
Submitted 20 December 2014
Accepted 9 April 2015
Published 5 May 2015

Corresponding author
João Rodrigues,
jprodrigues@fc.ul.pt

Academic editor
Markus Dahlem

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj.923

Copyright
2015 Rodrigues and Andrade

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Synthetic neuronal datasets for
benchmarking directed functional
connectivity metrics
João Rodrigues and Alexandre Andrade

Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon,
Campo Grande, Lisbon, Portugal

ABSTRACT
Background. Datasets consisting of synthetic neural data generated with quantifiable
and controlled parameters are a valuable asset in the process of testing and validating
directed functional connectivity metrics. Considering the recent debate in the neu-
roimaging community concerning the use of these metrics for fMRI data, synthetic
datasets that emulate the BOLD signal dynamics have played a central role by sup-
porting claims that argue in favor or against certain choices. Generative models often
used in studies that simulate neuronal activity, with the aim of gaining insight into
specific brain regions and functions, have different requirements from the generative
models for benchmarking datasets. Even though the latter must be realistic, there is a
tradeoff between realism and computational demand that needs to be contemplated
and simulations that efficiently mimic the real behavior of single neurons or neuronal
populations are preferred, instead of more cumbersome and marginally precise ones.
Methods. This work explores how simple generative models are able to produce
neuronal datasets, for benchmarking purposes, that reflect the simulated effective
connectivity and, how these can be used to obtain synthetic recordings of EEG and
fMRI BOLD signals. The generative models covered here are AR processes, neural
mass models consisting of linear and nonlinear stochastic differential equations and
populations with thousands of spiking units. Forward models for EEG consist in
the simple three-shell head model while the fMRI BOLD signal is modeled with
the Balloon-Windkessel model or by convolution with a hemodynamic response
function.
Results. The simulated datasets are tested for causality with the original spectral
formulation for Granger causality. Modeled effective connectivity can be detected in
the generated data for varying connection strengths and interaction delays.
Discussion. All generative models produce synthetic neuronal data with detectable
causal effects although the relation between modeled and detected causality varies
and less biophysically realistic models offer more control in causal relations such as
modeled strength and frequency location.
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INTRODUCTION
The field of brain research that studies connectivity relies in an ever evolving array of

methods that aim at finding directed or undirected connectivity links from recorded

neuronal datasets which pose different challenges such as having nonlinear relations,

non-stationary dynamics, low signal-to-noise ratio (SNR), linear mixes or slow dynamics.

Therefore, most studies that introduce or discuss connectivity metrics use not only real

but also simulated datasets for demonstration and validity purposes on a controlled

environment. These simulated datasets are obtained through generative models that

simulate the conception of neuronal activity, like local field potentials (LFPs), with a

certain degree of realism and can be followed by forward biophysical modeling where

LFPs are transformed into other neuronal recording datasets like electroencephalography

(EEG), magnetoencephalography or functional magnetic resonance imaging (fMRI)

blood-oxygen-level dependent (BOLD) signals, for example. With these controlled

simulations, it is possible to isolate the effect of certain parameters and understand how

directed functional connectivity metrics perform in a realistic range of values.

As far as directed functional connectivity is concerned, Granger causality (GC) based

metrics have been in the center of several studies that discussed their plausibility in the

analysis of fMRI BOLD datasets due to the inherent low SNR, slow dynamics compared

to neuronal activity and confounding effects due to variable vascular latencies across

brain regions (Deshpande, Sathian & Hu, 2009; Smith et al., 2010; Valdes-Sosa et al., 2011;

Seth, Chorley & Barnett, 2013; Rodrigues & Andrade, 2014). Most of these studies used

simulated datasets to support their claims with generative models such as networks of

‘on–off ’ neurons (Smith et al., 2010), multivariate vector autoregressive (MVAR) processes

with real LFPs (Deshpande, Sathian & Hu, 2009; Rodrigues & Andrade, 2014) and columns

of thousands of spiking units (Seth, Chorley & Barnett, 2013) and BOLD forward models

consisting of linear operations or more biophysically realistic models. Other problems such

as the effect of volume conduction in directed connectivity has also been addressed with

LFPs being modeled as sinusoids and the forward EEG model as a linear mix of different

LFPs (Kaminski & Blinowska, 2014).

The objective of this work is to present and test the ability of popular generative and

forward models to produce synthetic neuronal datasets with modeled causal effects, to be

used as benchmarks.

