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Species distribution models (SDMs) are used to interpret and map fish distributions based
on habitat variables and other drivers. Fish behavior has been shown to vary in the
presence of divers and is primarily driven by fishing pressure. Diver avoidance behavior or
fish wariness may spatially influence counts and other descriptive measures of fish
assemblages. Because fish assemblage metrics are response variables for SDMs,
measures of fish wariness may be useful as predictors in SDMs of targeted fishes. We used
a diver operated stereo-video system to conduct belt-transects and record minimum
approach distance (MAD) of targeted reef fishes inside and outside of two marine reserves
on the island of O’ahu in the main Hawaiian Islands. By comparing MAD in reserves and
fished areas we tested the assumption that it provides a proxy for fishing pressure. We
then compared the accuracy of SDMs which include MAD as a predictor with SDMs that do
not. MAD showed greater differences between sites than within sites. It was lower inside
one reserve compared to the adjacent fished area and did not differ in and outside of the
other reserve site which had higher MAD overall. When included as a predictor, MAD
greatly improved accuracy of SDMs of targeted fish biomass. In contrast, management
status had very low predictive power.
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15 Abstract

16 Species distribution models (SDMs) are used to interpret and map fish distributions based on 

17 habitat variables and other drivers. Fish behavior has been shown to vary in the presence of 

18 divers and is primarily driven by fishing pressure. Diver avoidance behavior or fish wariness 

19 may spatially influence counts and other descriptive measures of fish assemblages. Because fish 

20 assemblage metrics are response variables for SDMs, measures of fish wariness may be useful as 

21 predictors in SDMs of targeted fishes. We used a diver operated stereo-video system to conduct 

22 belt-transects and record minimum approach distance (MAD) of targeted reef fishes inside and 

23 outside of two marine reserves on the island of O’ahu in the main Hawaiian Islands. By 

24 comparing MAD in reserves and fished areas we tested the assumption that it provides a proxy 

25 for fishing pressure. We then compared the accuracy of SDMs which include MAD as a 

26 predictor with SDMs that do not. MAD showed greater differences between sites than within 

27 sites. It was lower inside one reserve compared to the adjacent fished area and did not differ in 

28 and outside of the other reserve site which had higher MAD overall. When included as a 

29 predictor, MAD greatly improved accuracy of SDMs of targeted fish biomass. In contrast, 

30 management status had very low predictive power.

31

32 Introduction

33 A current focus in marine ecology has been to use species distribution models (SDMs) to 

34 understand and sometimes predict fish distributions based on habitat drivers. This information can 

35 assist with marine spatial planning, including identifying optimal locations for marine reserves 

36 (Shucksmith and Kelly 2014, Stamoulis and Delevaux 2015). Fish species respond to their habitat 

37 in different ways depending on their life-history strategies, predators, competitors, and food 

38 availability (Sale 1998, Boström et al. 2011). Fishing pressure is a primary driver, not only of fish 

39 distributions (Jennings and Polunin 1996, Friedlander and DeMartini 2002), but also of fish 

40 behavior (Kulbicki 1998). Fish behavior can be substantially altered by the presence of SCUBA 

41 divers, depending on fishes’ prior experience of divers’ activities (i.e. feeding vs spearing) (Cole 

42 1994, Kulbicki 1998, Watson and Harvey 2007). Consequently, it is reasonable to expect that such 

43 variability in fish behavior would influence survey counts from underwater visual census (UVC) 

44 conducted by observers on SCUBA (Brock 1954) – the most common survey method in shallow 

45 water coral reefs. Despite earlier recognition of the potential biases associated with variable 

46 responses of targeted fishes to divers (Kulbicki 1998), there have only been a few attempts to 

47 quantify the impacts of fishes’ diver avoidance behavior on measures of fish assemblages (Dickens 

48 et al. 2011, Bozec et al. 2011). Because fish assemblage metrics are response variables for SDMs, 

49 including measures of fish behavioral responses to the presence of survey divers may improve the 

50 predictive power of SDMs for targeted fishes. 

