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ABSTRACT
Species distribution models (SDMs) are used to interpret and map fish distributions
based on habitat variables and other drivers. Reef fish avoidance behavior has been
shown to vary in the presence of divers and is primarily driven by spearfishing pressure.
Diver avoidance behavior or fish wariness may spatially influence counts and other
descriptive measures of fish assemblages. Because fish assemblage metrics are response
variables for SDMs, measures of fish wariness may be useful as predictors in SDMs
of fishes targeted by spearfishing. We used a diver operated stereo-video system to
conduct fish surveys and record minimum approach distance (MAD) of targeted reef
fishes inside and outside of two marine reserves on the island of O‘ahu in the main
Hawaiian Islands. By comparing MAD between sites and management types we tested
the assumption that it provides a proxy for fishwariness related to spearfishing pressure.
We then compared the accuracy of SDMs which included MAD as a predictor with
SDMs that did not. Individual measures of MAD differed between sites though not
management types. When included as a predictor, MAD averaged at the transect level
greatly improved the accuracy of SDMs of targeted fish biomass.

Subjects Animal Behavior, Aquaculture, Fisheries and Fish Science, Ecology, Natural Resource
Management, Spatial and Geographic Information Science
Keywords Marine protected area, Spearfishing, Hawaii, Observer presence, Stereo-video, Species
distribution models, Conservation, Fisheries management, Flight initiation distance, Compliance

INTRODUCTION
A current focus in marine ecology has been to use species distribution models (SDMs)
to understand and sometimes predict fish distributions based on habitat, environmental,
and other drivers. Development of SDMs begins with observations of species distributions
(typically summarized in terms of biomass, biodiversity, or similar metrics), and the
identification and compilation of environmental variables known or believed to influence
habitat suitability and, therefore, species distributions (Franklin, 2010; Schmiing et al.,
2013). Modeling approaches can be rule based or quantitative, and can include statistical
models, multivariate ordination, classification, machine learning, and Bayesian techniques
(Norberg et al., 2019). SDMs are often applied for predictive mapping, producing spatial
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datasets and maps of species distributions and/or habitat suitability which, among other
applications, can assist with marine spatial planning by identifying areas of high ecological
significance (Shucksmith & Kelly, 2014; Stamoulis & Delevaux, 2015).

Fish species respond to their habitat in different ways depending on their life-history
strategies, predators, competitors, and food availability (Sale, 1998; Boström et al., 2011).
Fishing pressure is a primary driver, not only of fish distributions (Jennings & Polunin,
1996; Friedlander & DeMartini, 2002), but also (in the case of spearfishing) of fish behavior
(Kulbicki, 1998). Fish behavior can be substantially altered by the presence of SCUBAdivers,
depending on fishes’ prior experience of divers’ activities (i.e., feeding vs spearing) (Cole,
1994; Kulbicki, 1998; Watson & Harvey, 2007). Consequently, it is reasonable to expect
that such variability in fish behavior would influence survey counts from underwater
visual census conducted by observers on SCUBA (Brock, 1954)—the most common survey
method in shallow water coral reefs. Despite earlier recognition of the potential biases
associated with variable responses of targeted fishes to divers (Kulbicki, 1998), there have
only been a few attempts to quantify the impacts of fishes’ diver avoidance behavior
on measures of fish assemblages (Dickens et al., 2011; Bozec et al., 2011). Because fish
assemblage metrics are response variables for SDMs, including measures of fish behavioral
responses to the presence of survey divers may improve the predictive power of SDMs for
targeted fishes.

Avoiding predators is a necessary and consistent behavior for reef fishes as well as most
other animals (Lima & Dill, 1990). One of the most common avoidance behaviors is fleeing
which can incur energetic and opportunity costs (Ydenberg & Dill, 1986). Human spear
fishers are reef fish predators and targeted fishes avoid them in areas where spearfishing
occurs, consistent with predation risk theory (Gotanda, Turgeon & Kramer, 2009). Predator
avoidance behavior diverts time and energy away from health and fitness enhancing
activities such as foraging, parental care, and mating (Lima, 1998; Frid & Dill, 2002) and
can also have consequences for ecosystem functions (Madin et al., 2010;Rizzari et al., 2014).
The application of a predation risk framework may help to interpret the extent to which
underwater survey counts reflect actual abundances vs a behavioral bias (Frid, McGreer &
Frid, 2019), the costs of avoidance behavior on body condition and reproduction (Spitz et
al., 2019), and how these factors (together with fishery removals) may influence the results
of SDMs.