METHODS
In this section, we succinctly present the methodological framework used in this study

from the modeling techniques to the connectivity metrics employed. Figure 1 depicts

the generative models to simulate LFPs and the forward models for fMRI BOLD signals

and EEG signals. The ensuing subsections expand on each technique separately by

laying theoretical foundations, mentioning available software and explaining why these

simulations have been important in the development of brain connectivity tools. Although

we present the generative model definitions in their general terms for any given network, in

this work simulations only encompass two nodes.
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Figure 1 Strategies used for synthetic neural data modeling. LFPs are simulated by four distinct
generative models and the resulting time-series can be used by EEG or BOLD forward models to produce
the respective signals.

Simulations ran on a desktop PC equipped with an Intel® CoreTM i7-2600K CPU

@3.4 GHz, 8 GB of RAM and an NVIDIA® GeForce® GTX 580 GPU with 3 GB graphics

memory. Simulations of Izhikevich columns ran on modified CUDA/C + + routines from

CARLsim 2.0 (Richert et al., 2011) and used the parallel processing capabilities of the GPU.

The remaining generative and forward models were implemented and ran in Matlab® and

used only the CPU without any explicit parallelization.

Autoregressive modeling
Autoregressive (AR) modeling is the simplest and most straightforward method for

simulating neuronal datasets. By specifying the MVAR equations and parameters it is

possible to simulate datasets from networks with different number of nodes, topology,

noise, interaction delays and duration. Although it has been shown that the AR model’s

impulse response function has a transfer function that resembles the transfer function of

a simple physiological model of EEG generation (Blinowska & Franaszczuk, 1989), as most

connectivity metrics are parametric, estimating an MVAR model for datasets generated

by linear AR processes might not pose the required challenge expected when presenting a

novel connectivity metric. Nevertheless, this method has been used in many well-known

works either standalone or as initial validation, followed by real neurobiological or

neuroimaging datasets. It has been used to demonstrate that partial directed coherence

(PDC) can correctly identify the directed connectivity in multivariate datasets from

elaborate networks with reciprocal connections and interaction delays with different
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magnitudes and durations (Baccalá & Sameshima, 2001). Similarly, the direct directed

transfer function specific sensitivity to directed causal effects was also demonstrated with

data from a MVAR model with unitary delays between variables (Korzeniewska et al., 2003).

Equivalent models have been used to further study metrics like directed transfer function

(DTF) (Eichler, 2006), improvements on spectral GC (Chen, Bressler & Ding, 2006) or

demonstration of connectivity metrics in a vastly used toolbox (Seth, 2010).

MVAR models have also been key in data simulation for the still open debate (Smith

et al., 2010; Valdes-Sosa et al., 2011; Seth, Chorley & Barnett, 2013) concerning the use

of directed connectivity metrics to assess causal influences from fMRI BOLD signals.

Roebroeck used synthetic data generated from a bi-dimensional first-order AR process

as LFPs which were later transformed into BOLD signals in which causality was assessed

with GC for different experimental parameters (Roebroeck, Formisano & Goebel, 2005).

Later, Schippers used the same MVAR model to understand the effect of hemodynamic lag

opposing the interaction neuronal delay in group analysis (Schippers, Renken & Keysers,

2011) and Barnett used a similar first order model to solve GC analytically after digital

filtering (Barnett & Seth, 2011). Other studies used MVAR models to study the effectiveness

of GC applied to cluster sets obtained with independent component analysis (Londei et

al., 2006) and principal component analysis with partial canonical correlation analysis

(Sato et al., 2010). Others have used AR networks where real LFP propagate according to

predefined weights and delays to study the dependence of GC metrics to experimental

parameters (Deshpande, Sathian & Hu, 2009; Rodrigues & Andrade, 2014).

An MVAR model of order p can be defined by X(t) =
p

j=1ΦjX(t − j − D) + w(t)

where X(t) is the multivariate time-series, Φj is the MVAR coefficient matrix for time-lag

j, p is the model order, D is the interaction delay matrix and w(t) is the innovation matrix

consisting in independent white noise. With these parameters, it is possible to define all the

aforementioned network properties.

Here we also consider the possibility of defining the spectral peak frequency of the AR

process that generates the activity of each variable. Considering the AR model for variable

n, without accounting for inter-variable interactions, Xn(t) =
p

j=1ϕnjXn(t − j) + wn(t)

a spectral peak frequency can be identified if the model is causal which requires all the

roots of the AR polynomial ϕnj(z) = 1 −
p

j=1ϕnjzj to be outside the unit circle. As proved

by Jiru (2008), when the absolute value of the AR coefficient for the time-lag p is close

to unity, |ϕp| ≈ 1, the spectral peak frequencies have approximately the same values as

the arguments of the roots of the AR polynomial. Other properties, especially for models

with p = 2, 3 can be found in Jiru (2008). The possibility to manipulate the spectral peak

frequencies of each variable in the MVAR model adds up to the previous parameters

so now it is possible to generate synthetic data for a given number of variables with a

known connectivity pattern (reflected in the inter-variable AR parameters distribution),

interaction delays (reflected in D), interaction strength (reflected in the inter-variable

AR parameters value), SNR (reflected in σ 2
w) and peak frequency (reflected in the

intra-variable parameters).
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Although the inter-variable AR coefficients define the interaction strength between

variable, it is also possible to compute the required values for these parameters in order

to obtain a desired theoretical GC as done in Barnett & Seth (2011). This is done for each

variable pair by analytically deriving the expression for their theoretical GC value, based in

the MVAR coefficient matrix, transfer function and noise covariance matrix, and solving it

for the inter-variable coefficients.