51 In locations with high fishing pressure, area-based fish survey methods may underestimate fish 

52 abundance of species targeted by spear fishers (Kulbicki 1998, Feary et al. 2010). Lindfield et al. 

53 (2014) tested the magnitude of avoidance behavior using a diver operated stereo video system 

54 (stereo-DOV) to survey fish populations inside and outside of two no-take reserves in Guam using 

PeerJ reviewing PDF | (2019:04:37092:0:0:NEW 14 Jan 2020)

Manuscript to be reviewed

DLK
Highlight

DLK
Highlight



55 standard open-circuit SCUBA and a closed-circuit rebreather (CCR). CCRs produce no bubbles 

56 and, therefore, greatly reduce the disturbance caused by survey divers’ presence. They recorded 

57 ‘minimum approach distance’ (MAD – the distance between the diver and the fish at its closest 

58 point) for each fish observed on belt transects, finding that fished sites sampled on SCUBA had 

59 the greatest average MAD for targeted fish groups. Overall, Lindfield et al. (2014) found that 

60 abundance of targeted fishes was 2.6 times greater when surveyed on CCR compared to on 

61 SCUBA, demonstrating a dramatic impact of fish behavior on survey estimates. These effects were 

62 partially corroborated by Gray et al. (2016) who used a different UVC method and found that 

63 biomass of some targeted reef fishes were significantly lower on SCUBA compared to CCR at 

64 high fishing pressure locations in the main Hawaiian Islands. 

65 Fishing has obvious and direct effects on targeted fish populations (Jackson et al. 2001). Patterns 

66 of fishing pressure are difficult to measure and are rarely mapped (but see Stamoulis et al. 2018)). 

67 Diver avoidance behavior of targeted fishes may provide a proxy for spear fishing pressure 

68 (Bergseth et al. 2015). Thus, inclusion of diver avoidance behavior in SDMs could have 

69 explanatory power beyond correcting underwater survey bias. Fishing pressure directly increases 

70 fish wariness and decreases true fish biomass, while increased fish wariness may further decrease 

71 observed fish biomass, due to survey diver avoidance. Thus, including a measure of fish wariness 

72 should improve explanatory power and predictive accuracy of SDMs. 

73 In order to test this hypothesis, we used a stereo-DOV to conduct belt-transects and record MAD 

74 of targeted reef fishes both inside and outside of two marine reserves on the island of O’ahu in the 

75 main Hawaiian Islands. We compare MAD in reserves to fished areas to test the assumption that 

76 it provides a proxy for fishing pressure, then compare the accuracy of SDMs including MAD as a 

77 predictor with SDMs that do not. The objectives of this study were to 1) evaluate MAD of targeted 

78 reef fishes as a proxy for fishing pressure, and 2) determine if including MAD as a predictor in 

79 SDMs of targeted reef fish biomass improves model accuracy. 

80

81 Materials and Methods

82 Study sites

83 Surveys were conducted inside and outside of two no-take marine reserves on O’ahu in the 

84 Hawaiian Islands (Fig. 1). Pūpūkea is located on the north shore of O’ahu and was originally 

85 established in 1983. It was 10 ha when first established and allowed for a range of fishing 

86 activities. In 2003 it was expanded to encompass 71 ha and fishing activities were greatly 

87 restricted. Surveys of Pūpūkea were conducted during June-October 2016. Hanauma Bay is 

88 located on the south-east corner of the island and is the oldest MPA in the state, established in 

89 1967. The entire bay is protected and encompasses 41 ha of marine habitats. Hanauma Bay was 

90 surveyed between February and May 2017. Transect locations were randomly selected within 

91 management types (reserve and open) on hard-bottom habitats using ArcGIS (Fig. 1). 

92

93 Field surveys
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94 Pre-determined survey locations were uploaded to GPS units for use in the field. Two divers 

95 navigated to waypoints from shore or small boat and used a stereo-DOV to conduct a single 5 x 

96 25 m belt transect on SCUBA (Fig. 2). The transect began on the GPS point and followed the 

97 depth contour. Transect length was measured using a 25 m line reel which was secured to the 

98 substrate at the beginning of the transect and rolled out as progress was made. Survey time was 

99 standardized to 3 min per transect. Field surveys were conducted under Hawai‘i State special 

100 activity permit No. 2017-44.

