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ABSTRACT
Sexual dimorphism in body size is often used as a correlate of social and reproductive
behavior in Australopithecus afarensis. In addition to a number of isolated specimens,
the sample for this species includes two small associated skeletons (A.L. 288-1 or
“Lucy” and A.L. 128/129) and a geologically contemporaneous death assemblage
of several larger individuals (A.L. 333). These have driven both perceptions and
quantitative analyses concluding that Au. afarensis was markedly dimorphic. The
Template Method enables simultaneous evaluation of multiple skeletal sites, thereby
greatly expanding sample size, and reveals that A. afarensis dimorphism was similar
to that of modern humans. A new very large partial skeleton (KSD-VP-1/1 or
“Kadanuumuu”) can now also be used, like Lucy, as a template specimen. In addition,
the recently developed Geometric Mean Method has been used to argue that
Au. afarensis was equally or even more dimorphic than gorillas. However, in its previ-
ous application Lucy and A.L. 128/129 accounted for 10 of 11 estimates of female size.
Here we directly compare the two methods and demonstrate that including multiple
measurements from the same partial skeleton that falls at the margin of the species
size range dramatically inflates dimorphism estimates. Prevention of the dominance
of a single specimen’s contribution to calculations of multiple dimorphism estimates
confirms that Au. afarensis was only moderately dimorphic.

Subjects Anthropology, Paleontology
Keywords Sexual selection, Reproductive behavior, Homin, Human evolution, Hominid,
Chimpanzee, Gorilla, Sexual dimorphism

INTRODUCTION
Sexual dimorphism varies substantially in primates whether in response to sexual or

ecological selection or a combination of both (Plavcan, 2012b). Gorillas and orangutans

are highly dimorphic in canine size, body mass, and skeletal size, largely reflecting intense

single male competition in both genera. In contrast, chimpanzees are moderately dimor-

phic with respect to mass and canine size and are essentially monomorphic in skeletal size.

The latter principally reflects multimale group composition with patrilineal territorial

defense and sperm competition (Morin, 1993; Reno et al., 2003). Modern humans show
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only moderate skeletal size dimorphism with low to moderate mass dimorphism (Reno

et al., 2003). Moreover, in Homo sapiens both sexes exhibit dimorphic epigamic displays

in facial hair, adipose distribution, and voice pitch (Lovejoy, 2009). Evaluating body mass

dimorphism in humans is complicated by sex differences in body composition related

to muscle and adipose mass (Plavcan, 2012b). Most striking, however, is the absence of

human canine dimorphism brought about by dramatic feminization of the male tooth

(Holloway, 1967; Washburn & Ciochon, 1974; Lovejoy, 2009; Suwa et al., 2009).

In recent years, dimorphism in early hominids has generated considerable discussion

(Plavcan, 2002; Reno et al., 2003; Gordon, Green & Richmond, 2008; Reno et al., 2010;

Plavcan, 2012b). It is now generally agreed that canine dimorphism is reduced in the

earliest known hominids such as Sahelanthropus and Ardipithecus compared to other

hominoids (Brunet et al., 2002; Suwa et al., 2009). On the basis of its relatively small canine,

the ARA-VP-6/500 (‘Ardi’) skeleton is almost certainly female (Suwa et al., 2009), yet

its postcranium suggests that the species exhibits fairly substantial body mass (50 kg)

(Lovejoy et al., 2009). In combination with other individual postcranial specimens from

Ardipithecus, it is likely that, as with chimpanzees and humans, skeletal size overlapped

substantially in the two sexes.

Australopithecus afarensis, in which canine dimorphism is further reduced from its

condition in Ardipithecus, is now represented by an extensive assemblage of specimens

(Kimbel & Delezene, 2009). Initial discoveries of Au. afarensis included two associated

partial skeletons each notable for its unusually small size. The first is A.L. 128-1 and A.L.

129-1 (A.L. 128/129). The second, A.L. 288-1 (“Lucy”), is more complete (Johanson &

Taieb, 1976). In addition, the A.L. 333 site contains at least 9 adult individuals considered to

be geologically contemporaneous (White & Johanson, 1989; Behrensmeyer, 2008). Pairwise

comparisons of its largest individuals (e.g., A.L. 333-3) with Lucy have led to the common

impression that size dimorphism was pronounced in Au. afarensis (Zihlman, Tobias &

Coppens, 1976; McHenry, 1991; Richmond & Jungers, 1995). However, such comparisons

entirely ignore specimens of intermediate size and the fact that Lucy and A.L. 333 could

differ in age by tens of thousands of years (Johanson, Taieb & Coppens, 1982; Kimbel &

Delezene, 2009), such that size variation may well reflect a variety of factors other than

sexual dimorphism.

Over the past two decades, efforts have been aimed towards improving estimates

of sexual dimorphism in fossils. Resampling procedures have been used to compare

hominids with extant hominoids in order to better account for error in very small samples

(Richmond & Jungers, 1995; Lockwood et al., 1996; Lee, 2001). While these procedures

initially suggested that Au. afarensis was highly dimorphic, such inferences were limited

to Lucy and larger specimens such as the A.L. 333-3 femur or the MAK-VP-1/3 humerus

which may not represent ‘average’ females or males (Richmond & Jungers, 1995; Lockwood

et al., 1996).

To address the problem of small sample size, techniques have been developed that

simultaneously measure variation using multiple anatomical loci (Reno et al., 2003;

Gordon, Green & Richmond, 2008). The Template Method (TM) can be used to calculate
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simple size ratios for multiple specimens that share an anatomical site with a more

complete “template specimen” (e.g., Lucy) permitting the inclusion of many specimens

not previously used in analyses of Au. afarensis dimorphism (Reno et al., 2003; Reno et al.,

2010). When applied to this species the degree of dimorphism is similar to that of humans

and intermediate between those of chimpanzees and gorillas.