For our simulations, a bivariate AR(2) model was created with variable 1 exerting causal

effect in variable 2 at a specific frequency ω, with variable intensity FX1→X2 and delay d21

following the expression:

X1(t) = ϕ11(2)X1(t − 2) + ϕ11(1)X1(t − 1) + w1(t)

X2(t) = ϕ22(2)X2(t − 2) + ϕ22(1)X2(t − 1) + ϕ21(1)X1(t − d21) + w2(t).
(1)

Here w1 and w2 are the model’s uncorrelated, zero mean, unit variance, white

Gaussian innovation processes. Causality was chosen to occur always in the gamma

band, more specifically at 33 Hz so, the AR parameters for variable 1 AR process

were chosen so the spectral peak occurs at this frequency. Following the relationship

ω = ±arccos(ϕ11(1)(ϕ11(2) − 1)/(4ϕ11(2))) between spectral peak frequency and

AR parameters found in Jiru (2008) for AR(2) models, variable 1 parameters must be

ϕ11(1) = 1.337 and ϕ11(2) = −0.98 for a spectral peak to exist at 33 Hz.

The causal effect occurs due to ϕ21(1). To establish a relationship between this

parameter and the consequent GC value, spectral GC can be solved analytically for the

model (1) similarly to what occurs in Barnett & Seth (2011). Skipping intermediate steps

this results in:

FX1→X2(ω)

= ln


1 +

ϕ21(2)2

ϕ11(1)2 + ϕ11(2)2 + 2ϕ11(1)cos(ω)(ϕ11(2) − 1) − 2ϕ11(2)cos(2ω) + 1


. (2)

Solving (2) for ϕ21(1) allows an AR(2) model to be built with the desired causality.

Although LFPs simulation might seem redundant (GC estimation from data modeled

with parameters obtained by the analytical solution of the spectral GC formulation)

this data is helpful to analyze the effects of the forward EEG and BOLD models and

to benchmark or demonstrate other causality metrics. Varying theoretical causality is

modeled (FX1→X2(33 Hz) = [from 0 to 5 in steps of 0.5], d21 = 20 ms) at 33 Hz for different

interaction delays (FX1→X2(33 Hz) = 5, d21 = [4 ms, and 20 to 100 ms in steps of 20 ms]).

Initial values were randomly assigned, the simulations produced 60 s of data and the

first 20 s were discarded to remove transient effects, data was generated at 1k Hz and

subsampled to 250 Hz. Each 60 s of data required ∼1 s of simulation time.

Coupled oscillators
Coupled oscillator networks are a more realistic way to represent the dynamics between

neuronal populations. Each node usually represents a population of excitatory and

inhibitory spiking neurons that exhibit oscillations with varying levels of synchrony in
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specific frequency ranges. The network can comply with one of two following dynamical

regimes: a synchronous state with self-sustained oscillations (Börgers & Kopell, 2003) or

in an asynchronous state with transient oscillations (Mattia & Del Giudice, 2002). These

networks have been used to show that DTF can be interpreted within the GC framework

(Kamiński et al., 2001) by modeling interacting cortical columns with excitatory and

inhibitory populations with delay-coupled nonlinear stochastic differential equations

(SDE). Similar SDE delayed networks, called Wilson–Cohen models, are also used in Deco,

Jirsa & McIntosh (2011) to study the dynamics of simulated resting state networks (RSNs).

A similar but more detailed dynamic causal model is used to study GC (Friston et al.,

2014) where each cortical column is comprised of pyramidal and inhibitory cells from

supra-granular layers, excitatory spiny cells in granular layers and deep pyramidal cells in

infra-granular layers.