In locations with high spearfishing pressure, area-based fish survey methods may
underestimate abundance of species targeted by spear fishers (Kulbicki, 1998; Feary et al.,
2010). Guam is a Pacific Island where SCUBA spearfishing has been practiced for over
30 years as part of the recreational and commercial reef-fish fisheries (Myers, 1993; Houk
et al., 2012). Lindfield et al. (2014) tested the magnitude of avoidance behavior and its
influence on fish surveys in Guam using a diver operated stereo video system (stereo-
DOV) to survey fish populations inside and outside of two no-take reserves and compared
counts using standard open-circuit SCUBA and a closed-circuit rebreather. Closed-circuit
rebreathers do not produce bubbles when operated at a constant depth and, therefore,
greatly reduce the disturbance caused by survey divers’ presence and the association with
SCUBA spear fishers. The authors recorded ‘minimum approach distance’ (MAD): the
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distance between the diver and the fish at its closest point. In contrast to flight initiation
distance, distance is recorded for every fish observed on a transect, even if the fish does
not flee and moves away in what appears to be normal swimming activity (Lindfield et al.,
2014). In addition, the observer moves at a steady pace along the transect and does not
purposely approach fish with the goal of soliciting a flight response.

Lindfield et al. (2014) found that fished sites sampled on open-circuit SCUBA had the
greatest average MAD for targeted fish groups and abundance of targeted fishes was 2.6
times greater when surveyed on closed-circuit rebreather vs. open-circuit SCUBA in fished
areas, whereas in reserves, counts were similar between diving modes. This demonstrates
a dramatic impact of fish behavior on survey estimates due to avoidance of open-circuit
SCUBA diver ‘predators’. These effects were partially corroborated by Gray et al. (2016)
who used a different underwater visual census method and found that biomass estimates
of some targeted reef fishes were significantly lower on open-circuit SCUBA compared to
closed-circuit rebreather at locations with high spearfishing pressure in the main Hawaiian
Islands.

Fishing has obvious and direct effects on targeted fish populations (Jackson et al.,
2001). Patterns of fishing pressure are difficult to measure and are rarely mapped (but
see Stamoulis et al., 2018). Diver avoidance behavior of targeted fishes may provide a
proxy for spearfishing pressure (Bergseth, Russ & Cinner, 2015). Thus, inclusion of diver
avoidance behavior in SDMs could have explanatory power beyond correcting underwater
survey bias. Spearfishing pressure directly increases fish wariness and decreases true fish
biomass, while increased fish wariness may further decrease observed fish biomass, due to
survey diver avoidance. Therefore, including a measure of fish wariness should improve
explanatory power and predictive accuracy of SDMs. In order to test this hypothesis, we
used a stereo-DOV (Goetze et al., 2019) to (simultaneously) conduct belt-transects and
record MAD of targeted reef fishes both inside and outside of two marine reserves on
the island of O‘ahu in the main Hawaiian Islands. We compare MAD between reserve
and fished areas and between sites to test the assumption that it provides a proxy for
spearfishing pressure, then compare the accuracy of SDMs including MAD as a predictor
with SDMs that do not.

MATERIALS AND METHODS
Study sites
Surveys were conducted inside and outside of two no-take marine reserves on O‘ahu in
the Hawaiian Islands (Fig. 1). Pūpūkea is located on the north shore of O‘ahu and was
originally established in 1983. It was 10 ha when first established and allowed for a range
of fishing activities. In 2003 it was expanded to encompass 71 ha and fishing activities were
prohibited. Spearfishing effort in the adjacent fished area to the north was estimated to be
∼5,000 h/yr/km2 (Delaney et al., 2017). Enforcement in this reserve is somewhat lacking
and spearfishing has been documented inside the boundaries, though large seasonal ocean
swells ensure there is little fishing during the winter months (Stamoulis & Friedlander,
2013). Surveys of Pūpūkea were conducted during June–October 2016. Hanauma Bay is
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located on the south-east corner of the island and is the oldest MPA in the state, established
in 1967. The entire bay is protected and encompasses 41 ha of marine habitats. Spearfishing
effort in the adjacent fished area—Maunalua Bay—was estimated at ∼250 h/yr/km2

(Delaney et al., 2017) and the habitat is compromised due to urbanization and associated
land-based impacts (Wolanski, Martinez & Richmond, 2009). The reserve is continuously
monitored, and compliance is very high. Hanauma Bay was surveyed between February
and May 2017. Both marine reserves are frequented by high numbers of recreational scuba
divers and snorkelers although fish feeding is prohibited. Transect locations at both sites
were randomly selected within management types (reserve and open) on hard-bottom
habitats, spaced a minimum distance of 80 m apart, using ArcGIS (Fig. 1).

