VP-16671 and 16784, but not in UKVP 16100.
Ep3 is fused in AMNH 1625, UMNH VP VP-16671 and 16784, and possibly MNA P1. 1747 (see
Supporting Information 1), but is unfused in UKVP 16100. The Navajoceratops holotype SMP
VP-1500 has fused epl (probable) and ep2, but ep3 is unfused hence it exhibits a state of fusion
between UKVP 16100 and MNA P1.1747 (or AMNH 1625), and on this basis could be
considered subadult. The holotype of Terminocavus (NMMNH P-27468) has fused ep1 and ep2
on both sides; ep3 is fused only on the left side, with an open space on the right side at the ep3
locus. On this basis, NMMNH P-27468 should be considered subadult or adult.
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Regarding shape, all Triceratops frill epiossifications develop from being triangular-shaped with
pointed apices and short bases in juveniles, to spindle shaped with blunt apices and elongate
bases in adults (Horner and Goodwin, 2006, 2008). Similar patterns exist in the episquamosals of
more basal chasmosaurines with probable juvenile and immature specimens of Chasmosaurus,
@acemmps (Lehman, 1989) and aff. Pentaceratops (SDMNH 43470; Diem and Archibald,
2005), exhibiting more short-based, pointed episquamosals. The episquamosals of
Navajoceratops holotype SMP VP-1500 (Fig. 11) are spindle shaped, and blunt with elongate
bases, consistent with a subadult or adult condition. The Terminocavus holotype, NMMNH P-
27468, only has the anteriormost episquamosal preserved, which tends to remain triangular and
slightly pointed in subadult and adult chasmosaurines, even when more posterior episquamosals
develop into spindle shapes. Thus, the triangular shape of the episquamosal of NMMMNH P-
27468 is not ontogenetically informative. Note that triceratopsins are slightly unusual among
chasmosaurines in that their epiparietals and episquamosals are of similar morphology to each
other; whereas in Anchiceratops and more basal chasmosaurines, the epiparietals take a greater
variety of forms. Most notable is that the epiparietals remain large and triangular through to
adulthood in Utahceratops, cf. and aff. Pentaceratops, Navajoceratops, and particularly

Terminocavus and Anchiceratops.

Frill surface texture - The texture of the parietosquamosal frill (and many of the facial bones)
has been shown to change ontogenetically in both centrosaurine and chasmosaurine ceratopsids
(Sampson et al., 1997; Brown et al., 2009; Scannella and Horner, 2010). Adult ceratopsids are
characterized by a distinctive frill texture where indented vascular channels form complex
dendritic patterns. This texture gradually develops through ontogeny, with juveniles exhibiting a
smooth or "long-grain" bone texture (Sampson et al., 1997; Brown et al., 2009; Scannella and
Horner, 2010), which is replaced by a pebbled or pitted texture with shallowly developed
vascular traces in young subadults. This is complicated somewhat by recognition that this long-
grain texture is associated with rapid growth (Francillon-Vieillot et al., 1990; Sampson et al.,
1997) and/or expansion of the frill, as expected in juveniles, but is also seen in some specimens
of Torosaurus which are reshaping their frills relatively late in ontogeny (Scannella and Horner,
2010). The Navajoceratops holotype SMP VP-1500 has well developed adult frill texture on
both the parietal (Fig. 4) and the squamosal (Fig. S6). In the Terminocavus holotype, NMMNH
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P-27468, the frill texture on the parietal is partially obscured by a thin layer of sediment covering
the surface, but can be seen to be pitted with shallow vascular canals. The same texture is visible
on the dorsal surface of the squamosal. This suggests that NMMNH P-27468 is not yet fully
mature and may be considered a young subadult. Surface texture is not discernible on Taxon C

specimen NMMNH P-33906.

Squamosal elongation - In juvenile chasmosaurines, the squamosal is anteroposteriorly short,
similar to the condition in adult centrosaurine ceratopsids and more basal neoceratopsian
(Lehman, 1990; Goodwin et al., 2006; Horner and Goodwin, 2006; Scannella and Horner, 2010).
In chasmosaurines, the squamosal elongates through ontogeny, although the timing of the
elongation varies phylogenetically (Lehman, 1990; Scannella and Horner, 2010). The derived
taxon Triceratops has been shown to retain an anteroposteriorly short squamosal until relatively
late in ontogeny (Scannella and Horner, 2010), whereas in Chasmosaurus and Pentaceratops
(albeit based on more limited data) it would appear that elongation occurs at smaller body sizes
(inferred to be younger; Lehman, 1990). Although the squamosal of SMP VP-1500 comprises
only fragments, one fragment (Fig. S6 C, D) might represent the more bladed posterior end,
which would be supportive of a subadult or adult status. The squamosal of NMMNH P-24768 is
incomplete, but enough remains to show that it was relatively elongate, supporting a subadult or

adult status.

Geometric morphometric analysis

Results of the geometric morphometric Principal Components Analysis (PCA) on chasmosaurine
parietals are presented in Fig. 8. PC 1 (x-axis) accounts for 50.5% of variation, and assesses
depth of the median embayment from shallow (negative) to deep (positive), and orientation of
epl from mediolateral (negative) to anteroposterior (positive); PC 2 (y-axis) accounts for 19.0%
of variation and assesses lateral expansion of the ep1 locus, shape of the posterolateral corner of

the parietal, and overall anteroposterior length.

Specimens previously assigned to the same taxon largely cluster into groups, with

"Chasmosaurus russelli", C. belli, and Anchiceratops specimens all clustering together.
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Specimens referred to cf. Pentaceratops n. sp (MNA P1.1747 and UKVP 16100) are separated
from cf. P. sternbergii specimen AMNH 1625, justifying their consideration as different taxa.
The new taxa, Navajoceratops and Terminocavus, plot as intermediate between these

stratigraphically preceding chasmosaurines and the stratigraphically higher Anchiceratops.

Two perpendicular morphological trends correlate with the stratigraphic occurrence of taxa and
match the lineages proposed by Lehman (1998). From stratigraphically oldest to youngest,
"Chasmosaurus russelli", C. belli, and Vagaceratops irvinensis occupy the negative end of the
PC 1 axis, and are spread down the PC 2 axis in stratigraphic order, showing little variation
along the PC 1 axis. This demonstrates progressive expansion of the ep1 locus, concentrating ep2
and ep3 to the lateralmost corner of the parietal. The trend in Chasmosaurus is contrasted by a
second group (comprising Utahceratops, Pentaceratops, Navajoceratops, Terminocavus, and
Anchiceratops) which is mostly distributed along the PC 1 axis in stratigraphic order, and shows
relatively little variation on PC 2. This group exhibit progressive deepening and eventual closure
of the median embayment, an increasingly steep angle of the ep1 locus, and anteroposterior

expansion of the posterior bar.

There are some inconsistencies in that Kosmoceratops does not plot close to Vagaceratops on the
PC 1 axis (although it is very close on the PC 2 axis), despite being recovered as sister taxa in
most phylogenetic analyses (Sampson et al., 2010; Mallon et al., 2014; and this analysis, see
below). Similarly, aff. Pentaceratops n. sp. specimen MNA P1.1747 plots more negatively on the
PC 2 axis than other specimens within the Pentaceratops grouping (although it is very similarly
placed along the PC 1 axis). These issues might be a reflection of potential problems with the
input data concerning these two specimens. First, for Kosmoceratops, points were plotted on to
the dorsal view provided by Sampson et al. (2010). However, this is not completely
perpendicular to the parietal surface. Consultation of photographs of skull casts shows that the
parietal posterior bar of Kosmoceratops is not as medially embayed as it appears in the image
used (this being an artifact of slight arching of the parietal). Hence it is predicted that upon
reanalysis of a perpendicular ograph, Kosmoceratops might plot more negative along PC 1
(x axis), closer to other members of the Chasmosaurus clade. Second, aff. Pentaceratops n. sp.