Recently, Gordon and colleagues introduced the Geometric Mean Method (GMM)

which cleverly takes advantage of the mathematical principle that the ratios of geometric

means calculated across multiple variables are equal to the geometric mean of the ratios

calculated for each individual variable (Gordon, Green & Richmond, 2008). Similar to

the TM, the GMM enables estimation of dimorphism from a large multivariate sample.

Surprisingly, when applied to Au. afarensis, it indicates that dimorphism was potentially

greater than even that in gorillas and orangutans.

Gordon et al. proposed that this difference was attributable to error inherent in the

TM resulting from: (1) biological error generated by using a template specimen to

calculate size ratios; (2) allometric scaling relationships among variables, (particularly

when the template specimen is a small individual); and (3) multiple representation of

individuals from A.L. 333 (Gordon, Green & Richmond, 2008; Gordon, 2013). However,

each of these concerns has been previously addressed. First, the TM has been evaluated

through bootstrap simulations of chimpanzees, humans, and gorillas where the template

individual is selected at random to account for intraspecific biological variation (Reno et

al., 2003). This demonstrated that template size has no significant effect on the outcome

of the procedure (Reno et al., 2010). Second, the effects of multiple representation of

individuals from A.L. 333 was modeled by selecting randomly generated subsamples of

reference hominoids to model the site’s minimum number of individuals (MNI) (Reno

et al., 2003; Reno et al., 2005; Reno et al., 2010). Such modeling again demonstrated no

significant effect on dimorphism estimates.

These findings suggest that the differences between the two methods must lie elsewhere.

One possibility is differences in sample composition: forty-one specimens were used in

the TM analysis whereas only 17 were used in the GMM analysis. A second potential

factor is that the GMM allows more complete individuals such as Lucy and A.L. 128/129

to contribute multiple times to calculations of dimorphism. In addition, since these

analyses were published, a new partial skeleton attributed to Au. afarensis, KSD-VP-1/1

or “Kadanuumuu,” has been described (Haile-Selassie et al., 2010). Despite the lack of

cranial and dental elements for this specimen, the skeleton overlaps sufficiently with Lucy

to warrant taxonomic assignment to Au. afarensis (Haile-Selassie et al., 2010). Based on a

preliminary analysis, its estimated femoral head diameter (FHD) suggests that it is one of

the largest specimens now known from Au. afarensis. Therefore, Kadanuumuu provides

an opportunity to test the impact of a large bodied template specimen on estimates of

Au. afarensis dimorphism, and to further test the contention that the TM is vulnerable to

scaling effects. We also provide a direct comparison of the TM and GMM methods using

identical samples that offers new insight into the methodological and sampling factors that

underlie their divergent results.
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MATERIALS AND METHODS
Au. afarensis sample
Our current sample now includes 43 postcranial fossils spanning 16 different Afar localities

(Table 1) (Lovejoy, Johanson & Coppens, 1982b; Lovejoy, Johanson & Coppens, 1982a;

Harmon, 2006; Haile-Selassie et al., 2010; Plavcan, 2012b; Ward et al., 2012). A.L. 333

provides 26 skeletal elements sampled from approximately 9 individuals suggested by

overlap of preserved dentitions (White & Johanson, 1989; Behrensmeyer, 2008) [but see

(Plavcan et al., 2005) and below]. Fifteen remaining localities (i.e., the non-333 sample)

span approximately 600,000 years (3.0–3.6 Ma) and provide 16 different individuals (the

two specimens from A.L. 137 are both right humeri) (Johanson, Taieb & Coppens, 1982;

Lovejoy, Johanson & Coppens, 1982b; Haile-Selassie et al., 2010; Ward et al., 2012). With the

addition of Kadanuumuu, Lucy now enables the inclusion of 42 specimens in template

calculations across 14 skeletal sites that can be used for estimating dimorphism in three

overlapping samples: (1) the full Combined Afar (CA) that maximizes sample size, (2) A.L.

333 that avoids the influence of geographic and temporal size variation, and (3) non-333

which assures the sampling of only unique individuals. The A.L. 333 sample, however,

is unchanged from our previous analysis so is not reanalyzed here (Reno et al., 2010).

The Kadanuumuu template sample includes only 7 A.L. 333 and 7 non-333 specimens

measured across 5 skeletal sites. Separately these samples are too small to produce reliable

dimorphism estimates, so only the CA analysis is explored for Kadanuumuu.

Dimorphism estimation
Template method
While large samples exist of Au. afarensis postcranial fossils, relatively few represent the

same anatomical loci. As such, much of the variation in the sample reflects size differences

between anatomical parts (Fig. 1A). Fortunately, the existence of a relatively complete

skeleton can serve as a template to account for the differences in size between these

sites. To apply the template method, the metric from each fossil is converted to a simple

size ratio by dividing each by the homologous metric from a template specimen (Lucy

or Kadanuumuu) (Fig. 1B). This calculation preserves the relative dispersion of the

individuals within each variable and enables these dimensionless size ratios to be compared

across variables. To standardize size ratios and to facilitate inspection of the data, we

multiplied each by a reference metric commonly used in size estimation: femoral head

diameter (FHD) for the Lucy template and distal tibia breadth (DSTB) for Kadanuumuu

(Table 1). This step has no effect on the estimate of dimorphism because it is simply

multiplying each ratio by a constant leaving the dispersion of the sample unchanged

(Fig. 1C). The sample is then used to compute the Coefficient of Variation (CV) and

Binomial Dimorphism Index (BDI) as in previous analyses (Lovejoy et al., 1989; Reno et al.,

2003) with each specimen providing an equal contribution to the dimorphism estimate.