Field surveys
Pre-determined survey locations were uploaded to GPS units for use in the field. Two
divers navigated to waypoints from shore or small boat and used a stereo-DOV to conduct
a single 5 × 25 m belt transect on SCUBA (Fig. 2). Each transect began on the selected
GPS point and followed the depth contour. Transect length was measured using a 25 m
line reel which was secured to the substrate at the beginning of the transect and rolled out
as progress was made. Survey time was standardized to three minutes per transect. Field
surveys were conducted under Hawai‘i State special activity permit No. 2017-44.

Our stereo-DOV system used two Canon Legria HF G25 high-definition video cameras
mounted 0.7 m apart on a base bar inwardly converged at 7◦ to provide a standardized
field of view. These video cameras feature a 10 × HD video lens with a 30.4–304 mm (35
mm equivalent) focal length. Video was recorded at 1,920 × 1,080 (Full HD) resolution
with a framerate of 25 frames/second. The camera system was built by and purchased from
https://www.seagis.com.au. Stereo video imagery was calibrated using the program CAL
(SeaGIS), following the procedures outlined in Harvey & Shortis (1998). This allowed for
measurements of fish length, distance (range), and angle of the fish from the center of the
camera system, and standardization of the area surveyed (Harvey, Fletcher & Shortis, 2001;
Harvey et al., 2004).

The stereo-DOV system recorded imagery while the observer moved along the transect,
from which we measured the abundance, length, and MAD of all targeted reef fishes
encountered on the transect. The observer held the stereo-DOV pointing forward and
parallel with the bottom while swimming close to the substrate at a constant speed. Thus,
each video-transect consisted of threeminutes of (stereo) video captured while the observer
moved along each 25 m transect. Fishes located greater than 10 m in front or 2.5 m to the
left or right of the stereo-DOV system as it was moved along the transect were excluded
based on minimum visibility encountered and transect dimensions (Fig. 2). Though
visibility (water clarity) varied throughout the survey period, for consistency we applied
the 10 m distance threshold to all surveys. We selected species targeted by spear fishers
from the ‘targeted’ species classification of a recently published study of fishing effects in
the main Hawaiian Islands, which included species with ≥450 kg of annual recreational
or commercial harvest between 2000 and 2010, or that were otherwise recognized as
important for recreational, subsistence, or cultural fishing (Friedlander et al., 2018, Table
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Figure 1 Transect locations at each study site. (A) Pūpūkea and (B) Hanauma Bay. The inset map of the
island of O‘ahu shows the map extents in black for each study site panel, which are the same scale.

Full-size DOI: 10.7717/peerj.9246/fig-1

S1). Full approval for this research was provided by the Curtin University Animal Ethics
Committee in accordance with the Australian code for the care and use of animals for
scientific purposes (Approval number: AEC_2014_42).

Video analysis
Pairs of videos from the stereo-DOV systemwere analyzed using the programEventMeasure
(SeaGIS). The total length of each targeted reef fish encountered on the transect was
measured when the fish was closest to the stereo-DOV and computed by EventMeasure
(Harvey et al., 2004). In the case of large schools, a representative subset of 6–10 individuals
was measured, and the remaining fishes in the school were allocated to those records based
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Figure 2 Diver operated stereo video (stereo-DOV) fish survey method. Transect dimensions and mea-
surement range of the stereo-DOV as the diver moves along the transect are shown. Species, number,
length, and minimum approach distance (MAD) were recorded for each targeted fish species observed in-
side the transect dimensions and within the horizontal measurement range of the stereo-DOV. Symbols
courtesy of the Integration and Application Network, University of Maryland Center for Environmental Sci-
ence (ian.umces.edu/symbols/).

Full-size DOI: 10.7717/peerj.9246/fig-2

on size. Biomass was calculated from length estimates using the length-mass conversion:
M = aTLb, where parameters a and b are species-specific constants, TL is total length (cm),
and M is mass (g). Length-mass fitting parameters were obtained from a comprehensive
assessment of length-weight fitting parameters for Hawaiian reef fish species (Froese &
Pauly, 2017). On transects where targeted species were not recorded, biomass estimates
were set to zero.