101

102 Our stereo-DOV system used two Canon high-definition video cameras mounted 0.7 m apart on 

103 a base bar inwardly converged at 7 to provide a standardized field of view. The camera system 

104 was built by and purchased from https://www.seagis.com.au/hardware.html. Stereo video 

105 imagery was calibrated using the program CAL (SeaGIS), following the procedures outlined in 

106 Harvey and Shortis (1998). This allowed for measurements of fish length, distance (range) and 

107 angle of the fish from the center of the camera system, and standardization of the area surveyed 

108 (Harvey et al. 2001, 2004). 

109

110 The stereo-DOV system recorded imagery from which we measured the abundance, length, and 

111 MAD of all targeted reef fishes encountered within the transect. Fishes located further than 10 m 

112 in front or 2.5 m to the left or right of the stereo-DOV system were excluded based on minimum 

113 visibility encountered and transect dimensions (Fig. 2). We adopted the ‘targeted’ species 

114 classification of a recently published study of fishing effects in MHI, which included species 

115 with  450 kg of annual recreational or commercial harvest between 2000 and 2010, or that were 

116 otherwise recognized as important for recreational, subsistence, or cultural fishing (Friedlander 

117 et al. 2018, Table S1). Full approval for this research was provided by the Curtin Animal Ethics 

118 Committee in accordance with the Australian code for the care and use of animals for scientific 

119 purposes (Approval number: AEC_2014_42).

120

121 Video analysis

122 Pairs of videos from the stereo-DOV system were analyzed using the program EventMeasure 

123 (SeaGIS). The total length of each targeted reef fish encountered on the transect was measured 

124 when the fish was closest to the stereo-DOV and computed by EventMeasure (Harvey et al. 

125 2004). In the case of large schools, a representative subset of 6-10 individuals was measured, and 

126 the remaining fishes in the school were allocated to those records based on size. Biomass was 

127 calculated from length estimates using the length-mass conversion: M = aTLb, where parameters 

128 a and b are species-specific constants, TL is total length (cm), and M is mass (g). Length-mass 

129 fitting parameters were obtained from a comprehensive assessment of length-weight fitting 

130 parameters for Hawaiian reef fish species (Froese and Pauly 2017). On transects where targeted 

131 species were not recorded, biomass estimates were set to zero. 

132

133 Fish wariness (MAD)
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134 The shortest distance between the cameras and each targeted reef fish encountered on the 

135 transect was identified during the length measurement procedure (see above) and the distance 

136 was automatically computed by EventMeasure thus obtaining an accurate measurement of MAD 

137 (Harvey et al. 2004). If this was not possible due to the angle of the fish or obstruction of the 

138 camera view, another point was recorded and used to calculate MAD for the measured fish 

139 (Lindfield et al. 2014). Because MAD represents the minimum distance to targeted fishes, when 

140 no targeted fishes were recorded within the maximum measurement range (10 m) of the stereo-

141 DOV, MAD was set to the maximum value of 10 m (Fig. 2). 

142

143 Data analysis

144 To test effectiveness of the marine reserves included in this study, a two-way ANOVA was used 

145 to compare the effects of management and site on mean targeted fish biomass by transect. 

146

147 Fish wariness (MAD)

148 Linear mixed models (LMMs) were used to compare patterns of MAD between sites and 

149 management types and assess relationships with fish body length, angle of approach, and water 

150 depth. These variables were included as fixed factors in the models, while transect (location) and 

151 species were included as random factors. LMMs were developed with the combined data from 

152 both sites and for each site separately. MAD values for each individual fish observed were ln(x) 

153 transformed to meet assumptions of normality and continuous variables were centered and scaled 

154 prior to modeling. A significance test of fixed factors was performed with a type III F-test, a 

155 marginal test that asks how much variation a predictor explains after the other predictors are 

156 accounted for. Degrees of freedom were estimated using the Kenward-Roger approximation. 