A general network of coupled second order differential equations similar to Kamiński

et al. (2001), represents a node as a system with delay-coupled nonlinear SDE for the

excitatory population defined by:

ẍn + (a + b)ẋn + abxn(t) = −keiS(yn(t)) +

N
m=1

knmS(xm(t − dnm)) + In(t) + wxn(t) (3)

and inhibitory population defined by:

ÿn + (a + b)ẏn + abyn(t) = kieS(xn(t)) + wyn(t). (4)

Variables xn and yn represent the LFPs of excitatory and inhibitory populations respectively

of node n, kei and kie their respective coupling coefficients, knm is the coupling coefficient

from node n to node m, dnm is the delay from node m to node n, a and b are time

constants that define the rate at which activity decays without input and, wxn and wyn

are the independent white noise processes for nodes n and m respectively. In(t) is the

external input to the excitatory population and S is the following sigmoidal function for a

modulatory parameter Sm:

S(x,Sm) =


Sm(1 − e−(ex

−1)/Sm) if x > −u0

−1 if x ≤ −u0
(5)

u0 = −ln(1 + ln(1 + 1/Sm)).

Following the notations in Freeman (1987), (3) and (4) is a coupling between KOi and

KOe subsets; hence, each node can be seen as a KIe,i set. In this work, these parameters

were used with the same values as in Freeman (1987) and Kamiński et al. (2001):

a = 0.22/ms, b = 0.72/ms, kei = 0.4, kie = 0.1, Sm = 5 and the independent Gaussian

white noise processes had zero mean and 0.04 variance. The system’s numerical solution

was approximated with a fourth order Runge–Kutta method (delays where linearly

interpolated for the intermediate increments) using a time-step of 0.1 ms, with the noise

term being integrated with the Euler method using the same time-steps. The LFPs were

initialized as zero for as long as the longest delay present in the simulation required.

Rodrigues and Andrade (2015), PeerJ, DOI 10.7717/peerj.923 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.923


A network of two KIe,i sets, defined by the interactions in (3) and (4), was

simulated for 60 s with varying values of weak and strong coupling (k21 =

[0,0.1,0.2,0.5,0.7,1,3,5,10,15,22,30], d21 = 20 ms) and interaction delay (k21 = 30,

d21 = [4 ms and 20–100 ms in steps of 20 ms]) between sets 1 and 2. The first 20 s were

discarded to remove transient effects, and data was generated at 10k Hz and subsampled to

250 Hz. External input In(t) lasted 1 ms and had 1% probability of occurrence for each set.

Each 60 s of data required ∼181 s of simulation time.

As Friston et al. (2014) concludes that GC is not appropriate for data generated by delay-

coupled oscillators with unstable modes, and because self-sustained oscillations occur in

large scale simulations (Deco, Jirsa & McIntosh, 2011), we also focus our simulations on

networks functioning in the synchronous mode. In this regime, since oscillators show a

limit cycle phase space trajectory, this phase can be modeled by a single dynamical variable

reducing the former models to a simpler phase oscillators where it is possible to define

the oscillating frequency. Cabral et al. (2011) modeled RSNs with several delayed-phase

oscillator networks using the Kuramoto model (Kuramoto, 1984), layered for each

frequency of interest. Therefore, in this work, we use the same network building scheme

consisting of several stacked layers of two coupled oscillators (one layer for each natural

frequency) where each phase variable θn is governed by the following dynamical equation:

θ̇n = ωn + k
N

m=1

Cnmsin(θm(t − dnm) − θn(t)) + wθn(t). (6)

Here ωn is the angular frequency of each oscillator (rad/s), Cnm is the relative coupling

coefficient from node m to node n, k is a global coupling coefficient and the remaining

variables represent the same parameters as in the previous dynamic equations. The

neuronal activity can be obtained as the firing rate of the population of neurons

represented by each oscillator. Following the procedure in Cabral et al. (2011), the firing

rate is the sine function rn = sin(θn(t)) of phase variable.

For our simulations, the system’s numerical solution was approximated with the

Euler–Maruyama (Kloeden & Platen, 1992) method using a time-step of 0.1 ms. Phases

were initialized randomly in the initial instants corresponding to the longest delay. A

network of two nodes was simulated for 60 s (first 20 s were discarded to remove transient

effects) by having three independent layers of pairs of phase-delayed coupled Kuramoto

oscillators where at each layer share the same natural frequency and follow the dynamics

in (6). Layers 1, 2 and 3 oscillate at 5, 33 and 60 Hz, respectively, and only layer 2 has

a coupling coefficient between oscillators different than 0. Therefore, phase-delayed

coupling can only occur at the 33 Hz and from node 1–2. Coupling varied from weak

to strong (k = [0,0.1,0.2,0.5,0.7,1,3,5,10,15,22,30], d21 = 20 ms) and interaction delays

followed the same values as the previous simulations (k = 30, d21 = [4 ms and 20–100 ms

in steps of 20 ms]). Each 60 s of data required ∼55 s of simulation time.
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Izhikevich columns
The former oscillator models can be simulated in greater detail by modeling their

constituting spiking units individually. In the context of testing directed connectivity, this

modeling was used in Seth, Chorley & Barnett (2013) to understand how GC’s sensitivity

is affected by vascular latencies opposing the neuronal lag in BOLD signal time-series

sampled with decreasing time repeat (TR). Besides spiking units, their synapses were also

modeled with explicit NMDA, AMPA, GABAa and GABAb conductances and short-term

plasticity (STP). The Izhikevich spiking model is able to produce several firing patterns

observed in real neurons without the computational demand of more biophysically

realistic models like the Hodgkin–Huxley, which makes it appropriate for larger scale

simulations (Izhikevich, 2003). This model replaces the bio-physiologic meaning of the