Fish wariness (MAD)
The shortest distance between the cameras and each targeted reef fish encountered on
the transect was identified during the length measurement procedure (see above) and
the distance was automatically computed by EventMeasure thus obtaining an accurate
measurement of MAD (Harvey et al., 2004). If this was not possible due to the angle of the
fish or obstruction of the camera view, another point was recorded and used to calculate
MAD for the measured fish (Lindfield et al., 2014).

Data analysis
Reserve effect
To test effectiveness of the marine reserves included in this study as well as differences
between sites, two-way ANOVAs were used to compare the effects of management (reserve
vs fished) and site—the two study locations that each include a no-take reserve and an
adjacent control area where spearfishing is permitted—on mean targeted fish biomass and
body length by transect. To meet test assumptions, mean targeted fish biomass was fourth
root transformed and mean targeted fish body length was ln (x) transformed to improve
normality. Morans I was used to test for spatial autocorrelation of mean biomass values
between transects.
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Fish wariness (MAD)
A generalized linear mixed model was used to compare patterns of MAD between sites and
management types and assess relationships with fish body length, angle of approach, and
water depth. While management and site were the primary variables of interest for this
study, it was necessary to include other variables which have been shown (or suspected) to
influence fish flight behavior in Hawai‘i (Stamoulis et al., 2019). These variables along with
the interaction between management and site were included as fixed factors in the model,
while transect number and species were included as random factors. Transect number
was included to account for varying sample sizes by transect and species was included to
account for species related differences in flight behavior. A gamma distribution with a log
link function was applied as it was found to best fit the response variable distribution.
Continuous variables were scaled prior to modeling and parameters were estimated with
the Laplace approximation. To ensure that results of this model were not confounded by
differences in targeted fish body length between sites and management types, a separate
(otherwise identical) model was used to test these interactions.

Species distribution models
SDMs were developed using 60 × 60 m resolution grid and all inputs were standardized
accordingly. Survey variables were summarized at the transect level and these values
were attributed to the corresponding grid cell. Targeted reef fish biomass was summed,
and MAD was averaged for each transect. Boosted regression trees were used to develop
SDMs of the total biomass of targeted reef fish for both study areas combined. SDMs and
spatial predictions were generated in R (R Core Team, 2014) using the dismo (Hijmans
et al., 2014) and raster (Hijmans, 2014) packages. Boosted regression trees are effective
at modeling nonlinearities, discontinuities (threshold effects) and interactions between
variables (Breiman, 1996; Breiman, 2001; De’ath & Fabricius, 2000). Targeted reef fish
biomass was modeled using a Gaussian distribution and a fourth root transformation was
applied to improve normality.

Model fitting and selection was accomplished following the procedures detailed in Elith,
Leathwick & Hastie (2008). To increase parsimony, selected models were then simplified to
remove less informative predictor variables (Elith, Leathwick & Hastie, 2008). Starting with
the selected best model and full set of predictor variables, the predictor contributing the
least was identified and dropped, themodel was re-fit, and the change in predictive deviance
was calculated relative to the initial model. This process determined how many predictors
could be droppedwithout resulting in a reduction of predictive performance. Simplification
generally resulted inmodels with <10 predictors.Models with a larger number of predictors
tend to have higher percent deviance explained. To allow for comparison, the top eight
predictors were retained for all models. Then, the model training dataset was repeatedly
sampled with replacement to create 20 bootstrap samples. Using the optimal parameter
value combination and simplified set of eight predictor variables, a boosted regression tree
model was fit to each bootstrap sample and used to make predictions based on the values of
the predictor variables at each transect location. The mean of the bootstrapped predictions
was used for interpretation and further analysis.
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Table 1 Habitat predictors used in species distributionmodels (SDMs).Number of individual datasets of each type indicated in parentheses. See
Table S2 for additional details.

Predictor dataset types Datasets Description

Seafloor topography (12) Depth, Slope, Slope of slope, Aspect, Planar and
Profile curvature, Bathymetric position index

Seafloor topography metrics derived from
bathymetry including depth, slope, structural
complexity, exposure, curvature, and bathymetric
position index. Slope, slope of slope, and
bathymetric position index were calculated at
60 m and 240 m.

Benthic habitat
composition (7)

Percent cover of Coral, Crustose coralline algae,
Macroalgae, Turf, and Soft bottom, Proximity in-
dex, Shannon’s diversity index

Percent benthic cover of major cover types, seascape
fragmentation/patch isolation, habitat diversity.

Geographic (3) Latitude, Longitude, Distance to shore Geographic location and distance from shore.
Oceanographic (1) Wave Power Wave height× wave period.