157 Then, a linear model was used to compare mean MAD of targeted species by transect among 

158 sites and management types with water depth included as a co-variable. 

159

160 Species distribution models

161 Boosted regression trees (BRT) were used to develop SDMs of the total biomass of targeted reef 

162 fish for each study area. BRT models and spatial predictions were generated in R (R Core Team 

163 2014) using the dismo (Hijmans et al. 2014) and raster (Hijmans 2014) packages. BRT are 

164 effective at modeling nonlinearities, discontinuities (threshold effects) and interactions between 

165 variables (Breiman 1996, 2001, De’ath and Fabricius 2000). Targeted fish biomass was fourth 

166 root transformed prior to modeling. Model fitting and selection was accomplished following the 

167 procedures detailed in Elith et al. (2008). To increase parsimony, selected models were then 

168 simplified to remove less informative predictor variables (Elith et al. 2008). Simplification 

169 generally resulted in models with < 10 predictors. Models with a larger number of predictors 

170 generally have higher percent deviance explained, therefore, to allow for comparison, the top 

171 eight predictors were retained for all models. Then, the model training dataset was repeatedly 

172 sampled with replacement to create 20 bootstrap samples. Using the optimal parameter value 

173 combination and simplified set of eight predictor variables, a BRT model was fitted to each 

174 bootstrap sample and used to make predictions based on the values of the predictor variables at 
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175 each transect location. The mean of the bootstrapped predictions was used for interpretation and 

176 further analysis.

177

178 Habitat variables were those used in (Stamoulis et al. 2018) following a pairwise correlation 

179 analysis for the Main Hawaiian Islands. There were 23 total habitat variables of four broad 

180 categories: seafloor topography (12), benthic habitat composition (7), geographic (3), and wave 

181 energy (1) (Table 1, See (Stamoulis et al. 2018) for further details and predictor generation 

182 methods). Four transects in the open area near Hanauma Bay did not have remotely sensed 

183 habitat data and were excluded from BRT models. 

184

185 To determine whether including behavior as a predictor improved model fit and predictive 

186 performance, models were developed separately using predictor sets that included and excluded 

187 MAD. To establish if model performance increases due to MAD were due solely to accounting 

188 for zeros in the response variable, another set of models was developed with a binary variable 

189 representing presence of targeted fishes. In addition to the habitat variables described above, 

190 management type (reserve/open) was also included as a predictor. In summary, three BRT 

191 models were developed separately for each site to explain and predict targeted fish biomass; 1) 

192 habitat + management, 2) habitat + management + MAD, and 3) habitat + management + 

193 presence of targeted fishes.

194 Model fit was evaluated using cross-validated percent deviance explained (CV PDE) and cross-

195 validated standard error (CV SE). Predictive performance was assessed by comparing predicted 

196 values to observed values for each location. Accuracy of predictions was measured using R2 and 

197 Gaussian rank correlation estimate (GRCE – Boudt et al. 2012), as well as root mean square 

198 error (RMSE) and symmetric mean absolute percent error (SMAPE), an alternate to mean 

199 absolute percent error that is robust to zero values. 

200

201 Results

202 Sampling and reserve effect

203 Stereo-DOV belt transect surveys were conducted inside the marine reserves and in the adjacent 

204 open areas at both Pūpūkea and Hanauma Bay (Table 2). These resulted in a total of 1,486 

205 observations of 35 coral reef fish species targeted by fishers in Hawai‘i (Table S1). Reserve 

206 locations had higher abundances of targeted species such that the majority of observations 

207 occurred at locations protected from fishing (Table 2). At Hanauma Bay, 25% of transects had 

208 no targeted fishes and at Pūpūkea 13% of transects had no targeted fishes. With few exceptions, 

209 these transects were located in the open areas at each study site. Both marine reserves had 

210 significantly higher biomass of targeted fishes (F1,120=48.9, p<0.001) though the magnitude 

211 differed. The ratio of mean targeted fish biomass inside the reserve vs. outside was 4.9 for 

212 Hanauma Bay and 1.5 for Pūpūkea. 
213

214 Fish wariness (MAD) inside versus outside reserves
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215 Reserve sites had lower MAD, though not significant at =0.05 when data for both sites were 