MNA PI.1747 may require revision if the redescription of J. Fry indeed identifies that ep3 is

Peer] reviewing PDF | (2019:11:43200:0:1:NEW 20 Nov 2019)


JMallon
Sticky Note
Why not just do this re-analysis yourself? Seems like a quick fix.


PeerJ

842
843
844
845

846

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

fused to the posterolateral corners of the parietal. This would reduce the anteroposterior offset of
the lateralmost margin of the parietal, bringing the morphology of MNA P1.1747 more similar to
UKVP 16100.

Phylogenetic analysis

Phylogenetic analysis recovers Navajoce@ps sullivani and Terminocavus sealyi as close
relatives of both Pentaceratops and Anchiceratops. The initial analysis was run using the
amended matrix of Mallon et al. 2014 (see Supporting Information 2), with only Mojoceratops
perifania excluded because this is considered a junior synonym of Chasmosaurus russelli
(Maidment and Barrett, 2011; Mallon et al., 2011). This resulted in 6 most parsimonious trees (L
=319 steps; CI = 0.72; RI = 0.79). The strict consensus tree (Fig. 9A) supports a monophyletic
Chasmosaurinae, and recovered Navajoceratops and Terminocavus as successive sister taxa to
Anchiceratops, Arrhinoceratops, and Triceratopsini. However, [Pentaceratops + Utahceratops]
+ [Coahuilaceratops + Bravoceratops] is recovered as sister group to this clade, rather than a
direct relationship between Pentaceratops and Navajoceratops, as would have been predicted
based on parietal morphology. A basal Chasmosaurus clade was separated from a [Vagaceratops

+ Kosmoceratops] clade by Agujaceratops.

Reanalysis 1 additionally excluded nomen dubium Bravoceratops, and Agujaceratops because it
is coded partly from juvenile material and specimens that may not be referred to the taxon (see
Supporting Information 1). This yielded § most parsimonious trees (L =310 steps; CI = 0.72; RI
=0.79). The strict consensus tree (Fig. 9B) maintains the relationship of [Utahceratops +
Pentaceratops + Coahuilaceratops] as sister group to [Navajoceratops + Terminocavus +
Anchiceratops + Arrhinoceratops + Triceratopsini]. The most significant result of reanalysis 1 is

the unification of a Chasmosaurus clade with [Vagaceratops + Kosmoceratops]. This is O;C%rlar

to the original description of Vagaceratops (Chasmosaurus) irvinensis (Holmes et al., 2
where the taxon was considered the most derived (and stratigraphically youngest) form of

Chasmosaurus, a relationship also recovered in the phylogenetic analysis of Longrich (2014).
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Reanalysis 2 investigated the effect of excluding Coahuilaceratops from the dataset because
Coahuilaceratops is known from very fragmentary material. This yielded 28 most parsimonious
trees (L = 308; CI =0.72; RI =0.79). The strict consensus tree (Fig. 9C) maintained the basal
Chasmosaurus clade, but Utahceratops, Pentaceratops, Navajoceratops, Terminocavus, and

Anchiceratops collapsed into a polytomy.

TheseE::lyses support the finding of the morphometric analysis in that the new taxa

Navajoceratops and Terminocavus are morphological intermediates between Pentaceratops and
Anchiceratops, although the absence of a sister group relationship between Navajoceratops and
Pentaceratops is not supportive of evolution by anagenesis. However, this may be due to the
way that P. sternbergii is coded in this dataset (see below). The topology of reanalysis 1 and 2
also supports the proposal of Lehman (1998) that a deep split divides the Chasmosaurinae into

two lineages.

These results match the evolutionary hypotheses based on the stratigraphic positions of taxa, but
represent only a first step in the many revisions required of the phylogenetic matrix. Most
significant to this study is that in the current matrix, the composite coding of P. sternbergii
includes specimens that are probably not all referable to the same taxon, e.g. AMNH 6325, 1624,
1625, NMMNH P-50000, and those considered here as aff. Pentaceratops n. sp. (MNA P1.1747
and UKVP 16100). It is therefore required for these specimens to be coded and analysed as at
least three separate taxa, but this action awaits the description of the anterior skull elements of
these specimens currently being completed by Joshua Fry. A similar recoding is required for
Agujaceratops; the immature holotype material should not be used for coding the taxon, as its
immature status may affect its phylogenetic positioning (e.g. Campione et al., 2013). Instead,
referred specimens UTEP P.37.7.065 (isolated parietal) and TMM 43098-1 (near-complete skull,
missing the parietal) should be coded separately. The holotype of Chasmosaurus russelli (CMN
8800) is in the process of being redescribed (see Campbell et al., 2013), and will likely need to
be moved out of Chasmosaurus and coded separately from other referred specimens.
Chasmosaurus belli referred specimen YPM 2016 is also in the process of being redescribed
(Campbell et al., 2015), and will need to be coded separately as a morphologic intermediate

between more typical C. belli specimens and Vagaceratops. Finally, some recently described
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chasmosaurine taxa (e.g. Judiceratops; Mercuriceratops; Regaliceratops, and Spiclypeus;
Longrich, 2013; Ryan et al., 2014; Brown and Henderson, 2015; Mallon et al., 2016) have yet to
be coded into the revised matrix, although new taxa known from fragmentary remains may

require some reassessment which is beyond the scope of this current work.

DISCUSSION

Comparisons and discussion of morphological characters

As the holotype specimens are probable subadults or adults, Navajoceratops and Terminocavus

can be appropriately compared with other taxa which are based on putative adults.

Navajoceratops and Terminocavus form progressive morphological intermediates between the
stratigraphically preceding Pentaceratops and succeeding Anchiceratops. Although limited in
available material, Chasmosaurinae sp. "Taxon C" (NMMNH P-33906) exhibits morphology
intermediate between the stratigraphically preceding Terminocavus, and succeeding
Anchiceratops. A number of characters of the parietal provide the best means to compare among

chasmosaurine taxa.

Median embayment of the posterior bar

The median embayment of the posterior bar is one of the most important morphological features
in distinguishing chasmosaurine taxa. It is defined by the angle at which the lateral rami meet

medially, and the proportion of the posterior bar occupied by the embayment.

The angle at which the lateral rami of the posterior bar meet medially (see Supporting
Information for figures) is comparable in more basal chasmosaurines, but becomes disparate in
more derived forms. Within chasmosaurines allied to Chasmosaurus, the lateral rami meet at a
relatively shallow angle, measuring 87-131° in specimens referred to "C. russelli", and
shallowing in stratigraphically successive taxa C. belli (149-167°) and Vagaceratops (177°). In
contrast, the lateral rami meet at a relatively steep angle in Utahceratops (75°), ct. Pentaceratops

sternbergii (83°), and aff. Pentaceratops n. sp. (87-88°). Navajoceratops (60°) and
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Terminocavus (~73°) exhibit angles that are more acute than stratigraphically preceding
chasmosaurines, indicating the deepening and enclosing of the median embayment. However, in
Terminocavus and especially Anchiceratops, measurement of the angle of the lateral rami is not

straightforward as the lateral rami have become curved and anteroposteriorly expanded.