Because the template specimen serves as the denominator for each template ratio, it

produces a value of “1” for its own corresponding metric in each variable (gray diamonds

in Figs. 1B and 1C). As such, it makes no difference which variable is chosen to represent
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Table 1 Au. afarensis sample used in the template method simulations.

Metrics Specimens A.L. 288-1 template
estimated FHD with

KSD-VP-1/1 template
estimated DSTB

CLAV: Max. mid-shaft diameter of the clavicle A.L. 333x-6/9 18.7

HHD: Max. humeral head diameter A.L. 333-107a 39.4

A.L. 137-48A 32.6

A.L. 137-50 38.3

A.L. 223-23 35.3

A.L. 333-29 33.2

A.L. 333w-31 34.3

HOCB: ML width of humerus measured
tangent to the superior margin of the
olecranon fossa

MAK-V/P-1/3 37.8

A.L. 137-48A 20.9
HARB: ML breadth of the distal articular surface

A.L. 322-1 19.7

A.L. 322-1 32.2

A.L. 333w-22 39.5CAPD: Max. diameter of capitulum

A.L. 444-14 37.2

A.L. 333x-14bc 44.3
RHD: Max. diameter of the radial head

A.L. 333x-15bc 44.5

A.L. 333x-5 37.1

A.L. 333w-36 29.8
ULB: ML width of ulna immediately distal
to radial facet

A.L. 438-1a 40.9

A.L. 152-2 33.1

A.L. 288-1ap 28.6

A.L. 333-3 40.9
FHD: Max. femoral head diameter

A.L. 827 38.1

A.L. 333-117 38.7

A.L. 333-123 33.0
FNKH: Femoral neck height normal to long
axis at midpoint

A.L. 333-142d 30.1

A.L. 211-1 36.4

A.L. 333-95bc 35.3
TRCD: Max. femoral shaft diameter
immediately below lesser trochanter

MAK-V/P-1/1 34.4

A.L. 333-4 35.2

A.L. 333w-56 33.6
GSTB: AP femoral width immediately above
gastrocnemius tubercle

A.L. 333-140d 30.2

A.L. 129-1a 19.0

A.L. 333-4 23.4FLCL: AP length of the lateral femoral condyle

A.L. 333w-56 23.6

A.L. 129-1b 27.9

A.L. 333x-26 38.5
CNDC: ML distance between centers of
medial and lateral tibial condyles

A.L. 333-42 36.7

PXTB: Max. ML proximal tibial breadth A.L. 330-6 37.4

A.L. 330-6 22.2
TMXT: Max. AP breadth at tibial tuberosity

A.L. 333x-26 22.5
(continued on next page)
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Table 1 (continued)
Metrics Specimens A.L. 288-1 template

estimated FHD with
KSD-VP-1/1 template
estimated DSTB

A.L. 288-1 17.2

A.L. 333-6 37.2 22.4

A.L. 333-7 42.9 25.8

A.L. 333-96 38.4 23.1

A.L. 545-3 31.9 19.2

DSTB: AP tibial distal articular breadth

KSD-VP-1/1 44.6 26.8

A.L. 333-9A 42.8

A.L. 333-9B 38.9

A.L. 333w-37 37.8
FIBD: Max. diameter of distal fibula

A.L. 333-85 40.6

TAL: Max. AP length of talus A.L. 333-147 36.0

Notes.
a Because of slight eccentricity in this specimen the average of the ML and AP diameters was used instead.
b Possible antimeres.
c Inclusion of these large bodied subadult specimens increases Au. afarensis dimorphism value.
d These small bodied specimens lacking epiphyseal fusion are larger than the smallest adult A.L. 333 specimen. Exclusion or subsequent growth would reduce Au. afarensis

value.

the template specimen. However, to ensure equal representation of each of the other

individuals, we used only one metric in cases where multiple variables are measurable.

We followed the convention of opting first for an articular dimension, if available, followed

by a diaphyseal shaft diameter (i.e., for CA Lucy template sample: A.L. 128/129, distance

between centers of tibial condyles, CNDC; A.L. 322-1, humeral capitulum diameter,

CAPD; A.L. 333-3, FHD; MAK-V/P-1/1, maximum diameter below the lesser trochanter,

TRCD). This was based on the tendency for such variables to have a greater association

with size (Gordon, Green & Richmond, 2008). This selection convention had little effect on

dimorphism estimates. The range of CVs from each of the possible combinations of the

available metrics from these four specimens in the CA sample was 11.36–12.16 with a mean

of 11.72. This compares to the CV of 11.75 for the sample used in this analysis. Simulations

for some of the samples using different metrics show no meaningful effect on the results.