Habitat variables were those used in (Stamoulis et al., 2018) following a pairwise
correlation analysis for the Main Hawaiian Islands and conversion to a 60 × 60 m
resolution grid. There were 23 total habitat variables of four broad categories: seafloor
topography, benthic habitat composition, geographic, and wave energy (Table 1, see Table
S2 for further details). Four transects in the open area near Hanauma Bay did not have
remotely sensed habitat data and were excluded from SDMs.

To determine whether including behavior as a predictor improved model fit and
predictive performance,modelswere developed separately using predictor sets that included
and excluded MAD. In addition to the habitat variables described above, management
type (reserve/open) was included as a predictor after testing its correlation with MAD.
In summary, two boosted regression tree models were developed combining data from
both sites to explain and predict targeted fish biomass; (1) habitat+management, and (2)
habitat + management + MAD.

Model fit was evaluated using cross-validated percent deviance explained and cross-
validated standard error. Predictive performance was assessed by comparing predicted
values to observed values for each location using R2 and Gaussian rank correlation estimate
(Boudt, Cornelissen & Croux, 2012), as well as root mean square error and symmetric mean
absolute percent error-an alternative to mean absolute percent error that is robust to zero
values.

RESULTS
Sampling and reserve effect
Stereo-DOV belt transect surveys were conducted inside the marine reserves and in the
adjacent open areas at both Pūpūkea and Hanauma Bay (Table 2). These resulted in a total
of 1,486 observations of 35 coral reef fish species targeted by spear fishers in Hawai‘i (Table
S1). Reserve locations had higher abundances of targeted species such that the majority
of observations occurred at locations protected from fishing (Table 2). At Hanauma Bay,
25% of transects had no targeted fishes and at Pūpūkea 13% of transects had no targeted
fishes. With few exceptions, these transects were located in the fished areas at each study
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Table 2 Transect and sample numbers of targeted fishes by site andmanagement type.

Site Management Transects Fishes recorded

Pūpūkea Reserve 25 475
Open 27 272

Hanauma Bay Reserve 35 572
Open 37 167
Total: 124 1,486

Table 3 Generalized linear mixedmodel results for minimum approach distance (MAD) combining
both sites. Fixed effects include management type, site, fish body length, transect depth, approach angle,
and the interaction between management and site (Mgmt× Site). Columns represent the fixed effect esti-
mate (Estimate), standard error (Std. error), t -value, and p-value.

Estimate Std. error t -value p-value

Management −0.08 0.12 −0.7 0.491
Site −0.28 0.13 −2.2 0.025 *
Fish length 0.21 0.04 5.4 <0.001 ***
Depth 0.17 0.08 2.3 0.024 *
Angle 0.13 0.03 5.0 <0.001 ***
Mgmt× Site −0.07 0.16 −0.5 0.640

site. Marine reserves had significantly higher biomass of targeted fishes (F1,120 = 48.9,
p< 0.001) compared to adjacent fished areas, though the magnitude differed. The ratio of
mean targeted fish biomass inside the reserve vs. outside was 4.9 for Hanauma Bay and 1.5
for Pūpūkea. In contrast, there was no significant difference in mean targeted fish body
length for marine reserves compared to adjacent fished areas (F1,95= 1.0, p> 0.05). There
was also no difference between sites for mean biomass (F1,120 = 2.1, p> 0.05) or mean
body length (F1,95 = 3.2, p> 0.05). Morans I test for spatial autocorrelation indicated
spatial independence of measured biomass values (Z = 1.1, p> 0.05).

Fish wariness (MAD)
MAD ranged from 0.8 to 10 m and was not significantly different inside and outside of
reserves, though differed between sites (Table 3). MAD at Pūpūkea was significantly higher
overall compared to Hanauma Bay (Fig. 3D). Fish length, depth, and angle of approach
were all significantly positively related to MAD (Table 3, Fig. 3). Fish length ranged from
4 to 70 cm, transect depth ranged from 0.5 to 17 m, and angle of approach ranged from 0
to 25 degrees. The model that included interaction terms of targeted fish body length with
site and management type, respectively, showed no significant effect of either Fish length
× Site (t = 1.4, p> 0.05) or Fish length ×Mgmt (t =−1.9, p> 0.05).