The median embayment is restricted to the central 30-50% of the posterior bar in
stratigraphically older chasmosaurines such as "Chasmosaurus russelli", Agujaceratops,
Utahceratops, and cf. Pentaceratops sternbergii. In more derived forms, the apex of the arch
formed by each lateral bar migrates towards the lateral margin, broadening the median
embayment. In C. belli, Vagaceratops and (to an extent) Kosmoceratops, this occurs
concomitantly with an increase in the angle of the lateral bars such that the embayment appears
weakened or lost. In contrast, in aff. Pentaceratops sp., the angle increases, and the embayment
appears deeper. In Navajoceratops and Terminocavus the embayment is again restricted to the
central 30-50% of the posterior bar, mainly because anteroposterior expansion of the posterior
bar at the ep3 locus gives the lateral bars a more rounded shape. In Anchiceratops, the median

embayment is effectively completely closed, with only a shallow depression remaining between

left and right ep2.

Epiparietal Number, shape, size, and orientation

Chasmosaurines typically exhibit three epiparietal loci on each side. Important morphological
differences among taxa include shape and size of all epiparietals; position and consequent
orientation of epl and ep2 relative to the median embayment of the parietal posterior bar;
position and orientation of ep3 relative to the posteriormost point of the posterior bar and the

articulation with the squamosal.
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Of the new specimens, epl is only preserved in Terminocavus holotype NMMNH P-27468,
where its triangular shape is comparable to cf. Pentaceratops sternbergii, aff. Pentaceratops n.
sp., Anchiceratops, and some specimens referred to "Chasmosaurus russelli", and unlike the
laterally expanded epl locus in C. belli, Vagaceratops, and Kosmoceratops. In Terminocavus
epl is only slightly deflected dorsally, comparable to the right side of cf. P. sternbergii AMNH
1625, and "P. aquilonius" referred specimen CMN 9814 (Longrich, 2014), rather than folded
over the posterior bar to point anterolaterally (as in the left side of cf. P. sternbergii AMNH
1625, and aff. Pentaceratops n. sp.) or laterally (Anchiceratops). Given its phylogenetic position,
it might be expected for Terminocavus to exhibit an anterolaterally oriented epl rather than being
only slightly deflected dorsally. It is possible that epl folds over anteriorly through ontogeny,
and that the condition in NMMNH P-27468 is indicative that it is not fully mature; ontogenetic
indicators (see above) suggest a status between young subadult to adult for NMMNH P-27468,
which leaves open the possibility that the epiparietals might have folded anteriorly if the
individual had survived to later greater maturity. However, different epl orientations between
left and right sides of the putative adult c@ sternbergii, AMNH 1625, demonstrates that this

character is variable, even in an adult.

In Navajoceratops and Terminocavus locus epl occurs within the median embayment, as in
Utahceratops, cf. Pentaceratops sternbergii and aff. Pentaceratops n. sp.. This is unlike cf.
Agujaceratops (UTEP P.37.7.065) and specimens referred to "Chasmosaurus russelli" where epl
occurs at the edge of the embayment. In C. belli, Vagaceratops, and Kosmoceratops, the epl
locus is expanded laterally and occupies most of the posterior bar (see reinterpretation of
Vagaceratops and Kosmoceratops in Supporting Information 1). In contrast, in Anchiceratops,
the median embayment is closed such that epl effectively occurs at the midline on the dorsal
surface of the posterior bar. Orientation of the long axis of ep1 follows the angle of the lateral
rami upon which it is mounted. In Chasmosaurus it is therefore oriented mostly mediolaterally.
In contrast, ep1 is oriented slightly anteroposteriorly in cf. Pentaceratops sternbergii, and at an
increasingly steep angle from cf. P. sternbergii through Navajoceratops, Terminocavus, and

finally Anchiceratops in which it is oriented anteroposteriorly such that the tips point laterally.
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In both Navajoceratops and Terminocavus holotypes ep2 is large and triangular; in
Navajoceratops the apices are broadly rounded apices rather than being pointed, whereas in the
Terminocavus holotype, both ep2 have damaged apices. Large triangular ep2 are seen in most
chasmosaurines, although these reach especially large size in Anchiceratops. Ep2 is small in
some specimens of C. belli, and anteriorly inclined in Vagaceratops, and Kosmoceratops. In the
derived Triceratops all frill epiossifications are triangular in juveniles, and become broad and

flattened in adults (Horner and Goodwin, 2006).

In Navajoceratops, ep2 occurs within the median embayment and the pointed tip is
medioposteriorly oriented, as in aff. Pentaceratops n. sp., and unlike the stratigraphically
preceding cf. P. sternbergii and Utahceratops, where ep2 points posteriorly. In Terminocavus,
the position and orientation of ep2 is intermediate between Navajoceratops and Anchiceratops;
anteroposterior expansion and increased curvature of the lateral rami causes the constriction of
the median embayment such that ep2 is less medially oriented than in Navajoceratops, and closer

to a posterior orientation.

Locus ep2 is the posteriormost locus in basal chasmosaurines "Chasmosaurus russelli", most
specimens of C. belli, Kosmoceratops, Utahceratops, and cf. Pentaceratops sternbergii. The
posteriormost epiparietal locus switches to ep3 in chasmosaurines more derived than cf. P.

sternbergii (aff. Pentaceratops n. sp, Navajoceratops, Terminocavus, and Anchiceratops).

In chasmosaurines, the apex of locus ep3 points laterally in "Chasmosaurus russelli",
posterolaterally in C. belli; Vagaceratops, Kosmoceratops, Utahceratops, and cf. Pentaceratops
sternbergii; and posteriorly in aff. Pentaceratops n. sp. (inferred from locus), Navajoceratops

(inferred from locus), Terminocavus, and Anchiceratops.

Anteroposterior thickness of the posterior bar lateral rami

The anteroposterior thickness of the posterior bar is narrow and strap-like in more basal
chasmosaurines (Chasmosaurus, Vagaceratops, Kosmoceratops, Utahceratops, cf.

Pentaceratops sternbergii), broadening to become flat and plate like in the most derived forms
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(Anchiceratops, Arrhinoceratops, and Triceratopsini). In Navajoceratops the posterior bar is
anteroposteriorly expanded laterally, being broadest at locus ep3. This is also exhibited by the
stratigraphically preceding aff. Pentaceratops n. sp., but is unlike cf. Pentaceratops sternbergii,
Utahceratops, Chasmosaurus, and Vagaceratops, where the posterior bar is strap-like and
subequal in anteroposterior thickness along its length. In Terminocavus the lateral rami are much
more similar to Anchiceratops in being strongly anteroposteriorly expanded such that they are

plate-like rather than bar-like.

Characters of the median bar and parietal fenestrae

The parietal median bar exhibits two characters that differ among taxa; the anteroposterior
position of the point of maximum constriction, and the development of lateral flanges which
invade the parietal fenestrae (with consequent effect on the shape of the median bar cross

section).

In referred specimens of "Chasmosaurus russelli", C. belli, and Kosmoceratops, the point of
maximum constriction occurs in the posteriormost third of the median bar. In most specimens of
C. belli, this is immediately at the point of contact with the posterior bar. In Vagaceratops
irvinensis, the median bar is slightly damaged, but the preserved portion also seems to have the
point of maximum constriction in the distal third. In contrast, in cf. Pentaceratops sternbergii,
aff. Pentaceratops n. sp., Anchiceratops, Arrhinoceratops, and fenestrated specimens of
Triceratopsini, the point of maximum constriction occurs approximately at the anteroposterior
midpoint of the median bar. The median bar is incomplete in parietals of cf. Agujaceratops,
Utahceratops, Navajoceratops, Terminocavus, and Chasmosaurinae sp. "taxon C" (NMMNH P-
33906), but in these taxa the maximum constriction does not occur adjacent to the posterior bar

(ie. as in Chasmosaurus), and probably occurs approximately half way along its length.