Geometric Mean Method
The Geometric Mean Ratio (GMR) is calculated as follows: (1) A mean value is calculated

for each metric and sex is assigned to each individual (values above the mean are presumed

to be male; those below the mean are presumed to be female). (2) Dimorphism ratios are

calculated for each variable using the geometric mean of presumed males divided by the

geometric mean of presumed females. (3) The GMR is calculated as the geometric mean

of the dimorphism ratios of all of the separate metric ratios (Gordon, Green & Richmond,

2008). While not relying on a template, the GMM does require at least two specimens

to represent each anatomical site. In addition, in its previous application the GMM

includes all available metrics of more complete specimens, such as Lucy, Kadanuumuu

and the others mentioned above, in the calculation of each skeletal site (Gordon, Green
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Figure 1 Demonstration of the calculation for the template method. (A) Many Au. afarensis specimens
can be used to judge the species’ skeletal size distribution, but only a few represent the same skeletal
site (horizontal axis) and therefore cannot be simply compared with one another. However, many sites
are also found in the Lucy skeleton (diamonds). (B) The relative size of each non-Lucy specimen can
therefore be calculated as a simple ratio (vertical axis) of each specimen to the same site as preserved in
Lucy. These (dimensionless) ratios can then be used to compute a CV or BDI for the species. Note that
the template ratios all equal 1 for the template specimen, so the choice of metric used for this individual
has no effect on the dimorphism calculation. (C) To convert ratios to “real dimensions” each can be
“normalized” using Lucy’s FHD. This has no effect on the sample’s dispersion (i.e., compare B to C), and
therefore has no impact on the value of the CV and BDI when Lucy (or other specimen) is used as a
“template.” See Table 1 for variable definitions.

& Richmond, 2008). We have applied the GMM to both the full CA Lucy (Table S1) and

Kadanuumuu (Table S2) template samples.

Sampling and bootstrapping procedures
As the Au. afarensis BDI, CV and GMR statistics are computed from a combination of

different variables which cannot be assumed to have the same variance, they cannot simply

be compared to similar statistics computed using a more standard metric (e.g., actual

FHD). Therefore, we conducted simulations of randomly generated samples with identical
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Figure 2 Sampling procedure used to simulate the Template and Geometric Mean Methods in extant
humans, chimpanzees and gorillas.

anatomical composition from species with known sexual dimorphism (Fig. 2 and Table

S3). The chimpanzee, human, and gorilla samples used here are similar to those used

previously (Reno et al., 2003; Reno et al., 2010) with the addition of three new metrics

to maximize use of the Kadanuumuu template (Table 1). These three hominoids are

appropriate reference taxa with which to judge Au. afarensis dimorphism, because they

represent three of the four extant species most closely related to early hominids. In

addition, with the exception of some ceropithecoids (i.e., Mandrillus (Setchell et al.,

2001)) and possibly the extinct Miocene genus Lufengpithecus as indicated by postcanine

dentition (Kelley & Xu, 1991) they essentially encompass the range of primate skeletal

dimorphism (Smith & Jungers, 1997). Therefore, to determine where Au. afarensis falls

within the spectrum of African hominoid dimorphism, we tested the hypotheses that its

dimorphism is above minimally dimorphic chimpanzees, below extremely dimorphic

gorillas, or compatible with moderately dimorphic humans.

For the TM, we used a sample of metrics that mirror the anatomical composition

of each respective Au. afarensis assemblage (Fig. 2). A template specimen was chosen

randomly for each individual sample. The ratio between each metric and its homologue

in the template was computed for each specimen. These rescaled metrics were used to

calculate the BDI and CV. This sampling procedure was repeated 1,000 times for each

species as in previous analyses (Lockwood et al., 1996; Reno et al., 2003; Harmon, 2006; Reno

et al., 2010). These simulations demonstrate that the TM accurately reflects the relative
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dimorphism of chimpanzees, humans and gorillas, suggesting that biological error from

the template specimen is small relative to variation in skeletal dimorphism (Reno et al.,

2003). Similarly, for the GMM, random samples with the same anatomical composition as

the fossil assemblage were selected for computation of the GMR. As in the previous analysis

of Gordon, Green & Richmond (2008) the metrics corresponding to those more complete

specimens such as Lucy, A.L. 128/129, and Kadanuumuu (and a few others) were each

sampled from single individuals.

Specimens sourced from non-333 localities obviously represent separate individuals, so

each metric (TM) or individual (GMM) is randomly sampled from the full comparative

sample with replacement. However, specimens from A.L. 333 may represent co-mingled

individuals. Based on dentitions, at least 9 individuals are preserved at this site. Therefore,

to model the A.L. 333 depositional event, a subsample of 9 individuals was randomly

selected without replacement for each iteration (Fig. 2). These served as the source of met-

rics with replacement to represent the A.L. 333 assemblage. This often produces samples

based on fewer than the full 9 individuals as may have happened in the accumulation of

the A.L. 333 postcranial assemblage. This approach most accurately recreates the known

composition and current understanding of the deposition of A.L. 333 assemblage.

Alternatively, the MNI from A.L. 333 is strictly only three based on the occurrence of

three left distal fibulas. However, our original sample also includes a decidedly smaller

individual (A.L. 333w-36 ulna) and at least one and possibly two large subadult individuals

(A.L. 333x-14 and A.L. 333x-15 unfused radial heads and A.L. 333-95 proximal femur

(Reno et al., 2003)). We have previously conducted simulations sampling as few as 5

individuals representing this remotely possible sampling at A.L. 333. These smaller tests

did not substantively alter our results (Reno et al., 2005). Our current sample now includes

at least one additional smaller subadult specimen (A.L 333-140 and A.L. 333-142 distal

and proximal femoral fragments) (Ward et al., 2012). This raises the MNI to 6. However, as

an MNI of 5 was also used in the previous analysis by Gordon, Green & Richmond (2008),

we explored how such a restriction would impact some of our simulations. Randomly

sampling from as few as 5 individuals frequently generates samples composed of only

a single sex, which are obviously not appropriate for evaluating sexual dimorphism.

Therefore, we required that each subsample of 5 individual include at least one member

of each sex. All simulations were programmed in Fortran.