216 combined (Table 3). There was no significant interaction between management and site, though 

217 when sites were modeled separately, management was significant at Hanauma Bay (F1,56=4.1, 

218 p=0.046), though not at Pūpūkea (F1,41=0.19, p=0.6). MAD at Pūpūkea was significantly higher 

219 overall compared to Hanauma Bay (Table 3, Fig. 3). Fish length, depth, and angle of approach 

220 were significantly positively related to MAD. However, when each site was modeled separately, 

221 only fish length was significant at Pūpūkea (F1,41=25.1, p<0.001). Mean MAD by transect 

222 showed a very similar pattern between sites and management types (Table 4, Fig. 4). Depth was 

223 not a significant factor at the transect level (Table 4). 

224

225 Species distribution models

226 Models that included management, but not behavior explained 57% and 10% of the variability in 

227 targeted fish biomass for Hanauma Bay and Pūpūkea, respectively (CV PDE, Table 5). When 

228 presence of targeted fishes was included as a predictor, CV PDE increased by 11% for Hanauma 

229 Bay and 4% for Pūpūkea (Table 5). For models where MAD was included as a predictor and 

230 presence of targeted fishes was not, CV PDE increased by 16% and 22% at Hanauma Bay and  

231 Pūpūkea, respectively (Table 5). For these models, MAD accounted for 71% of explained 

232 variation at Hanauma Bay and 26% of explained variation at Pūpūkea (Figs. 5 and 6). In 

233 contrast, presence of targeted fishes accounted for 57% of explained variation at Hanauma Bay 

234 and 0% of explained variation for Pūpūkea. When MAD was included, prediction accuracy 

235 increased with larger values of R2 and GRCE compared to models which did not include MAD 

236 (Table 5). Prediction error for all three measures decreased when MAD was added to the models 

237 (Table 5). For models incorporating behavior, it explained the greatest amount of variability 

238 compared to other predictors (Figs. 5 & 6). In models including management status but not 

239 behavior, management was not selected as a final predictor. 

240

241 Discussion

242 Management and site differences in fish wariness

243 MAD was lower inside the Hanauma Bay reserve compared to the adjacent fished area. This is 

244 consistent with the hypothesis that MAD is a proxy of fish wariness that increases with fishing 

245 pressure. These results correspond to those of Lindfield et al. (2014) who compared the MAD of 

246 targeted acanthurids and scarids between reserves and fished areas in Guam, and Goetze et al. 

247 (2017) who measured MAD of targeted species before and after harvest events in periodically 

248 harvested closures in Fiji. However, MAD did not differ inside the Pūpūkea reserve compared to 

249 the adjacent fished area. In addition, MAD was significantly higher on average at Pūpūkea on the 

250 north shore of O’ahu, compared to Hanauma Bay on the south shore. A likely explanation is that 

251 spearfishing pressure was also higher at Pūpūkea. Surveys were conducted in the summer 

252 months when the wave conditions allow for diving/spearfishing and the shoreline at Pūpūkea is 

253 very accessible with multiple access points. Spear fishers can swim in from either boundary, or 

254 simply enter the reserve directly and illegal spearfishing is a regular occurrence (Stamoulis and 
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255 Friedlander 2013). This likely contributes to the lack of difference in MAD at the Pūpūkea 
256 reserve compared to adjacent open areas. In contrast, shoreline access to the Hanauma Bay 

257 reserve is highly regulated. The reserve is monitored on a daily basis and it is unlikely that any 

258 spearfishing (poaching) occurs, with the possible exception of divers crossing the seaward 

259 boundary from boats. This likely contributed to the larger relative difference in MAD effect size 

260 between reserve and open areas compared to Pūpūkea, as well as the larger relative difference in 

261 targeted fish biomass. 

262

263 Effects of other variables on fish wariness

264 Fish body length had a positive relationship with MAD as shown in previous studies (Lindfield 

265 et al. 2014, Goetze et al. 2017). Optimal fitness theory predicts that as reproductive value 

266 increases, risk-taking should decrease (Clark 1994). Previous studies using flight initiation 

267 distance (FID) as a measure of fish wariness also showed a positive relationship with body 

268 length (Gotanda et al. 2009, Januchowski-Hartley et al. 2011, 2015, Bergseth et al. 2016). 