In basal chasmosaurines Chasmosaurus, Agujaceratops, Utahceratops, cf. Pentaceratops
sternbergii, aff. Pentaceratops n. sp., and Navajoceratops the median bar is narrow and strap-
like, but develops into a broader structure in Vagaceratops (slightly), Kosmoceratops, and

especially from Terminocavus through Chasmosaurinae sp. "taxon C", Anchiceratops,
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Arrhinoceratops, and Triceratopsini. Broadening of the median bar is therefore possibly
convergent between Chasmosaurus and Anchiceratops clades. In the taxa basal to
Anchiceratops, broadening occurs by development of thin lateral flanges which project from the
lateral edges of the median bar, generally only easily observable on the ventral side. These are
very weakly developed in Utahceratops referred specimen UMNH VP-16671, and remain weak
to absent in cf. P. sternbergii and aff. Pentaceratops n. sp.. In Navajoceratops they are slightly
more prominent than in stratigraphically preceding taxa, and are similarly further developed in
Terminocavus. Lateral flanges are much more developed in the stratigraphically younger
Chasmosaurinae sp. "taxon C" (NMMNH P-33906; Figure 6), where they are conspicuous and
approach the level of development seen in some specimens of Anchiceratops (e.g. CMN 8535;
TMP 1983.001.0001; Mallon et al., 2011). Development of lateral flanges is associated with the

reduction in size, and change in shape of the parietal fenestrae.

An obvious character that differentiates basal and derived chasmosaurines is the size and shape
of the parietal fenestrae. The fenestrae of derived chasmosaurines (Kosmoceratops,
Anchiceratops, Arrhinoceratops, and Triceratopsini) are subrounded to subcircular (although
only subangular to subrounded in Kosmoceratops), relatively small, and enclosed within the
parietal by a broad median bar and wide parietal lateral bars. This is contrasted with the large
angular to subangular fenestrae of basal chasmosaurines (" Chasmosaurus russelli", C. belli,
Vagaceratops irvinensis, Utahceratops, ctf. Pentaceratops sternbergii, and aff. Pentaceratops n.
sp, and Navajoceratops) which are typically enclosed only by a narrow median bar and thin
lateral bars which may not be anteroposteriorly continuous (hence part of the squamosal may
form the lateral border of the fenestra). Terminocavus is morphologically and stratigraphically
intermediate between the two morphotypes, and has subrounded parietal fenestrae. Because

Chasmosaurinae sp. "taxon C" is incomplete it is not possible to know the shape of the fenestrae.

The parietal fenestrae of ceratopsian dinosaurs open and expand in size through ontogeny
(Dodson @Currie, 1988; Brown et al., 2009; Scannella and Horner, 2010; Fastovsky et al.,
2011). As such, it is possible that smaller and more rounded parietal fenestrae in Terminocavus
holotype NMMNH P-27468 may indicate that the individual was not fully mature, and that the

fenestrae would have been larger and perhaps more angular in the final growth stage. Although
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this is possible, the purportedly juvenile aff. Pentaceratops sp. SDMNH 43470 has fenestrae that
are relatively larger and more angular (inferrable from the strap-like and straight posterior bar)
than in the Terminocavus holotype which ontogenetic indicators suggest is a subadult or adult.
As such, it is hypothesized that the final size and shape of the fenestrae might not be significantly

different from that observed.

Implications of findings

Although this study demonstrates that most chasmosaurine taxa are still in need of detailed
revision, the description of the new taxa provides a good basis from which to investigate the
paleobiology of Chasmosaurinae as a group, and the influence of these findings on our

understanding of dinosaur evolution in the Late Cretaceous of North America.

Phylogeny: anagenetic stacks of stratigraphically segregated "species"

In his discussion on the validity of the badly distorted "Pentaceratops fenestratus", Mateer
(1981; p. 52) suggested that "the presence of two species [of Pentaceratops] in the San Juan
Basin separated stratigraphically may be real". The new taxa Navajoceratops and Terminocavus,
along with taxon C (NMMNH P-33906), effectively corroborate this view with better preserved
material, expanding it beyond only two taxa, and providing critical morphological links between

the stratigraphically preceding form Pentaceratops and succeeding Anchiceratops.

It is important to recognize that there is little evidence that the naming of these new taxa
represents increased diversity in Chasmosaurinae; rather, the new taxa support identification of
an unbranching lineage linking Pentaceratops and Anchiceratops, consistent with the hypothesis
of Lehman (1998). The term "diversity" is used broadly in paleontology, typically when referring
to multiple named species within a given clade as evidence of diversity. This is often
inappropriate; "diversity" should properly only be used to denote two or more contemporaneous

species or lineages. In this usage, diversity is therefore evidence of lineage splitting or

multiplication, also termed cladogenesis (sensu Rensch, 1959) or "spec n" (sensu Cook,

1906; Vrba, 1985). The new taxa provide little evidence of lineage splitting, being instead more
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supportive of an unbranching lineage of stratigraphically separated taxa ("anagenesis"; Rensch,
1959, used here sensu Wiley, 1981; syn. "phyletic evolution"; Simpson, 1961) from
Utahceratops through Pentaceratops, Navajoceratops, Terminocavus, and Anchiceratops. The
morphometric analysis strongly supports this anagenetic lineage, with each taxon recovered
progressively more positive along the PC1 axis (Figure 8). The phylogenetic analysis is less
supportive of such a long lineage, with [Utahceratops + Pentaceratops] forming a separate clade
to [Navajoceratops + Terminocavus + Anchiceratops]. However, it is expected that this might
not be a problem when specimens of cf. Pentaceratops sternbergii (e.g. AMNH 1625). which
show strong similarity with Utahceratops, are coded separately from aff. P. n. sp. (MNA
P1.1747; UKVP 16100). However, this awaits full description of the aff. P. n. sp. materials. Since
each of the new taxa is stratigraphically separated from preceding and succeeding forms, and
stratigraphically preceding forms are recovered as less derived, then we fail to reject the
hypothesis that they are transitional forms within a single unbranching lineage (note that if
Navajoceratops and Terminocavus represent intermediate forms within an anagenetic lineage
then it is arguable that they should be considered as a single species, rather than new species or

genera; see Supporting Information 1).