RESULTS
Kadanuumuu does not alter the Au. afarensis dimorphism
prediction
The inclusion of Kadanuumuu dramatically increases the upper size boundary of the

non-333 assemblage, which now surpasses the entire range of A.L. 333 (Fig. 3). For the full

CA sample the value of Au. afarensis dimorphism falls well within the human distribution

of simulated values and only minimally overlaps with chimpanzees or gorillas (Fig. 4A;

for BDI results see Fig. S1). In particular, the A. afarensis CA sample is significantly lower

(one-tailed) than that of gorillas (Table 2). Results are similar when the A.L. 333 fossils are
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Figure 3 Size distribution of fossils using Lucy as a template. Each specimen’s assigned sex and the
number of times it is included in the respective GMM analyses are indicated. (A) The addition of
Kadanuumuu elevates the non-333 range to greater than that of A.L. 333. Note that Lucy and A.L.
128/129 account for 10 of 11 female assignments in the Gordon, Green & Richmond (2008) analysis. (B) In
the full, unmodified CA sample these two specimens account for 18 of 30 female assignments resulting
in minimal overlap between sexes. (C) When Lucy values are increased to 130% her original size or
(D) when Lucy and A.L. 128/129 are allowed to contribute only once to the sample, the sex assignments
overlap substantially.

modeled as only representing 5 individuals (Table S4). The smaller non-333 sample also

shows a similar pattern (Fig. 4B), although it just fails to reach statistical significance at

p = 0.05 level for both chimpanzee (low dimorphism) and gorillas (high dimorphism)

(Table 2). These data confirm previous analyses using the TM that indicate that

Au. afarensis skeletal dimorphism was significantly below that of gorillas and unlikely

to be as low as chimpanzees. The possibility of dimorphism similar to humans could not be

rejected.

Template size does not affect dimorphism estimates
Our previous experiments have demonstrated that there is no association between

template size and projected dimorphism in chimpanzees, humans and gorillas and there

are therefore no significant allometric effects inherent in template size (Reno et al., 2010).

The large size of Kadanuumuu can now be used to test the hypothesis that the TM when

applied to Au. afarensis is also free of allometric effects. The template sample available for

Kadanuumuu is smaller than that for Lucy. However, as these two specimens and A.L.

128/129 are all included in both samples, the same total size range is maintained while

many intermediate specimens are lost (Fig. 5).

When compared to the simulations, the smaller Kadanuumuu template sample does

predict greater dimorphism than does the full CA Lucy template sample (Fig. 4C).

However, is this effect the product of the size of Kadanuumuu or the resulting reduction in

sample size? To examine this question we restricted the Lucy template sample to the same

specimens used in the Kadanuumuu analysis (except for the A.L. 333-6/9 clavicle which
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Figure 4 Frequency histograms of the simulations modeling the Template Method using extant chim-
panzee, human and gorilla reference samples (1,000 iterations each). The vertical line and number
indicate the dimorphism value (CV) for the respective Au. afarensis sample using either Lucy (A, B, and
D) or Kadanuumuu (C) as a template. In all cases the Au. afarensis value is compatible with human
levels of dimorphism. However, as sample sizes decrease (B–D), the loss of intermediate specimens
in the Au. afarensis sample increases the value of hominid dimorphism and/or the range of generated
dimorphism values for each of the reference taxa. In these cases, the Au. afarensis values fall in the overlap
between humans and gorillas demonstrating the importance of maximizing sample size when estimating
dimorphism.

does not overlap with Lucy). This produced a sample of 13 total specimens, whose CV and

BDI are also greater than the full 42 specimen sample (Fig. 4; Table 2). The dimorphism

of the smaller Lucy sample also fell in the overlap between humans and gorillas

(Fig. 4D). In fact, it predicted a slightly higher level of dimorphism than did the

Kadanuumuu template. The TM method thus performed essentially the same with

both very small and very large templates, illustrating again that template size has no

effect on sample variation and inferred dimorphism. However, reduction in sample size

and particularly the loss of intermediate sized specimens does greatly impact sample

dimorphism.

The use of template ratios has no significant effect on dimorphism
estimates
The strikingly different results obtained with the TM versus those generated by the GMM

is puzzling (Reno et al., 2003; Gordon, Green & Richmond, 2008; Reno et al., 2010). To

search for its underlying cause, we performed a direct comparison of the GMM on our

Au. afarensis samples. As Table 3 shows, GMM results are identical whether raw metrics
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Table 2 Descriptive statistics and exact counts from Template and Geometric Mean Method simulations.

Simulation Dimorphism
value

Chimp Human Gorilla

Mean (sd) < > Mean (sd) < > Mean (sd) < >

Lucy template—CA (N = 42)

BDI 1.207 1.162 (0.025) 959 41 1.205 (0.032) 539 461 1.290 (0.037) 11 989

CV 11.75 9.53 (1.33) 922 78 11.69 (1.58) 537 463 15.40 (1.52) 8 992

Lucy template—non-333 (N = 16)

BDI 1.214 1.164 (0.035) 920 80 1.197 (0.041) 690 310 1.287 (0.051) 79 921

CV 12.47 9.79 (1.91) 916 84 11.51 (2.14) 701 299 15.77 (2.32) 73 927

Kadanuumuu template—CA (N = 14)

BDI 1.234 1.152 (0.39) 970 30 1.206 (0.053) 723 277 1.265 (0.051) 281 719

CV 13.20 9.14 (2.07) 948 52 12.25 (2.83) 653 347 14.85 (2.43) 245 755

Lucy template—CA (N = 13)