269 Approach angle ranged from 0-25 and had a significant positive relationship with MAD at 

270 Hanauma Bay, but not Pūpūkea. This is likely a result of the methodology as opposed to a 

271 behavioral response. Fishes measured at a more oblique (higher) angle are farther from the 

272 transect and are consequently less likely to be approached closely compared to fishes closer to 

273 the transect. In contrast to our results from Hanauma Bay, Goetze et al. (2017) did not find a 

274 relationship between MAD and approach angle. 

275

276 Depth had a positive relationship with MAD. This is contrary to previous findings (Stamoulis et 

277 al. 2019) which showed depth to have a negative relationship with FID. This effect is likely 

278 context dependent, and the positive influence of depth in this study reflects the low MAD in 

279 shallow areas of the marine reserves surveyed in this study. Both Hanauma Bay and Pūpūkea 
280 receive a large number of visitors who come to enjoy the abundant marine life. The majority of 

281 tourists tend to remain in shallow areas, thus targeted fishes in these marine reserves are likely 

282 habituated to non-aggressive human interactions, leading to reduced MAD in shallow areas. In 

283 Stamoulis et al. (2019), the marine reserve surveyed has restricted access and does not receive 

284 many visitors. 

285

286 MAD as predictor for species distribution models

287 Because high fishing pressure is associated with increased wariness and low biomass of targeted 

288 species, it is logical to assume maximum MAD where there is minimum recorded biomass. The 

289 resulting pattern of MAD in reference to management type is consistent with the results at 

290 Hanauma Bay in this study and with the two previous studies that used this metric (Lindfield et 

291 al. 2014, Goetze et al. 2017). Including MAD as a predictor for SDMs greatly improved model 

292 fits and predictive performance and partial dependence plots indicated a strongly negative 

293 relationship between MAD and targeted fish biomass. In contrast, management type was not 

294 selected as a final predictor for any models meaning it was a comparatively poor predictor of 
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295 targeted species biomass. Presence of targeted species accounted for a large portion of explained 

296 variability at Hanauma Bay though was not selected as a final predictor at Pūpūkea. For models 

297 including behavior, MAD was the best predictor at both sites and explained more variability than 

298 presence of targeted species at Hanauma Bay. This suggests that while presence of targeted 

299 species can be a good predictor of targeted species biomass in areas with higher variability of 

300 targeted species presence, such as Hanauma Bay, MAD is a better predictor even for areas with 

301 low variability of targeted species presence, such as Pūpūkea.
302

303 When MAD was modeled separately for each site, only fish body length was a significant factor 

304 for both sites. Because the response variable for SDMs was targeted fish biomass, which 

305 integrates fish length, it was not necessary to correct for length in transect-level estimates of 

306 mean MAD. Furthermore, patterns of mean MAD across sites and management types were 

307 nearly identical to those shown by models accounting for fish body length and approach angle. 

308 Based on these results, mean MAD of targeted species at the transect level appears to be a robust 

309 measure of fish wariness when used in SDMs of targeted fish biomass. 

310

311 It is unclear what portion of the variance explained by MAD in SDMs was due to survey bias 

312 from fish behavior and how much from the direct effects of fishing pressure, for which MAD 

313 provides a proxy. However, because the direction of these influences on observed targeted fish 

314 biomass are the same (negative), it is irrelevant to SDM performance. In order to validate the use 

315 of MAD as a proxy for fishing, future research should focus on comparing empirical measures of 

316 spearfishing pressure with MAD of targeted species to better quantify this relationship. A 

317 drawback of using MAD as a predictor for SDMs is that it is not possible to make predictions to 

318 locations for which MAD data is not available. Instead, spatially explicit estimates of fishing 

319 pressure could be used directly as a predictor for SDMs (eg. Stamoulis et al. 2018). A better 

320 understanding of the relationship of MAD and fishing pressure would help inform this work so 

321 that MAD could be used to ground-truth spatial models of fishing pressure. 