Phylogeny: a deep-split Chasmosaurinae

A deep split within a monophyletic Chasmosaurinae is suggested by the morphometric and
phylogenetic analyses, supported by stratigraphic data, and consistent with the proposed lineages
of Lehman (1998). The split divides Chasmosaurinae into two clades: a Chasmosaurus clade
["C. russelli" + C. belli + Vagaceratops + Kosmoceratops] and a Pentaceratops clade
[Utahceratops + Pentaceratops + Navajoceratops + Terminocavus + Anchiceratops +
Arrhinoceratops + Triceratopsini]. With the exclusion of [Arrhinoceratops + Triceratopsini] (see
later discussion) both clades comprise stratigraphically separated taxa whieh do not overlap (Fig.
10), with the oldest forms more basal, and younger forms more derived. This is supportive of an
initial cladogenesis (speciation) event which created two resultant lineages that subsequently

evolved by anagenesis.
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The two clades are characterized by a number of divergent, often opposite, morphological trends
(expanded from those proposed by Lehman, 1998) observed in stratigraphically successive taxa
within their respective clades. Basal members of both clades exhibit an anteroposteriorly narrow
parietal posterior bar bearing a median embayment, and three discrete epiparietals. In the
Chasmosaurus clade the median embayment shallows as ep1 expands laterally, ep2 and ep3 loci
migrate to the posterolateral corners of the parietal, the posterior bar remains anteroposteriorly
narrow, and the apices of the curved lateral rami of the posterior bar migrate laterally but remain
at epl or ep2. This is contrasted with the Pentaceratops clade where the median embayment
deepens and closes in on itself, ep1 remains medial but rotates its long axis such that it becomes
anteroposteriorly oriented, ep2 and ep3 become large and triangular (maintained in adults), and
the posterior bar becomes anteroposteriorly broad and plate-like with rounded lateral rami the
apex of which occurs at locus ep3. Some morphologic trends are parallel between the clades. The
parietal fenestrae of both clades exhibit a trend towards reduction in size, and increase in

roundedness, concomitant with laterally expanded median and lateral bars.

The phylogenetic pattern, morphological trends, and stratigraphic occurrence imply divergence
from a common ancestral population. The oldest known representative of either clade are
specimens referred to "Chasmosaurus russelli" (not including the holotype; see Supporting
Information 1) from the lower part of the Dinosaur Park Formation (Holmes et al., 2001; Mallon
et al., 2012; see Supporting Information 1). This horizon is radiometrically dated as between 77
and 76.3 Ma, corresponding to the uppermost part of the Middle Campanian (Eberth, 2005;
2011; Fowler, 2017). The oldest member of the Pentaceratops clade, Utahceratops, is slightly
younger than this at between ~75.97 Ma to ~75.6 Ma (Roberts et al., 2013; Fowler, 2017). The
cladogenetic split between Chasmosaurus and Pentaceratops clades must therefore have

occurred before 77 Ma.

Collection of new chasmosaurine material from before 77 Ma is thus essential to further our
understanding of the timing, rate, and cause of the divergence. Appropriately-aged dinosaur-
bearing formations in the Western Interior include the Foremost (~80.2 - 79.4 Ma) and Oldman
Formations, Alberta (~79.4 - 77Ma); lower parts of the Judith River (~80 - 77 Ma) and Two
Medicine (~81 - 75 Ma) Formations, Montana; Wahweap Formation, Utah ( ~80 - ~79 Ma), and
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possibly the Aguja Formation, Texas (Lower to Middle Campanian; Goodwin and Deino, 1989;
Rogers et al., 1993; Rogers and Swisher, 1996; Jinnah et al., 2013; Roberts et al., 2013; Fowler,
2017; see Supporting Information 1). Although a good amount of material has been collected
from the Aguja Formation (Lehman, 1989; Forster et al., 1993), most is fragmentary, immature,
or is missing the critical parietal, making comparisons difficult. However, an isolated middle
portion of the parietal posterior bar (UTEP P.37.7.065) is tantalizingly similar to basal members
of both Chasmosaurus and Pentaceratops clades in exhibiting a median embayment restricted to
the middle third, however, more complete parietal material is required for further comparisons
(also see Supporting Information 1). A range of material has also recently been collected from
the Judith River Formation of Montana and lower Oldman of southern Alberta (some published,
e.g. the highly fragmentary remains named Judiceratops tigris; Longrich, 2013; Campbell, 2015)
which has great potential to increase our knowledge of early, and presumably basal, members of

these clades.

Latitudinal biogeography and vicariance

The deep split within Chasmosaurinae provides support for the hypothesis of latitudinal
differences (but critically, not endemism) of North American Campanian dinosaur faunas,
implying vicariance in the middle or (more likely) early Campanian which split chasmosaurines
into a northern Chasmosaurus clade, and a southern Pentaceratops clade. Geological and
biological evidence demonstrate that geographic isolation of northern and southern populations
was not of continuous duration, with northern and southern biomes overlapping or mixing again

by the middle Campanian.

In a series of papers, Lehman (1987; 1997, 2001; Lehman et al., 2006) proposed that in the
Campanian and Maastrichtian of the North American Western Interior, dinosaur faunas were
segregated into northern and southern biogeographic provinces, with the dividing line positioned
roughly in central Utah. This hypothesis was criticized and partly falsified as many of the
purportedly coeval northern and southern taxa were not contemporaneous and were therefore
indicative of stratigraphic rather than geographic segregation (Fowler, 2006; Sullivan and Lucas,

2006; Fowler, 2017). Despite this, an expansion of Lehman's hypothesis was proposed (Sampson

Peer] reviewing PDF | (2019:11:43200:0:1:NEW 20 Nov 2019)



PeerJ

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

et al., 2010), based partly on the description of new chasmosaurine taxa Kosmoceratops
richardsoni and Utahceratops gettyi from the Kaiparowits Formation, Utah. Later;(Sampson et
al., 2013), previous stratigraphic criticism of the biogeographic hypothesis was rejected,
suggesting that recalibrated radiometric dates (Roberts et al., 2013) showed that chasmosaurines
from the Dinosaur Park Formation, Alberta and Kaiparowits Formation, Utah were indeed
contemporaneous, and indicative therefore of intracontinental endemism. However, many of
these radiometric recalibrations of (Roberts et al., 2013) are in error, some by as much as a
million years (Fowler, 2017). Correctly recalibrated dates (Fowler, 2017), show the Kaiparowits
taxa are stratigraphically slightly younger than the more basal chasmosaurines from Alberta,
with K. richardsoni the youngest and most derived member of the Chasmosaurus lineage, and U.
gettyi the oldest and most basal member of the Pentaceratops lineage. Thus the contemporaneity

required for basinal-scale faunal endemism collapses.

Nevertheless, amidst this criticism, the emphasis on 'lineage-thinking' in the current analysis
provides evidence for a subtle form of gradational latitudinal provincialism, but not endemism.
Although the Chasmosaurus and Pentaceratops lineages are not exclusive (ie. endemic) to either
north or south (a similar point is raised by both Wick and Lehman, 2013; and Longrich, 2014), it
is apparent that the relative abundance of the lineages varies latitudinally in Campanian-aged
units (albeit based on a small sample size). Specimens of the Chasmosaurus clade are much
more abundant in the northern United States and Canada, with the southernmost representative
(Kosmoceratops richardsoni), represented by two specimens from the Kaiparowits Formation of
southern Utah. Specimens of the Pentaceratops clade are more common in the southern states of
New Mexico and Utah, with only one or two possible representative specimens from southern
Alberta (see discussion on Chasmosaurus russelli in Supporting Information 1). This
biogeographic pattern does not represent endemism as the two lineages overlap geographically
during the uppermost part of the middle Campanian in Alberta and Utah. However it is
suggestive that latitudinally aligned vicariance might have been the cause of the speciation event
that created the two chasmosaurine lineages. As the oldest member of the Chasmosaurus lineage
occurs at ~77Ma (see above) then vicariance must have occurred before this time. Similarly, as
both lineages are seen to coexist in the uppermost part of the Dinosaur Park Formation (~76 Ma)

then any physical barrier must have been passable by this time. The location of the barrier is
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suggested by the fact that the dividing line between northern and southern provinces appears to

lie somewhere between southern Utah and northern Montana.