BDI 1.255 1.157 (0.039) 989 11 1.201 (0.050) 851 149 1.266 (0.057) 426 574

CV 14.44 9.47 (2.13) 986 14 11.84 (2.53) 845 155 14.97 (2.63) 426 574

Geometric Mean Method

Full Lucy sample 1.299 1.118 (0.018) 1,000 0 1.157 (0.025) 1,000 0 1.246 (0.040) 900 100

130% Lucy 1.179 1.118 (0.018) 999 1 1.157 (0.025) 809 191 1.246 (0.040) 33 967

Single Lucy & 128/129 1.176 1.117 (0.019) 998 2 1.156 (0.025) 781 219 1.241 (0.039) 35 965

KSD sample 1.382 1.115 (0.028) 1,000 0 1.158 (0.040) 1000 0 1.247 (0.056) 988 12

Notes.
<, number of iterations that fell below hominid value; >, number of iterations that fell above hominid value.
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Figure 5 Estimated distal tibial articular breadth using Kadanuumuu as a template and sex assign-
ment from the GMM. This smaller sample includes the full Au. afarensis size range from Lucy to
Kadanuumuu but excludes numerous intermediate sized specimens available when Lucy is used as
template. Note that Kadanuumuu, Lucy and A.L. 128/129 account for 10 of 21 measurements included
in the calculation of the GMR.

Table 3 Computation of the Geometric Mean Ratio (GMR) for two variables. GMRs are identical
whether raw metrics or template ratios are used.

Specimen HOCB HOCB ratio Specimen FNKH FNKH
ratio

A.L. 322-1 31.7 0.975 A.L. 288-1 21.8 1.000

A.L. 288-1 32.5 1.000 A.L. 333-142 22.9 1.050

A.L. 137-48A 37.1 1.142 MAK-VP-1/1 23.8 1.092

A.L. 333-29 37.7 1.160 A.L. 333-123 25.1 1.151

A.L. 333w-31 39.0 1.200 A.L. 333-95 26.0 1.193

A.L. 223-23 40.1 1.234 A.L. 333-3 29.1 1.335

MAK-VP-1/3 43.0 1.323 A.L. 333-117 29.5 1.353

A.L. 137-50 43.5 1.338

Mean 38.075 1.172 25.457 1.168

Female geo mean 34.647 1.066 23.369 1.071

Male geo mean 41.356 1.272 28.155 1.291

GMR 1.194 1.194 1.205 1.205

Notes.
HOCB, ML width of humerus measured tangent to the superior margin of the olecranon fossa; FNKH, Femoral neck
height normal to long axis at midpoint.
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or template ratios are used for the calculation, which, as we have previously demonstrated

has no effect on the TM as well (Reno et al., 2005; Reno et al., 2010). This can also be

confirmed through inspection of Fig. 1. While the GMM is normally applied to the raw

metrics depicted in Fig. 1A, the generation of the template ratios preserves the relative size

between specimens within variables. Thus, the GMR computed on the size ratios or even

the estimated FHD will be exactly the same. Therefore, the use of a template specimen

does not introduce any directional scaling effects between variables, and the TM and GMM

should theoretically perform similarly given identical samples.

The Geometric Mean Method still predicts great dimorphism in an
expanded Au. afarensis sample
If not template ratios or scaling effects, then perhaps differences in sample composition

underlie the different results from the two methods. Gordon, Green & Richmond (2008)

used a sample of 17 fossils. As the MNI at A.L. 333 was nine, this must represent

approximately 14 unique individuals. Our sample included over 40 fossil specimens,

likely representing 25 separate individuals. We also used different methods to account for

A.L. 333’s taphonomic issues. Gordon, Green & Richmond (2008) repeatedly randomly

assigned the 12 metrics representing A.L. 333 specimens to 5 composite individuals

for each iteration in their simulations. The total fossil assemblage was then modeled as

representing 10 individuals (5 for the non-A.L. 333 localities and 5 for the composite A.L.

333 individuals).

To directly compare the two methods, we applied the GMM to the same sample we used

in the TM above (Table S1). We accounted for A.L. 333 by drawing its contribution to

the sample from either 9 randomly chosen individuals or from 5 (mixed-sex—see above)

individuals (Reno et al., 2010). Remarkably, the GMR was nearly identical in both our

and (Gordon, Green & Richmond, 2008)’s samples (1.299 versus 1.291). This value fell

within the upper range of the gorilla simulation (top 10%) and did not overlap with those

of either chimpanzees or humans (Fig. 6A, Table 2). Thus, neither the different sample

compositions nor modeling methods can account for our dramatically different results.

Multiple inclusion of more complete specimens augments
dimorphism in the GMM
A final difference between TM and the GMM is that more complete specimens, such as

Lucy, A.L. 128/129, and Kadanuumuu, are permitted to contribute multiple metrics in the

GMM, but not in the TM. In the Gordon, Green & Richmond (2008) sample, Lucy and A.L.

128/129 contributed 10 of 26 metrics from the 17 specimens (Fig. 3A). What was the effect

of this repeated contribution by a few specimens which lie at the margin of the size range?