Hodgkin–Huxley model’s equations and parameters by a topologically equivalent phase

dynamic modeled with two ordinary differential equations and four parameters:

v̇ = 0.04v2
+ 5v + 140 − u + I

u̇ = a(bv − u).
(7)

Also, the additional after-spike resetting when v ≥ +30 mV, v = c and u = u + d.

The variable v represents the neuron’s membrane potential and u its recovery variable.

Parameters a, b, c and d are defined in order to implement one of the twenty spiking

neurons shown in Izhikevich (2004). Similarly to Seth, Chorley & Barnett (2013), in this

work we simulate cortical columns with two different neurons: regular spiking excitatory

pyramidal neurons (a = 0.02, b = 0.2, c = −65, d = 8) and fast spiking inhibitory

interneurons (a = 0.1, b = 0.2, c = −65, d = 2). Due to the model’s simplicity, it is also

computationally amenable to compute the synaptic input to each neuron with the neuro-

transmitter conductances for each receptor type (gAMPA, gNMDA, gGABAa and gGABAb):

I = gAMPA(v − 0) + gNMDA
[(v + 80)/60]2

1 + [(v + 80)/60]2 (v − 0)

+ gGABAa(v − 70) + gGABAb(v − 90). (8)

These conductances are modeled with spike timing dependent plasticity (STDP) by being

affected by incoming spike’s origin and timing. Therefore, spikes incoming from excitatory

neurons can change gAMPA and gNMDA, while spikes incoming from inhibitory neurons can

change gGABAa and gGABAb. This update depends upon the difference between the timing of

the post and pre-synaptic spikes, Δt, and two time constants for slow (τ = 0.1 ms) and fast

(τ = 0.01 ms) synapses and is modeled exponentially: increment ∝e−Δt/τ if Δt > 0 and

decrement ∝ − eΔt/τ if Δt ≤ 0.

Rodrigues and Andrade (2015), PeerJ, DOI 10.7717/peerj.923 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.923


STP is also modeled in the synaptic weights, influenced by pre-synaptic activity, with the

scale factor s(t):

s(t) = x(t)u(t)

ẋ =
1 − x(t)

tD
− u(t)x(t)δ(t − tspike)

u̇ =
U − u(t)

tF
− U [1 − u(t)]δ(t − tspike).

(9)

Here δ is the Dirac function, and the state variables x(t) and u(t) have baseline levels of 1

and U , respectively. Parameters tD and tF are the depression and facilitating times which

govern how fast x(t) and u(t) return to baseline. Excitatory synapses’ STP is modeled

with U = 0.5, tD = 800 and tF = 1,000 while inhibitory synapses have U = 0.2, tD = 700

and tF = 20. A small subgroup of excitatory neurons is stimulated by pre-synaptic spikes

distributed randomly in time without STP or STDP.

At each column, LPF is obtained assuming dendritic AMPA currents as a good indicator

of this activity by the average AMPA conductance in all afferent excitatory synapses (Seth,

Chorley & Barnett, 2013).

In this work, we simulated two columns of 5k randomly distributed Izhikevich neurons

(80% excitatory, 20% inhibitory) with STDP and STP between neurons of the same

column and without both learning strategies in inter-column connections. Five percent

of these excitatory neurons are stimulated by pre-synaptic spikes distributed randomly in

time without STP or STDP. Instead of a single parameter to model the synaptic strength

between columns, like the coupling coefficients or the inter-variable AR coefficient seen in

the previous models, here it is possible to model three parameters related to inter-column

connection strength. These are the percentage of neurons in one column that project to

another column pprojection, the percentage of connections each branch does in the target

column pbranch and the synaptic strength of the individual connections kunit. Simulations

produced 60 s of data (the first 20 s were discarded to remove transient effects) with causal

influence from column 1 to column 2. In this case, as three parameters define the coupling

strength, the simulations were done for each one individually: for varying pprojection

(pprojection = [0 to 1 in steps of 0.2], pbranch = 0.05, kunit = 1, d21 = 20 ms), for varying

pbranch (pprojection = 0.2, pbranch = [0.01,0.05,0.1,0.3,0.6,1], kunit = 1, d21 = 20 ms)

and for varying kunit (pprojection = 0.2, pbranch = 0.05, kunit = [0.01,0.05,0.1,0.3,0.6,1],

d21 = 20 ms). In conformity with the previous generative models, simulations for different

interaction delays were also performed d21 (pprojection = 0.2, pbranch = 0.05, kunit = 1,

d21 = [4 ms and 20–100 ms in steps of 20 ms] ). The spiking units are ate rest in their initial

state. Each 60 s of data required ∼52 s of simulation time.