It has been stated (Sampson et al., 2010; 2013) that there is currently no evidence for a physical
barrier separating northern and southern provinces, but this is not the case. In 1990, Lillegraven
and Ostresh (not referenced by Sampson et al., 2010; 2013) produced 33 maps illustrating Late
Cretaceous transgression and regression of the western shoreline of the Western Interior Seaway
(WIS). The maps were at a very high stratigraphic resolution, documenting almost every
ammonite zone from the middle Santonian (Clioscaphites choteauensis; 85.23 Ma; Ogg et al.,
2012) through to the K-Pg boundary (66 Ma). Most importantly, the maps contrast the
paleoshoreline with the modern position of the eastern Sevier thrust front of the Rocky
Mountains. Although the position of the thrust front was slightly more western in the Late
Cretaceous (and the mountains were not as elevated; DeCelles, 2004), it is a good approximation
for the position of the upland or mountainous area which flanked the coastal plain. From these
maps it can be readily observed that during the middle Santonian (85 Ma) through to earliest part
of the middle Campanian (81 Ma), the shoreline of the WIS intermittently abutted the thrust front
of the incipient Rockies from central Utah to southern Alberta. For hundreds of miles the coastal
plain would have been extremely narrow, in some places perhaps as little as 5-10 kilometers,
providing very limited habitat. This would be similar to, for example, the modern day Zagros
Mountains of Iran which are abutted by the eastern shoreline of the Persian / Arabian Gulf. This
bottlenecking of the available coastal plain effectively cut off the north-south dispersal route,
latitudinally bisecting the coastal plain habitat of North America into southern and northern areas
separated by hundreds of miles. The latitudinal climate gradient might have exacerbated
difference in climate between northern and southern regions, although the latitudinal climate
gradient was not as strong in the Late Cretaceous as it is today. Lillegraven and Ostresh (1990)
show that from the early part of the middle Campanian (~80 Ma) regression of the WIS results in
a broader coastal plain, and it is hypothesized here that this may no longer have presented a
physiographic boundary, thereby permitting interspersal of chasmosaurine lineages, as evidenced
by the presence of Pentaceratops lineage taxa in the uppermost Dinosaur Park Formation, ~76
Ma (Longrich, 2014), and later Anchiceratops in the Horseshoe Canyon Formation, ~71 Ma
(Mallon et al., 2011).
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The role of heterochrony in evolution of the frill and effects on

phylogenetic analysis

The process of heterochrony describes changes in the rate and timing of development between
stratigraphically successive populations. Most morphological trends recognized in this study are
potentially controlled or affected by heterochrony, but inference of this requires knowledge of
change through both ontogeny and stratigraphy. Although stratigraphic position is at least
roughly known for most species in the current study, few especially young or old individuals of
relatively basal chasmosaurines have been published, such that their ontogenetic change is not
well understood. Nevertheless, some possible heterochronic trends can be identified or
hypothesized based on the limited available material and comparison to the well documented
growth series of the Late Maastrichtian derived chasmosaurine Triceratops (Horner and
Goodwin 2006; 2008; Scannella and Horner, 2010). This may have important practical
implications for taxonomy and the way specimens are coded for phylogenetic analysis, but also
in a broader sense may be informative about some of the unusual features of basal and derived

chasmosaurines.

Development of the median embayment

The median embayment of the parietal posterior bar successively shallows and broadens through
time in the Chasmosaurus lineage, and deepens then closes in the Pentaceratops lineage. There
is some evidence to suggest that similar patterns are observed ontogenetically. In "Chasmosaurus
russelli", referred adult specimen CMN 2280 has a shallow central embayment with lateral rami
at an angle of 131°. The immature referred specimen, AMNH 5656, has an embayment that is
less shallow (99°) and is more restricted to the central third of the posterior bar. Adult specimens
of the stratigraphically successive C. belli, and Vagaceratops irvinensis have an even shallower

embayment than adult "C. russelli" suggesting peramorphosis in the Chasmosaurus lineage.

Concerning basal members of the Pentaceratops lineage, there are no published juvenile

specimens which preserve the median embayment, that have been recovered from the same strata
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as the various holotypes (and as such, could be more reliably assigned to a given taxon).
Consequently the progressive deepening of the median embayment (observed stratigraphically

and phylogenetically) cannot currently be assessed for an ontogenetic component.

Development of parietal fenestrae

In Ceratopsia, the parietal fenestrae open during ontogeny by resorption of central regions of the
previously solid parietal. Although this is still controversial (e.g. Farke, 2011), opening of
fenestrae through ontogeny has been proposed in both basal neoceratopsians (Protoceratops;
Fastovsky et al., 2011) and the highly derived Late Maastrichtian ceratopsid Triceratops
(Scannella and Horner, 2010). As such, it is probable that ontogeny influences the size and shape
of parietal fenestrae in both the Chasmosaurus and Pentaceratops lineages, reflected in the width

of the median, posterior and lateral bars.

In adult specimens of basal chasmosaurines, the median bar of the parietal either lacks lateral
flanges that invade the fenestrae, or they are only weakly developed. Flanges are more strongly
developed and conspicuous in Chasmosaurinae sp. taxon C (NMMNH P-33906) and more
derived chasmosaurines like Anchiceratops. It is likely that development of the flanges occurs by
paedomorphosis; ie. that flanges form as a result of the fenestrae opening less extensively during
ontogeny (in more derived forms), rather than the flanges growing laterally from the median bar.
It is expected therefore that juveniles of some of the more derived Pentaceratops lineage taxa
(e.g. Terminocavus or taxon C) would exhibit relatively wider median bars with more developed
lateral flanges, and smaller parietal fenestrae. In this respect, they might appear more similar to
adults of derived chasmosaurines. This is seen in the Chasmosaurus lineage, where juvenile "C.
russelli" referred specimen AMNH 5656 has very weak lateral flanges on the median bar,

whereas in more mature specimens (e.g. CMN 2280) lateral flanges are absent.

The development of the broad plate-like posterior bar (in Pentaceratops lineage) and lateral bars
of the parietal is similarly expected to be a result of paedomorphosis. The posterior bar of
immature aff. Pentaceratops sp. SDMNH 43470 comprises a bar-like posterior portion (typical
of more basal members of the Pentaceratops lineage) which has small thin flanges extending

anteriorly into the parietal fenestrae. These could be interpreted as remnants of a previously more
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extensive plate-like part of the posterior bar that is resorbed by adulthood in more basal
chasmosaurines (thereby increasing the size of the fenestrae). Hypothesized paedomorphosis in

more derived members of the Pentaceratops lineage might lead to retention of this flange.

In derived chasmosaurines (e.g. "Torosaurus", Anchiceratops, and Kosmoceratops), the lateral
bars of the parietal are laterally broad and completely enclose the fenestrae within the parietal. In
basal chasmosaurines the lateral bars are much narrower and might not fully enclose the fenestra
(such that the squamosal forms part of the lateral margin). Within the Chasmosaurus lineage,
"Chasmosaurus russelli" referred adult specimen CMN 2280 is illustrated by Godfrey and
Holmes (1995) as exhibiting incomplete lateral rami (ie. the squamosal contributes to the
fenestra), whereas in immature referred specimen AMNH 5656, the lateral bars are continuous,
fully enclosing the fenestrae. This limited sample suggests that ontogenetic expansion of the
parietal fenestrae may cause resorption of the central parts of the lateral bars, causing them to
become discontinuous in adults. If so, this would be a paedomorphic trend as in specimens of the
slightly more derived C. belli, the fenestra is enclosed entirely within the parietal (Godfrey and
Holmes, 1995). A similar paedomorphic trend is probably present in the Pentaceratops lineage
where basal members have continuous but thin lateral bars, which are broad in Anchiceratops
and more derived forms. This is only hypothetical as lateral bars are not preserved in

Navajoceratops, Terminocavus, and "taxon C".