322

323 Another possibility is integrating MAD directly into measures of fish assemblage characteristics 

324 used to calibrate SDMs. Distance-based sampling, which is widely used for terrestrial mammals 

325 and birds but less so for coral reef fishes (though see Kulbicki 1998, Kulbicki et al. 2010), is one 

326 approach that may allow incorporation of MAD. Specifically, in distance sampling, observers 

327 record the distance of each organism of interest from the observer at the time of observation, 

328 thereby incorporating a measure of behavior (Buckland et al. 2005, Thomas et al. 2006). 

329 Creating a detection function, representing the probability of detection as a function of distance 

330 from the line, allows for estimation of the proportion of fish missed within the surveyed area, 

331 resulting in corrected density estimates (Buckland et al. 2005, Thomas et al. 2006). In this case, 

332 detection functions could be generated using data from locations with no fishing pressure, which 

333 should correct for altered fish behavior when applied in areas where fishing occurs, thus 

334 generating more accurate density estimates for use in SDMs. 
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335

336 Conclusions

337 In this study, we tested whether using a measure of targeted fish wariness (MAD) as a predictor 

338 of targeted fish biomass in SDMs spanning marine reserve boundaries, improved explanatory 

339 power and predictive accuracy. Our results show that including mean MAD as a predictor in 

340 SDMs greatly improves model performance and accuracy compared to models using reserve 

341 status and presence of targeted species. Diver operated stereo-video systems allow for efficient 

342 sampling of reef-fish assemblages as well as fish behavior and do not require extensive training, 

343 making them useful monitoring tools for managers and communities. Based on the results from 

344 this and two previous studies (Lindfield et al. 2014, Goetze et al. 2017), MAD appears to be a 

345 useful proxy for fishing pressure. In order to fully validate MAD as a proxy for fishing, future 

346 research should focus on comparing empirical measures of spearfishing effort with MAD of 

347 targeted species. In addition, research should seek to improve spatially explicit estimates of 

348 fishing pressure, for which MAD could provide a valuable reference, to extend SDM predictions 

349 to un-sampled areas. 
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476 Figure Legends

477

478 Figure 1: Survey locations at a) Pūpūkea and b) Hanauma Bay.

479

480 Figure 2: Transect dimensions and measurement range of the stereo-DOV and measures of 

481 MAD in areas with low and high fishing pressure.

482

483 Figure 3: Fixed effects from LMM model of MAD for both sites combined. 

484 Confidence intervals are from profile likelihoods. All continuous variables were scaled and 

485 centered previous to modeling. PUP = Pūpūkea, HAN = Hanauma Bay.

486

487 Figure 4: Management x Site effect for linear model of mean MAD by transect. 

488 Confidence intervals are from profile likelihoods. PUP = Pūpūkea, HAN = Hanauma Bay.

489

490 Figure 5: Partial dependence plots for Hanauma Bay BRT model of targeted fish biomass 

491 including targeted fish behavior – MAD.

492

493 Figure 6: Partial dependence plots for Pūpūkea BRT model including targeted fish 

494 behavior – MAD.

495
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Figure 1
Survey locations at a) Pūpūkea and b) Hanauma Bay.
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Figure 2
Transect dimensions and measurement range of the stereo-DOV and measures of MAD
in areas with low and high fishing pressure.
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Figure 3
Fixed effects from LMM model of MAD for both sites combined.

Confidence intervals are from profile likelihoods. All continuous variables were scaled and
centered previous to modeling. PUP = Pūpūkea, HAN = Hanauma Bay.
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Figure 4
Management x Site effect for linear model of mean MAD by transect.

Confidence intervals are from profile likelihoods. PUP = Pūpūkea, HAN = Hanauma Bay.
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Figure 5
Partial dependence plots for Hanauma Bay BRT model of targeted fish biomass
including targeted fish behavior – MAD.
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Figure 6
Partial dependence plots for Pūpūkea BRT model of targeted fish biomass including
targeted fish behavior – MAD.
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Table 1(on next page)

Habitat predictors used in SDMs.