EEG forward modeling
EEG is simulated with a simple forward model that relates the LFP as the activity of a

current dipole to the surface potential measured at the scalp. This relation is obtained by

representing the head as a multilayer surface, with each layer having constant isotropic

conductivity. Although there are realistically shaped multilayer head models like the
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Figure 2 Three layer spherical head model. For one current dipole with radius rq and moment q and
scalp electrode with radius r oriented with angles α and γ , respectively. Adapted from Mosher, Leahy &
Lewis (1999).

finite-element method or the boundary element method (Mosher, Leahy & Lewis, 1999;

Fuchs et al., 2002; Darvas et al., 2004), these are more important in the EEG inverse

problem solution as they mitigate the distortion produced by simpler models (Ermer

& Mosher, 2001). As the scope of this work is to simulate a generic EEG signal, we can

adopt a simpler model of the skull like the three layer sphere with isotropic conductivities

(Berg & Scherg, 1994) where the problem of volume conduction is observed. Figure 2

depicts a typical three layer model with an electrode placed in the scalp with radius r,

an intracranial current dipole with radius rq and moment q and respective angles. This

experiment uses a setup with two dipoles placed beneath the three layers with 8 cm

outer radius (σbrain = 0.33 S/m rbrain = 7.04 cm, σskull = 0.0042 S/m, rskull = 7.44 cm,

σscalp = 0.33 S/m, rscalp = 8 cm) spaced by 2 cm and two electrodes are placed in the scalp

also spaced by 2 cm.

The solution v1(r;rq;q) at radius r for the simplest case of a single spherical layer head

model for a current dipole with moment q at radius location rq can be obtained by the sum

of the radial v1
r (r;rq;q) and tangential v1

t (r;rq;q) potentials:

v1
r (r;rq;q) =

qcosα

4πσ


2(rcosγ − rq)

d3
+

1

rqd
−

1

rrq


v1

t (r;rq;q) =


qsinα

4πσ


cosβ sinγ


2r

d3
+

d + r

rd(r − rqcosγ + d)


.

(10)

Here α is the angle the dipole expresses in relation to its location vector rq, as can be seen

in Fig. 2, σ is the conductivity of the shell, d is the value of the direct distance between rq

and r, and β is the angle between the plane formed by rq and q, and the plane formed by rq

and r.

Following (Berg & Scherg, 1994; Zhang, 1995) a three layer model can be approximated

with good accuracy by single layer spheres with the approximation v3(r;rq;q) ∼=

v1(r;µ1rq;λ1q) + v1(r;µ2rq;λ2q) + v1(r;µ3rq;λ3q). The µ and λ are the “Berg

parameters” and are used to create three new dipoles with locations consisting in scaling rq

by µ in its radial direction and scaling the moment q by λ. The approximation v3(r;rq;q)
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is computed for each electrode and dipole present in the simulation. Noise is added to the

resulting time-series.

Details about the computation of the “Berg parameters” can be found in Zhang (1995)

and other methods for EEG forward models in Mosher, Leahy & Lewis (1999), Ermer &

Mosher (2001) and Darvas et al. (2004). The Brainstorm application offers several methods

for the EEG forward model among others (Tadel et al., 2011).

For our simulations, each generated LFP was fed to an EEG forward model with two

radial dipoles spaced by 2 cm placed beneath the three layers with 8 cm outer radius

(σbrain = 0.33 S/m rbrain = 7.04 cm, σskull = 0.0042 S/m, rskull = 7.44 cm, σscalp = 0.33 S/m,

rscalp = 8 cm) and two recording electrodes placed in the scalp also spaced by 2 cm. White

Gaussian noise was added in order for a linear SNR of 10.

BOLD forward modeling
The BOLD signal time-series is the result of a series of neuronal and vascular events that

produce a measurable change in the blood hemoglobin concentration. It is therefore an

indirect and noisy observation of the neuronal activity as during neuronal activation local

vessels are dilated to increase the blood flow and with it, oxygen and glucose delivery.