Origin of Arrhinoceratops and the Triceratopsini: a second speciation?

The description of intermediate morphotaxa between Pentaceratops and Anchiceratops has
implications for the origin of Arrhinoceratops and the Triceratopsini [Ojoceratops +
Eotriceratops + "Torosaurus" + Triceratops]. In most phylogenetic analyses, Arrhinoceratops
and the Triceratopsini are recovered as very closely related to Anchiceratops (e.g. Dodson et al.,
2004; Sampson et al., 2010; Longrich, 2014; and the current analysis). Since Anchiceratops and
Arrhinoceratops were contemporaneous (co-occurring in the Horsethief and Morrin members of
the Horseshoe Canyon Formation, Alberta; ~72.4 - 71.6 Ma; Eberth et al., 2013; Mallon et al.,
2014) then the phylogenetic relationship illustrated in Figs. 19-21 require that a second

speciation event splitting the two must have occurred prior to this time, but after the occurrence
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of the immediately basal Terminocavus (~74.7 Ma). However, taxa immediately basal to
Anchiceratops do not resemble Arrhinoceratops, being generally characterized by a deep notch-
like median embayment and large triangular epiparietals, neither of which are observed in
Arrhinoceratops at any ontogenetic stage (Mallon et al., 2014). It is possible that character states
shared between Arrhinoceratops and Anchiceratops (for example, small circular parietal
fenestrae) may be homoplastic rather than synapomorphic, and could instead reflect shared long
term trends observed across Chasmosaurinae (see above). Although this is speculative,
candidates for a different origin of Arrhinoceratops and the Triceratopsini are present in the
poorly known Coahuilaceratops (Loewen et al., 2010) and "Bravoceratops"(Wick and Lehman,
2013; see Supporting Information 1), from the lower Maastrichtian of Mexico and Texas,
respectively. Although both taxa are known from only very scant remains, both exhibit anteriorly
positioned nasal horns and retain bumps on the anterior end of the parietal relatively late in
ontogeny, both features characteristic of Triceratopsini. Recovery of more complete specimens

of Coahuilaceratops and "Bravoceratops" may be enlightening.

Regardless of their precise phylogenetic origin, the slightly embayed, cardioid shape of the frill
in some specimens referred to "Torosaurus" (YPM 1831; TMM 41480-1) and Triceratops (e.g.
AMNH 5116) may be a remnant feature of their ancestry; a plesiomorphy or atavism exhibited
by a few members of the population, which is gradually being lost. This is supported by the fact
that very few specimens of Triceratops prorsus exhibit any parietal midline embayment, despite

many specimens having been collected.

CONCLUSIONS

Description of the new taxa Navajoceratops sullivani and Terminocavus sealyi, and the
fragmentary Taxon C, provides critical stratigraphic and morphologic links between the
Campanian Pentaceratops, and the Maastrichtian Anchiceratops, reinstating the phylogenetic
hypothesis originally postulated by Lehman (1993, 1998). Combined with significant revision of
other chasmosaurine taxa, this reveals a deep split of the Chasmosaurinae into Chasmosaurus

and Pentaceratops clades, which are mostly arranged into stacks of stratigraphically successive

Peer] reviewing PDF | (2019:11:43200:0:1:NEW 20 Nov 2019)



PeerJ

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405

1406

1407
1408
1409
1410
1411
1412
1413

taxa. Morphological divergence from similar basal forms suggests the clades evolved from a
common ancestor which was subject to a true speciation or cladogenetic event, probably in the
early Campanian. After this initial speciation, stratigraphically successive taxa suggest that
evolution proceeded mostly by unbranching anagenesis, with evidence for only one additional

speciation event, that of Arrhinoceratops (and the Triceratopsini).

Analysis of paleogeographic maps suggest that high sea level in the Santonian through to middle
Campanian may have acted as an agent of vicariance, separating an ancestral chasmosaurine
population into northern and southern subpopulations which over time led to divergence and
speciation. This lends support to recent hypotheses of latitudinally arrayed differences in
terrestrial faunal composition (e.g. Lehman, 1987; 1997, 2001), but stops short of supporting

basinal-level endemism in the middle to late Campanian (e.g. Sampson et al., 2010).

Description of the new material places San Juan Basin chasmosaurines as among the best
documented of their clade, second only to 77iceratops in number of specimens and quality of

accompanying data.

Although this work presents significant revision of many chasmosaurine taxa, much reanalysis
and redescription remains. Inclusion of more recently described taxa and separation of
problematic taxa and specimens (see Supporting Information 1) will be attempted in forthcoming

manuscripts based on Fry (2015) and Fowler and Freedman Fowler (2017).
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Figure 1

Geological map of the southeast San Juan Basin showing localities of radiometric dates
and important fossil specimens mentioned in the text

Collection localities; A, SMP VP-1500, Navajoceratops sullivani, holotype; B, NMMNH P-27486,
Terminocavus sealeyi, holotype; C, NMMNH P-33906, Denazin chasmosaurine; D, NMMNH
P-37880, c.f. Pentaceratops sternbergii, parietal fragment; E, UKVP 16100, c.f. P. sternberqii,
complete skull; F, MNA PI.1747, c.f. P. sternbergii, complete skull; G, USNM 8604,
Chasmosaurinae sp. anterior end of a parietal median bar; H, purported collection area of
AMNH 6325, P. sternbergii, holotype. I, NMMNH P-50000, Chasmosaurinae sp., skull missing
frill. Radiometric dates recalibrated from Fassett and Steiner (1997) by Fowler (2017).
Bedrock geology altered from O'Sullivan and Beikman (1963).
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Figure 2

Generalized stratigraphic column of Fruitland and Kirtland Formation with radiometric
dates and fossil occurrences

Specimens mentioned in the main text or supporting information: Pentaceratops sternbergii
holotype, AMNH 6325; cf. P. sternbergii, AMNH 1624, 1625; aff. Pentaceratops n. sp., MNA
P.1747, UKVP 16100, NMMNH P-37880; Navajoceratops sullivani holotype SMP VP-1500;
Terminocavus sealeyi holotype, NMMNH P-27468; Chasmosaurinae sp., NMMNH P-50000;
"Taxon C", NMMNH P-33906. Radiometric dates (*) recalibrated from Fassett and Steiner
(1997) by Fowler (2017).
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Figure 3

Morphological landmarks used in morphometric analysis of chasmosaurine parietals

All landmarks were measured on the parietal only. Points 1 and 2 are the same for both left
and right sides, but all other points were mirrored for the right side and analysed along with
the non-mirrored left side. Points are defined as follows: (1-4; green): 1, maximum
constriction of the median bar, positioned on the midline; 2, posteriormost point of the
parietal at the midline ; 3, posteriormost point of the parietal anywhere along the posterior
margin; 4 , lateralmost point of the parietal ; (5, yellow): 5, point at which the lateral ramus
of the posterior bar meets the median bar as expressed on the posteriomedial border of the
parietal fenestra, may be marked by a change in angle of the fenestra border; (6, 7;
magenta): 6, posteriormost point of parietal fenestra ; 7, lateralmost point of parietal
fenestra ; (8-13; blue): 8, contact point of the medial margin of epiparietal 1 with the parietal
itself ; 9, contact point of the lateral margin of epiparietal 1 with the parietal itself; 10,
contact point of the medial margin of epiparietal 2 with the parietal itself ; 11, contact point
of the lateral margin of epiparietal 2 with the parietal itself; 12, contact point of the medial
margin of epiparietal 3 with the parietal itself ; 13, contact point of the lateral margin of
epiparietal 3 with the parietal itself; (14-16; red): 14, The contact point of the midpoint of
epiparietal 1 with the parietal itself; 15, The contact point of the midpoint of epiparietal 2
with the parietal itself; 16, The contact point of the midpoint of epiparietal 3 with the parietal
itself. Colors are intended to aid in visual distinction only. Points illustrated on Chasmosaurus

russelli referred specimen CMN 2280, adapted from Godfrey and Holmes (1995).
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Figure 4