One way to explore this is to examine the effect of Lucy’s small size directly. The

Kadanuumuu DSTB is 156% that of Lucy, and lies at the upper limit of the size range

of A. afarensis. We systematically increased all of Lucy’s metrics in 10% increments and

recomputed the GMR using Gordon, Green & Richmond’s (2008) methods. Increasing the

size of Lucy to 130% of its original size (approximately half way to Kadanuumuu) reduced

the GMR for the entire sample to 1.179 from the original value of 1.299. This placed Au.
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Figure 6 Frequency histograms of the simulations modeling the Geometric Mean Method using
extant chimpanzee, human and gorilla reference samples (1,000 iterations each). The vertical line and
number indicate the dimorphism value (GMR) for the respective Au. afarensis sample and the gray line
in (A) represents GMR if Lucy is increased to 130% original size. In (B) Lucy and A.L. 128/129 contribute
only femoral head diameter or proximal tibial breadth respectively. When small and more complete
specimens such as Lucy and A.L. 128/129 contribute multiple metrics, predicted dimorphism values fall
in the upper range of the gorilla distribution (A and C). However, when Lucy is scaled to an intermediate
size or Lucy and A.L. 128/129 are restricted to contributing a single metric, the Au. afarensis falls in the
human distribution and significantly outside those of the apes (A and B).
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afarensis within the human range and significantly below that of gorillas (Fig. 6A, Table 2).

At 160% original size, the sample GMR returned to only 1.242.

For additional testing we also modified the size of the small ulna, A.L. 333w-36, to

determine how this particular specimen impacts dimorphism. As it is slightly larger

than Lucy we modified its size in 10% increments from 90% to 160% original size. The

largest changes were a reduction to 1.294 at 110% original size and an increase to 1.307 for

160% original size. Thus, the random co-occurrence of Lucy’s small size and substantial

preservation has a disproportionate effect on the calculation of the GMR and inferred

value of Au. afarensis dimorphism.

To explore this effect on calculation of the GMR by another route, we did not change

Lucy’s size but restricted her contribution to only a single metric. This required the

elimination of three variables, humeral head diameter (HHD), talus length (TAL) and

radial head diameter (RHD), because absent Lucy there were no other pairings for these

skeletal sites. Allowing Lucy to contribute only a single metric reduces the GMR to a range

of 1.217 (distance between tibial condyle centers, CNDC) to 1.247 (maximum diameter

of distal fibula, FIBD) depending on the metric chosen to represent Lucy. However, the

similarly diminutive A.L. 128/129 also contributes 4 metrics to the sample. We thus

calculated all possible GMRs where both Lucy and A.L. 128/129 each contributed only

a single metric. This still allowed the GMR to be computed on 10 or 11 variables containing

at least 37 fossils. Such reduction resulted in a GMR ranging from 1.154 (both specimens

contributing femoral shaft diameter at gastrocnemius insertion) to 1.216 (with Lucy

contributing FIBD and A.L. 128/129 contributing CNDC) with an average of 1.179. To

determine the significance of this change, we simulated the effect of including only Lucy’s

FHD and A.L. 128/129’s PXTB. In this case, the calculated GMR (1.176) fell within the

human distribution (Fig. 6B, Table 2) and was significantly different from gorillas and

chimpanzees (or nearly so when restricting the A.L. 333 MNI to 5, Table S4); a result that is

very similar to that obtained using the TM.

The effect of multiple inclusion is further demonstrated by applying the GMM to

the smaller Kadanuumuu template sample where A.L. 128/129, Lucy and Kadanuumuu

account for 10 of the 21 metrics. This resulted in an estimated GMR (1.383) that falls at

the upper margin (top 2%) of the gorilla distribution and suggests that Au. afarensis would

be significantly more dimorphic than one of the most dimorphic living primates (Fig. 6C,

Table 2). This is unlikely as the ratio between even the most extreme known Au. afarensis

specimens (i.e., the absolutely largest and smallest specimens) does not surpass those of

gorillas (see below). Thus, the repeated contribution of a few extreme sized individuals has

a dramatic impact on the perceived variation of the sample.

DISCUSSION
Similarities in the template and Geometric Mean Methods
The primary strength of both the TM and GMR is their greatly expanded sample size.

When sex is unknown, a large sample is the only means to ensure that both sexes are

adequately represented and that a full distribution of the species is appropriately included
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(Simpson, Roe & Lewontin, 1960; Koscinski & Pietraszewski, 2004). The importance of

maximizing sample size is demonstrated by the results of this analysis. For the largest

CA sample using Lucy as a template, Au. afarensis is significantly different from both

chimpanzees (using the BDI) and gorillas and is indistinguishable from human levels of

dimorphism (Table 2). Similar results were obtained with the smaller non-333 sample

and previously with the A.L. 333 sample (Reno et al., 2010). The failure of these smaller

samples to obtain significance (although still with a low probability of compatibility)

from chimpanzees and gorillas at either extreme of the dimorphism scale results from

the increased variance for each species in simulated distributions (Table 2). The cause of

such variability is demonstrated by the Kadanuumuu template analysis, as smaller sample

sizes may fail to be representative of the species’ distributions (Fig. 5). Gordon, Green &

Richmond (2008) used a smaller sample because they focused their analysis on variables

shown to scale isometrically with body mass across primates. This was motivated by the

fact that mass dimorphism has played a prominent role in analyses of primate ecology,

reproductive behavior, and sexual selection. However, mass and skeletal dimorphism do

not have the same relationships in humans and apes, making the task of inferring mass

dimorphism from skeletal dimorphism difficult or impossible for early hominids (Reno

et al., 2003; Gordon, Green & Richmond, 2008; Plavcan, 2012b). We have avoided this

conundrum by simply focusing on skeletal dimorphism, an important indicator of total

size and sex differences in growth, which are two central factors in primate reproductive

biology (Hamada & Udono, 2002; Reno et al., 2003).