Species distribution models
Management type was not correlated with MAD (Spearman rho = 0.1). The model that
included management, but not behavior explained 31% of the variability in targeted fish
biomass for Hanauma Bay and Pūpūkea combined (CV PDE, Table 4). For the model
where MAD was included as a predictor, CV PDE increased by 38% (Table 4). For this
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Figure 3 Fixed effects of the generalized linear mixedmodel of minimum approach distance (MAD)
for both sites combined. Fixed effects and measured ranges include (A) fish length (4–70 cm), (B) tran-
sect depth (0.5–17 m), (C) angle of approach (0–25 degrees), and (D) management type (OPN= fished
area, RES=marine reserve) by site (PUP, Pūpūkea; HAN, Hanauma Bay). A 95-percent confidence inter-
val is drawn around the estimated effect. All continuous variables were scaled prior to modeling and the
small lines along the x-axis show the distribution of data for each variable.

Full-size DOI: 10.7717/peerj.9246/fig-3

model, MAD accounted for 71% of explained variation for both sites combined (Fig. 4)
and prediction accuracy increased with larger values of R2 and GRCE compared to models
which did not include MAD (Table 4). Prediction error for all three measures decreased
when MAD was added to the model (Table 4) and MAD explained the greatest amount of
variability compared to other predictors (Fig. 4). In the model management status but not
behavior, management was not selected as a final predictor.

DISCUSSION
Management and site differences in fish wariness
Measurements of MAD did not differ significantly by management type, though they did
differ between sites, with larger values at the site with higher spearfishing pressure. These
results are consistent with the hypothesis thatMAD is a proxy of fish wariness that increases
with spearfishing pressure and correspond to those of Lindfield et al. (2014) who compared
MAD of targeted fishes between reserves and fished areas in Guam, and Goetze et al. (2017)
who measured MAD of targeted species before and after harvest events in periodically
harvested closures in Fiji. In the latter study, increases in fish wariness were evident across
all size ranges of targeted species when fish drives—where villagers work together to drive

Stamoulis et al. (2020), PeerJ, DOI 10.7717/peerj.9246 10/21

https://peerj.com
https://doi.org/10.7717/peerj.9246/fig-3
http://dx.doi.org/10.7717/peerj.9246


Table 4 Species distributionmodel (SDM) evaluation comparison for models including management
(Mgmt) andmanagement and behavior (minimum approach distance—MAD). Accuracy metrics in-
clude cross validated percent deviance explained (CV PDE), adjusted r-squared (R2), and gaussian rank
correlation estimate (GRCE). Error metrics include cross-validated standard error (CV SE), root mean
square error (RMSE) and symmetric mean absolute percent error (SMAPE).

Mgmt MAD

Accuracy
CV PDE 30.5 68.5
R2 0.37 0.74
GRCE 0.79 0.91
Error
CV SE 10.7 5.4
RMSE 32.2 25.2
SMAPE 1.04 0.91
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Figure 4 Partial dependence plots for the boosted regression tree model of targeted fish biomass in-
cluding minimum approach distance (MAD) for both sites combined. Predictor variables and units in-
clude (A) minimum approach distance [cm], (B) longitude [decimal degrees], (C) wave power [Kw/m],
(D) depth [m], (E) slope [degrees], (F) bathymetric position index—240 m radius [m], (G) turf algae per-
cent cover [%], and (H) bathymetric position index—60 m radius [m]. The y-axis represents the fitted
function for targeted fish biomass. Panel labels identify predictor variables with percent variability ex-
plained in parenthesis. Small lines along x-axis show the distribution of each predictor.

Full-size DOI: 10.7717/peerj.9246/fig-4

fish into gillnets—were used as a harvest method. In contrast, spearfishing primarily
affected larger individuals (Goetze et al., 2017). Fish drives are rarely utilized in modern
times in Hawai‘i and not at the sites included in this study, so we assume spearfishing to
be the primary cause of increased fish wariness to human divers and do not expect an
influence from passive capture methods such as hook and line.
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MAD was significantly higher on average at Pūpūkea on the north shore of O‘ahu,
compared to Hanauma Bay on the south shore. A likely explanation is that spearfishing
pressure is also higher at Pūpūkea, both outside and inside the reserve. Januchowski-Hartley
et al. (2015) showed that FID increased with fishing pressure in both fished areas and
adjacent marine reserves in the Indo-Pacific, providing evidence of behavioral spillover
which may also help to explain this pattern. Surveys at Pūpūkea were conducted in the
summer months when the wave conditions allow for diving/spearfishing and the shoreline
at the Pūpūkea reserve is very accessible with multiple access points. Spear fishers can
swim in from either boundary or simply enter the reserve directly, and illegal spearfishing
has been documented (Stamoulis & Friedlander, 2013). In contrast, shoreline access to the
Hanauma Bay reserve is highly regulated and it is unlikely that any illegal spearfishing
occurs, with the possible exception of divers crossing the seaward boundary from boats.
Furthermore, spearfishing pressure in the area adjacent to the Hanauma Bay reserve is
estimated to be only 5% of spearfishing pressure in the area adjacent to the Pūpūkea reserve.
Thus, low compliance at Pūpūkea reserve and low spearfishing pressure in the area adjacent
to Hanauma Bay are likely responsible for the larger effect of site than management on
MAD in this study. Likewise, low compliance at Pūpūkea likely contributes to the small
relative difference in targeted fish biomass between the reserve and open areas compared
to Hanauma Bay where low biomass in the open area is presumably due to poor habitat as
much as fishing.