Navajoceratops sullivani holotype SMP VP-1500 parietal

Dorsal (left) and ventral (right) views. cross section of median bar (mb) illustrated on dorsal
view. Epl mostly removed during extraction or preparation (see Fig. 7 for original extent).
em, median embayment of the posterior bar; ep, epiparietal loci numbered by hypothesized
position (no epiossifications are fused to this specimen). f, parietal fenestra. L-Ir / R-Ir, Left /
Right lateral rami of the posterior bar. te, tapering lateral edges of the median bar. Scalebar

= 10 cm. Reconstruction adapted from Lehman (1998).

Ventral
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Figure 5

Terminocavus sealeyi holotype NMMNH P-27468 parietal

Dorsal (left) and ventral (right) views. Paired epl are deflected dorsally. em, median
embayment of the posterior bar. ep, epiparietal loci numbered by hypothesized position (no
epiossifications are fused to this specimen). f, parietal fenestra. lb, lateral bar. L-Ir / R-Ir,
Left / Right lateral rami of the posterior bar. mb, median bar. te, tapering lateral edges of the

median bar. Scalebar = 10 cm. Reconstruction adapted from Lehman (1998).

Dorsal Ventral
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Figure 6

Chasmosaurinae sp. "Taxon C" NMMNH P-33906 parietal median bar

Near-complete parietal median bar in right lateral (A), dorsal (B), left lateral (C), ventral (D),
and ventral outline (E) views. Cross sections in posterior (F) and anterior (G) inferred views.

Subtle lateral expansion at both anterior and posterior ends suggests that the length of the

median bar is complete, and as such is much wider than in stratigraphically preceding forms
Utahceratops, Pentaceratops, Navajoceratops, and Terminocavus. The extra width is due to

more extensive tapering lateral edges (te) of the median bar which extend out into the

parietal fenestrae. Scalebar = 10 cm.
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Figure 7

Parietal relative sizes among specimens of Pentaceratops, and related chasmosaurines

Parietals of chasmosaurine taxa mentioned in the main text, all in dorsal view and to scale
with each other to show relative size. Taxa shown in stratigraphic order (with the exception
of E, SDMNH 43470). A, Utahceratops gettyi referred specimen UMNH VP-16671. B, cf.
Pentaceratops sternbergii referred specimen AMNH 1625. Aff. Pentaceratops sp. referred
specimens C, UKVP 16100; D, NMMNH P-37880, and F, MNA PI. 1747. E, aff. Pentaceratops
sternbergii referred specimen SDMNH 43470. G, Navajoceratops sullivani holotype SMP
VP-1500. H, Terminocavus sealeyi holotype NMMNH P-27468. I, Chasmosaurinae sp. "Taxon
C" specimen NMMNH P-33906. ep, epiparietal loci numbered by hypothesized position (no
epiossifications are fused to this specimen). mb, median bar. Line drawings adapted from

Longrich (2014), and Sampson et al. (2010). Scalebar = 10 cm.
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Figure 8

Morphometric analysis of chasmosaurine posterior parietals

Deformation grids illustrate shape of left lateral ramus of each specimen at the end of each
principal component axis (PC). PC 1 (x axis) accounts for 50.5% of variation and assesses
depth of the median embayment from shallow (negative) to deep (positive), and orientation
of epl from mediolateral (negative) to anteroposterior (positive). PC 2 (y axis) accounts for
19.0% of variation. Points connected by a bar represent left and right sides of the same
specimen (where adequately preserved). Pentaceratops through Anchiceratops plot along PC
1, demonstrating progressively deeper median embayment, and an increase in the angle of
epl. Chasmosaurus through to Vagaceratops are concentrated on the negative side of PC 1,
following a trend from positive to negative along PC 2. Key: "Ag", Agujaceratops; An,
Anchiceratops; Ch.b, Chasmosaurus belli; cf. Ch.r, cf. Chasmosaurus russelli; Ko,
Kosmoceratops; Na, Navajoceratops; aff. Pe n.sp., aff. Pentaceratops n. sp.; cf. Pe, cf.
Pentaceratops sternbergii; Te, Terminocavus; Ut, Utahceratops; Va, Vagaceratops. Color to

aid in distinction only.
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Figure 9

Phylogenetic analysis

(A) Strict consensus tree showing all taxa (MPT = 6; L = 319; Cl = 0.72; Rl = 0.79). (B)
Reanalysis 1, strict consensus tree (MPT = 6; L = 310; Cl = 0.72; Rl = 0.79). Bravoceratops,
Agujaceratops removed from the character matrix. (C) Strict consensus tree showing all taxa
(MPT = 28; L = 308; Cl = 0.72; Rl = 0.79). Bravoceratops, Agujaceratops, Coahuilaceratops
removed from the character matrix Numbers on nodes indicate bootstrap values >50%;
nodes without values had <50% support. Character matrix altered from Sampson et al.

(2010) and Mallon et al. (2014).
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Figure 10

Stratigraphic positions of chasmosaurine taxa

Morphospecies of Chasmosaurus (A-D) and Pentaceratops (E-J) clades which do not overlap
stratigraphically . These are hypothesized to form two anagenetic lineages which resulted
from a cladogenetic branching event prior to the middle Campanian. A, "Chasmosaurus
russelli*, lower Dinosaur Park Fm, ~76.8 Ma. B, Chasmosaurus belli, middle Dinosaur Park
Fm, ~76.5 - 76.3 Ma. C, Vagaceratops irvinensis, upper Dinosaur Park Fm, ~76.1 Ma. D,
Kosmoceratops richardsoni, middle Kaiparowits Fm, ~76.0 - 75.9 Ma. E, Utahceratops gettyi,
middle Kaiparowits Fm, ~76.0 - 75.6 Ma. F, c.f. Pentaceratops sternbergii, unknown
occurrence within "Fruitland Formation" ~76.0 - 75.1 Ma. G, aff. Pentaceratops n. sp.,
uppermost Fossil Forest Mbr, Fruitland Fm, ~75.1 Ma. H, Navajoceratops sullivani, lowermost
Hunter Wash Mbr, Kirtland Fm, ~75.0 Ma. I, Terminocavus sealyi, middle Hunter Wash Mbr,
Kirtland Fm, ~74.7 Ma. F, Anchiceratops ornatus, Drumheller to Morrin Mbr, Horseshoe
Canyon Fm, ~71.7 - 70.7 Ma. Stratigraphic positions and recalibrated radiometric dates from
Supporting Information 1 and Fowler (Chapter 2). Timescale from Gradstein et al. (2012).
Specimens not to scale. Images adapted from Lehman (1998); Holmes et al., 2001; Sampson

et al. (2010); Maidment and Barrett (2011); and Longrich (2014).
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