Number of individual datasets of each type indicated in parentheses.
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1 Table 1: 

2 Habitat predictors used in SDMs. 

3 Number of individual datasets of each type indicated in parentheses.  

4

Predictor dataset types Datasets Description

Seafloor topography (12) Depth, Slope, Slope of 

slope, Aspect, Planar and 

profile curvature, BPI

Seafloor topography metrics derived from 

bathymetry including depth, slope, structural 

complexity, exposure, curvature, and bathymetric 

position index (BPI). Slope, slope of slope, and 

BPI were calculated at two scales. 

Benthic habitat composition (7) Percent cover of CCA, 

Macroalgae, Turf, and Soft 

bottom,  Proximity index, 

Shannons diversity index

Percent benthic cover of major cover types, 

seascape fragmentation/patch isolation, habitat 

diversity.

Geographic (3) Latitude, Longitude, 

Distance to shore

Geographic location and distance from shore. 

Oceanographic (1) Wave Power Wave height x wave period. 

5
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Table 2(on next page)

Transect and sample numbers of targeted fishes by site and management.
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1 Table 2: 

2 Transect and sample numbers of targeted fishes by site and management. 

3

Site Management Transects Fishes recorded

Pūpūkea Reserve 25 475

Open 27 272

Hanauma Bay Reserve 35 572

 Open 37 167

Total: 124 1,486

4
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Table 3(on next page)

Linear mixed model results for MAD combining both sites.
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1 Table 3: 

2 LMM results for MAD combining both sites. 

3

 Sum Sq Mean Sq DF Den DF F value P value

Management 0.42 0.42 1 96.8 3.2 0.08

Site 2.36 2.36 1 105.7 18.0 <0.001 ***

Fish length 4.68 4.68 1 897.0 35.7 <0.001 ***

Depth 0.71 0.71 1 97.3 5.4 0.02 * 

Angle 3.06 3.06 1 1417.4 23.3 <0.001 ***

Mgmt x Site 0.08 0.08 1 95.4 0.6 0.44

4
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Table 4(on next page)

Linear model results of mean MAD by transect.
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1 Table 4: 

2 LM results of mean MAD by transect.

3

          DF Sum Sq Mean Sq F value    P value

Management 1 0.16 0.16 1.3 0.26

Site 1 3.00 3.00 24.3 <0.001 ***

Depth 1 0.22 0.22 1.8 0.19

Mgmt:Site  1 0.02 0.02 0.2 0.67

Residuals 94 11.62 0.12

4
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Table 5(on next page)

BRT model evaluation comparison for models including management (Mgmt),
management and presence of resource species (Pres) and management and behavior
(MAD).

Accuracy metrics include cross validated percent deviance explained (CV PDE), r-squared

(R2), and gaussian rank correlation estimate (GRCE). Error metrics include cross-validated
standard error (CV SE), root mean square error (RMSE) and symmetric mean absolute
percent error (SMAPE).
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1 Table 5: 

2 BRT model evaluation comparison for models including management (Mgmt), 

3 management and presence of resource species (Pres) and management and behavior 

4 (MAD). 

5 Accuracy metrics include cross validated percent deviance explained (CV PDE), r-squared (R2), 

6 and gaussian rank correlation estimate (GRCE). Error metrics include cross-validated standard 

7 error (CV SE), root mean square error (RMSE) and symmetric mean absolute percent error 

8 (SMAPE).

9

Hanauma Bay Pūpūkea

 Mgmt

Mgmt + 

Pres

Mgmt + 

MAD Mgmt

Mgmt + 

Pres

Mgmt + 

MAD

Accuracy       

CV PDE 56.8 67.5 72.5 10.4 14.8 32.6

R2 0.37 0.43 0.58 0.27 0.42 0.57

GRCE 0.81 0.83 0.87 0.67 0.75 0.81

Error       

CV SE 7.6 6.7 5.7 19.4 12.7 10.0

RMSE 26.6 27.2 25.1 40.7 36.9 30.7

SMAPE 1.02 0.94 0.91 1.03 1.01 0.95

10
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