The increased metabolism results in a localized increase in the conversion of oxygenated

hemoglobin to deoxygenated hemoglobin and BOLD fMRI uses the latter as the contrast

agent (Ogawa & Lee, 1990). This activity can peak four seconds after the neuronal event

onset, although this value varies within and between subjects (Handwerker, Ollinger &

D’Esposito, 2004). Hence, the location, dynamics and magnitude of the BOLD signal’s

activity are vastly influenced by the local vascular bed. This, combined with the fact that

fMRI scanners sample an entire volume with TR in the time scale of a second, raised the

question if directed functional connectivity, which aims at detecting temporal precedence

between neuronal events in the order of tens to hundreds of milliseconds (Ringo et al.,

1994; Formisano et al., 2002; De Pasquale et al., 2010), can offer accurate measures from

BOLD signals. The simulation of BOLD signals was an important factor to answering this

question by allowing experimental control over neuronal and hemodynamic parameters,

and this has been achieved mainly by convolution with a canonical hemodynamic response

function (HRF) or by dynamic modeling of the vascular activity with the extended

Balloon-Windkessel (BW) model (Friston et al., 2000).

The first approach started being used with one gamma function for the HRF

convolution kernel (Goebel, 2003; Roebroeck, Formisano & Goebel, 2005) with the purpose

of investigating the effect of filtering, down-sampling and noise in GC estimation.

Following simulation studies (Deshpande, Sathian & Hu, 2009; Schippers, Renken &

Keysers, 2011; Seth, Chorley & Barnett, 2013; Rodrigues & Andrade, 2014) started using

a dual-gamma function as used in SPM software (Friston, Holmes & Ashburner, 1999)

with parameters as time to peak, time to undershoot, onset time, dispersion of response,

dispersion of undershoot and their ratio following the distributions found in Handwerker,

Ollinger & D’Esposito (2004) to study the effects of down-sampling, noise and HRF

variability. Compared to the convolution approach, the BW model is more biophysically
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interpretable and can also present nonlinear neuro-vascular couplings although when used

in simulation studies there were no considerable differences in GC estimates between both

(Smith et al., 2010; Seth, Chorley & Barnett, 2013).

In this work, both approaches were used with the default parameters offered by SPM12

in the functions spm hdm priors for the BW model and spm hrf for the canonical HRF,

with a 0.5 TR and a linear SNR of 10. However, in these simulations, new LFPs had

to be created for all generative models with different interaction delays, duration and

connectivity frequency. Interaction delays are increased to 200 ms, in order to counteract

the reduction in sensitivity due to the low sampling period of typical fMRI TRs and low

SNR (Deshpande, Sathian & Hu, 2009), and the LFP length had to be increased due to

the low sampling rate; hence, 300 s were simulated. For the generative models where it is

possible to control the frequency where the causal influence is exerted these were set, from

33 Hz in the previous analysis, to 0.1 Hz in the Kuramoto oscillators and <1 Hz for the

MVAR modeling.

Spectral Granger causality
We used the standard Geweke’s spectral decomposition for GC (GGC) (Geweke, 1982)

to infer causality between synthetic time-series. Unlike other spectral directed functional

connectivity metrics such as PDC or DTF, GGC is not bounded between 0 and 1, which is

useful in this study to see how the increase in the connection strength between variables

effects the absolute value of causality across the different simulation methods. GGC

decomposes the GC index (GCI) (Granger, 1969) into frequency components additively,

meaning that the sum of all the frequency components from zero to the Nyquist frequency

result in the GCI. For bivariate time-series, which is the case in this study, GGC can be

computed from a MVAR model parameters by:

Fj→i(f ) = ln
Sii(f )

Sii(f ) −


Σjj −

Σ2
ij

Σii


|Hij(f )|2

j,i ∈ {1,2}. (11)

Here Σ is the covariance matrix of the model’s errors, H is the transfer matrix, and S is

the spectral matrix. The MVAR model order can be estimated with the Bayesian infor-

mation criterion (BIC) (Schwarz, 1978) or with the Akaike information criterion (AIC)

(Akaike, 1974).

For multivariate time-series, refer to Chen, Bressler & Ding (2006) for more details.

RESULTS
This section presents the results of applying (11) to bivariate time-series simulated with

the generative and forward models introduced in Fig. 1 and in the previous sections

with varying interaction strength and delay. This analysis aims at finding whether these

changes in the generative modeling are captured by standard causality estimation by

analyzing how GGC’s difference of influence (DOI) (Fj→i − Fi→j when Fj→i is the true

causal direction) varies with the modeled interaction strength, and how GGC’s DOI and

estimated MVAR model order estimation change with increasing interaction delays. An
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increase in empirical model order from BIC or AIC suggests that the interaction delays

introduced in the generative model are detected in the resulting time-series.

LFP
LFPs represent the local activity of neuronal populations without forward modeling hence,

without the confounding effects expected from fMRI BOLD signals or EEG data and,

the only randomness is due to the stochastic parameters from each model. This way,

this analysis tests each generative model’s capability to produce synthetic datasets with

detectable causal effects.