Effects of other variables on fish wariness
Fish body length had a positive relationship with MAD as shown in previous studies
(Lindfield et al., 2014; Goetze et al., 2017). Reproductive value often increases with size in
fishes (Birkeland & Dayton, 2005), and theory predicts that risk-taking should decrease
at higher levels of reproductive value (Clark, 1994). In addition, larger fishes are often
preferentially targeted by fishers and may have more experience with this threat, so are
more willing to incur fleeing costs compared to smaller fishes (Tsikliras & Polymeros, 2014;
Samia et al., 2019). Previous studies using flight initiation distance (FID) as a measure of
fish wariness also showed a positive relationship with body length (Gotanda, Turgeon &
Kramer, 2009; Januchowski-Hartley et al., 2011; Januchowski-Hartley et al., 2015; Bergseth et
al., 2016). The strong positive relationship between fish body length and MAD could lead
to concerns that modeled differences in MAD between sites and management types may
be confounded. While including fish body length as a fixed factor in the generalized linear
mixed model should have accounted for body length effects, a separate model showing no
significant effects of the interactions between fish body length with site and management
confirmed that modeled differences were based on MAD and not fish body length. In
addition, comparisons of mean targeted fish body length by transect showed no differences
between sites or management types.

Approach angle ranged from 0 to 25◦ and had a significant positive relationship with
MAD. Fishes measured at a more oblique (higher) angle are farther from the transect
and are consequently less likely to be approached closely compared to fishes nearer to the
transect. In addition, the predation risk framework predicts a greater FID when approaches
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are more direct because a direct approach may indicate detection and intent to capture
(Frid & Dill, 2002). It follows that MAD is also influenced by approach angle in this way
since both are measures of fish wariness. In contrast to our results, Goetze et al. (2017) did
not find a relationship between MAD and approach angle.

Depth had a positive relationship withMAD. This is contrary to previous findings which
showed depth to have a negative relationship with FID (Stamoulis et al., 2019). This effect
is likely context dependent, and the positive influence of depth in this study reflects the low
MAD in shallow areas of the marine reserves surveyed in this study. Both Hanauma Bay
and Pūpūkea receive a large number of visitors who come to enjoy the abundant marine
life. The majority of tourists tend to remain in shallow areas, thus targeted fishes in these
marine reserves are likely habituated to non-aggressive human interactions, leading to
reduced MAD in shallow areas. In contrast, the marine reserve surveyed by Stamoulis et
al. (2019) has restricted access and does not receive many visitors. These findings suggest
that fish flight behavior can be mediated by human interactions even in the absence of
spearfishing (Frid & Dill, 2002; Titus, Daly & Exton, 2015).

MAD as predictor for species distribution models
Including MAD as a predictor for SDMs greatly improved model fits and predictive
performance. Despite some outliers at the low end of the scale, the partial dependence
plot indicated an overall negative relationship between MAD and targeted fish biomass. In
contrast, management type was not selected as a final predictor for either model. Though
we showed a significant effect of management on targeted fish biomass, this suggests that
habitat variation within management types is an important driver. Likewise, mean MAD
explains variation among individual transects (N = 120) while management status explains
variation only between management types (N = 2) and binary variables tend to have low
explanatory power.We know that compliance differs betweenmarine reserves in this study,
so a dichotomous management status designation may be somewhat misleading. MAD
was greater at the site with higher spearfishing pressure and had a negative relationship
with targeted fish biomass when included in SDMs. Based on these results, mean MAD of
targeted species at the transect level appears to be a robust measure of fish wariness when
used in SDMs of targeted fish biomass.