A resolution of the contradiction in results obtained by the
template and Geometric Mean Methods
As demonstrated here, the discrepancy between results generated by the TM and GMM

stems from the fact that more complete specimens such as Lucy, A.L. 128/129, and

Kadanuumuu that sample the margins of the size range contribute multiple metrics

to the calculation of the GMR. In the original application of the GMM, the metrics

contributed by Lucy and A.L. 128/128 accounted for 10 of 11 metrics that fell below the

means of each of the respective variables in the sample (Gordon, Green & Richmond,

2008). Gordon, Green & Richmond (2008) accounted for this by assigning the smallest

two individuals from the 10 (one individual for each of the 5 separate localities and 5

for A.L. 333) resampled humans or apes to represent the multiple metrics derived from

Lucy or A.L. 128/129. This did impact the generated dimorphism values from the extant

hominoids, but not sufficiently to match the dimorphism observed via the TM. This may

be because constraining the two smallest individuals of 10 sampled hominoids does not

adequately account for the fact that not only are Lucy and A.L. 128/129 the smallest adult

postcranial Au. afarensis specimens known from among the approximate 25 individuals in

our postcranial samples, but Lucy is also one of the smallest two or three specimens within

a larger pool of mandibular and dental dimensions (Lockwood, Kimbel & Johanson, 2000;

Haile-Selassie & Melillo, 2014).

The larger sample used here permitted the direct exploration of the effect that multiple

representation of these small individuals had on inferring dimorphism. Lucy and A.L.
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Table 4 Maximum/minimum ratios femoral head diameter (FHD) and distal tibial breadth (DSTB)
in the extant hominoid and Au. afarensis samples.

Species FHD DSTB

Gorilla 1.559 1.741

Human 1.431 1.697

Chimpanzee 1.287 1.419

A.L. 333-Lucy 1.430 –

Kadanuumuu-Lucy – 1.558

128/129 still account for 18 of 30 metrics assigned female. This produces a situation similar

to earlier analyses that were driven by pairwise comparisons between Lucy and a few larger

specimens. As such, Lucy and A.L. 128/129 still dominate the contributions of inferred

females in the individual dimorphism ratios. This results in little overlap between the

inferred sexes in the calculation of the GMR (Fig. 3B). Limiting their contributions to

single metrics or adjusting the size of Lucy brought the GMR well within the human range

and significantly outside those of gorillas and chimpanzees. This is because there is greater

overlap between the inferred sexes of the individual fossils (Figs. 3C and 3D).

Lucy and the typical Au. afarensis female
These differences in the distributions of inferred sexes raise the question of which

dimorphism pattern best characterizes Au. afarensis? A number of lines of evidence

support a more human-like pattern with substantial overlap between the sexes. The

first is the agreement between the TM and the GMM when all specimens are allowed

to contribute only once to the dimorphism estimate with modern human levels of

dimorphism. In these cases, A.L. 128/129 and Lucy are weighted equally to all other

specimens and do not overly influence female size.

A second is that many of the size ratios between extreme specimens such as Lucy,

A.L. 128/129, Kadanuumuu, and A.L. 333-3 can be accommodated within human

distributions. When compared to sample ranges, the difference between Lucy and A.L.

333-3 FHD (1.43) is matched or surpassed in our samples of 50 humans or gorillas

(Table 4). In addition, the difference in DSTB of Lucy and Kadanuumuu (1.56) is

also found within the range of the human and gorilla comparative samples (Table 4).

Furthermore, all maximum size differences between Au. afarensis specimens can be

accommodated within the ranges of each gorilla variable. This suggests that Au. afarensis

is not more dimorphic than gorillas, and results indicating this emerge from the over

emphasis of unusually complete small individuals.

Lastly, the three most closely related living taxa to Au. afarensis, humans, chimpanzees,

and bonobos, all show substantial overlap between the sexes. There was also likely overlap

between the sexes in Ardipithecus and potentially South African gracile hominids Au.

africanus and Au. sediba (Harmon, 2009; Lovejoy et al., 2009; Berger et al., 2010). While

early Homo displays substantial morphological diversity, there is little systematic evidence

to infer strong dimorphism in these taxa (Ruff, 2002; Plavcan, 2012a).
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Appreciable overlap between the sexes would suggest an absence of targeted selection

for increased male size. The female Ardi skeleton is estimated to have a body size

(50 kg), which is similar to those of the largest Au. afarensis specimens (e.g., 50-70 kg

for A.L. 333-3 depending on prediction method) (McHenry, 1992), suggesting that

early hominid size was generally stable. Given Ardi, both Plavcan (2012b) and Gordon

(2013) have argued that small individuals such as Lucy, A.L. 128/129 and STS-14 (Au.

africanus) imply that any dimorphism increase in Australopithecus likely resulted from a

reduction in average female size. Such size reduction might reflect selection associated with

earlier reproduction, reduced energy and resource utilization, and increased fecundity

(Lovejoy, 2009; Gordon, 2013). This would accord with the expanded demographic success

of australopithecines compared to extant hominoids (Reno, 2014). Alternatively, the

presence of these diminutive and presumably female specimens may simply reflect species

variability yet to be observed in the time restricted Ar. ramidus sample (Suwa et al., 2009).

The relatively stable size patterns observed between Ardipithecus and Australopithecus

suggest there was not strong selection for greater male body size that would result from

a reproductive strategy arising from increased individual male reproductive success via

inter-individual aggression. In fact, the reduction in canine dimorphism with feminization

in the male would argue for reduced “agonistic” behaviors (Lovejoy, 2009). This is

particularly so given the strong association between canine dimorphism and reproductive

behavior in anthropoids (Plavcan, 2012b) and the lack of a dramatic dietary shift associated

with canine modification in early hominids (Suwa et al., 2009).
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