The predation risk framework suggests that lower targeted fish biomass in fished areas
may be due to the combined effect of fishery removals and the costs of antipredator
behavior, in addition to potential survey bias due to avoidance behavior. Antipredator
behaviors have the benefit of increasing survival in the face of predation risk, and the
cost of diverting time and energy from foraging or other fitness enhancing activities
(Lima & Dill, 1990; Clark, 1994). Our results indicate that MAD provides a measure of
avoidance behavior that increases with perceived risk (spearfishing pressure), consistent
with the economics of flight distance (Ydenberg & Dill, 1986). With additional data and
species-specific analyses, application of the predation risk framework may help to generate
bias correction factors accounting for fish behaviors that can be related to individual and
species characteristics that influence investment in antipredator behavior (Frid, McGreer &
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Frid, 2019). For use in SDMs, it appears that includingMAD as a predictor helps to account
for behavioral survey bias and improve model accuracy and predictive performance.

It is unclear what portion of the variance explained by MAD in SDMs was due to survey
bias from fish behavior and what portion was due to the direct effects of spearfishing
pressure, for which MAD provides a proxy. However, because the direction of these
influences on observed targeted fish biomass are the same (negative), it is irrelevant to
SDM performance. In order to validate the use of MAD as a proxy for spearfishing, future
research should focus on comparing empirical measures of spearfishing pressure with
MAD of targeted species to better quantify this relationship. A drawback of usingMAD as a
predictor for SDMs is that it is not possible tomake predictions to locations for whichMAD
data is not available. Instead, spatially explicit estimates of spearfishing pressure could be
used directly as a predictor for SDMs (e.g., Stamoulis et al., 2018). A better understanding
of the relationship of MAD and spearfishing pressure would help inform this work so that
MAD could be used to ground-truth spatial models of fishing pressure.

Another possibility is integrating MAD directly into measures of fish assemblage
characteristics used to calibrate SDMs. Distance-based sampling, which is widely used for
terrestrial mammals and birds but less so for coral reef fishes (though see Kulbicki, 1998;
Kulbicki et al., 2010), is one approach that may allow incorporation of MAD. Specifically,
in distance sampling, observers record the distance of each organism of interest from the
observer at the time of observation, thereby incorporating an indirect measure of behavior
(Buckland et al., 2005). Creating a detection function, representing the probability of
detection as a function of distance from the line, allows for estimation of the proportion
of fish missed within the surveyed area, resulting in corrected density estimates (Buckland
et al., 2005). In this case, detection functions could be generated using data from locations
with no spearfishing pressure, which should correct for altered fish behavior when applied
in areas where spearfishing occurs, thus generating more accurate density estimates for use
in SDMs.

Alternatively, the use of miniature remotely operated vehicles (mini-ROVs) to sample
fish populations may address many of the effects of diver avoidance behavior. While
mini-ROVs will still move and create a visual stimulus that may create trade-offs similar
to those associated with predation risk (Frid & Dill, 2002), they do not produce bubbles
and are <1 m in length, (Sward, Monk & Barrett, 2019), thereby removing the threat and
much of the disturbance stimuli associated with human divers. Mini-ROVs can be outfitted
with stereo-video systems for fish surveys and measurement of MAD (eg., Schramm et al.,
2020). Raoult et al. (2020) compared underwater visual census results from mini-ROVs
and human snorkelers and found that mini-ROV surveys detected greater abundance and
diversity of fishes. Further research should compare stereo-video fish surveys conducted by
mini-ROV to those conducted by human divers, such as in this study. MAD in particular
should be compared to determine differences in fish flight behavior between methods and
ascertain to what extent mini-ROVs can reduce survey bias associated with human divers
and produce more accurate data for use in SDMs and other applications.
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CONCLUSIONS
In this study, we tested whether using a measure of targeted fish wariness (MAD) as a
predictor of targeted fish biomass in SDMs spanning marine reserve boundaries, improved
explanatory power and predictive accuracy. Our results show that including mean MAD
as a predictor in SDMs greatly improves model performance and accuracy compared to
models using reserve status only. Diver operated stereo-video systems allow for efficient
sampling of reef-fish assemblages as well as fish behavior and do not require extensive
training, making them useful monitoring tools for managers and communities. Based on
the results from this and two previous studies (Lindfield et al., 2014; Goetze et al., 2017),
MAD appears to be a useful proxy for spearfishing pressure. In order to fully validate MAD
as a proxy for spearfishing, future research should focus on comparing empirical measures
of spearfishing effort with MAD of targeted species. In addition, research should seek to
improve spatially explicit estimates of spearfishing pressure, for which MAD could provide
a valuable reference, to extend SDM predictions to un-sampled areas.
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