AR modeling
Results for GGC with varying modeled causality and interaction delays can be seen in Figs.

3A and 4A, respectively, and the model order estimated with BIC and AIC for the different

interaction delays are shown in Fig. 5A.

The estimated GGC DOI present in Fig. 3A shows, as expected, causal influence at 33 Hz

with the same absolute value from what was modeled. Changing the interaction delay from

4 to 100 ms doesn’t affect the estimated causality, as can be seen in Fig. 4A, and both BIC

and AIC model orders increase linearly with the increase in interaction delay (Fig. 5A).

Also, these model orders correspond exactly to the neuronal delay; with a sampling rate of

250 Hz, the neuronal delays in d21 correspond to [1, 5–25 in steps of 5] lagged observations

which equal the model orders suggested by BIC and AIC (except for the neuronal delay

of 4 ms).

Time-delayed coupled KIe,i sets
Figures 3B and 4B respectively show the estimated GGC for varying coupling and

interaction delay and Fig. 5B the respective model orders estimated with BIC and AIC.

Figure 3B shows that there are two frequency bands where connectivity is detected,

around 20 Hz and around 60 Hz. These causal influences are more expressive for strong

couplings (>1) and are inexistent at weak couplings below 0.5. When the interaction

delay changes, connectivity also changes its frequency (Fig. 4B). This occurs as different

delays change the oscillatory behavior of these neuronal populations, and also because

the MVAR model order also changes which influences the AR spectrum. In Fig. 5B it is

possible to see that both BIC and AIC are sensitive to the increase in the interaction delay

and overestimate the true model order by approximately 2 lagged observations.

Phase-delayed coupled Kuramoto oscillators
Figures 3C and 4C respectively show the estimated GGC for varying coupling and

interaction delay and Fig. 5C the respective model orders estimated with BIC and AIC

GGC only detects causal relations with positive DOI at 33 Hz as can be seen in Fig.

3C. However, these only present expressive values on strong couplings (>3). Different

interaction delays do not affect the GGC intensity or frequency distribution (Fig. 4C)

although the model order suggested by BIC and AIC is not linearly related to the

interaction delay (Fig. 5C) and is overestimated.
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Figure 3 GGC DOI for the time-series simulated with increasing coupling strength for the generative
models. (A) MVAR models, (B) KIe,i sets, (C) Kuramoto oscillators, (D)–(F) Izhikevich columns.
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Figure 4 GGC DOI for the time-series simulated with increasing interaction delay for the generative
models. (A) MVAR models, (B) KIe,i sets, (C) Kuramoto oscillators, (D) Izhikevich columns.

Izhikevich columns
GGC results for varying pprojection can be seen in Fig. 3D, results for varying pbranch can

be seen in Fig. 3E and results for varying kunit can be seen in Fig. 3F. GGC results for

simulations with varying are shown in Fig. 4D and the respective model orders estimated

with BIC and AIC in Fig. 5D.

From Figs. 3D–3F it is possible to see that GGC detects connectivity below 20 Hz and

that a linear increase only occurs with kunit. Interaction delays change the connectivity

frequency distribution (Fig. 4D) as different delays change the oscillatory behavior of the

neuronal populations and different MVAR model order produce different AR spectrums.

Increasing the interaction delay produces a linear increase in model orders estimated with

BIC although these are slightly overestimated (Fig. 5D).

EEG forward modeling
Figure 6 shows the same experiments as Fig. 3 only this time, the time-series is the EEG

recorded at the scalp electrodes. It is possible to see that, except for the Izhikevich columns,

GGC amplitude is reduced.
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Figure 5 Model orders estimated with BIC and AIC for the time-series simulated with increasing
interaction delay for the generative models. (A) MVAR models, (B) KIe,i sets, (C) Kuramoto oscillators,
(D) Izhikevich columns. The lagged observations for these interaction delays with 250 HZ sampling rate
are [1, 5, 10, 15, 20, 25].

EEG forward modeling does not affect the detection of interaction delays as can be seen

in Fig. 7. However, for the KIe,i sets, causality around the 20 Hz dissipates and causality

at 60 Hz is maintained. At some delays (0.4 and 0.8 ms) the EEG from the Kuramoto

oscillators (Fig. 7C) shows GGC values similar to the LFPs.

Overall, model orders are overestimated for EEGs from every generative models. In

the EEG from MVAR modeling and KIe,i sets (Figs. 8A and 8B, respectively) this is more

pronounced in the lower interaction delays, and in the EEG from the Izhikevich columns

(Fig. 8D) the opposite seems to occur. The overestimation problems in the LFPs from the

Kuramoto oscillators are more pronounced after EEG forward modeling (Fig. 8C).

BOLD forward modeling
The results for both the convolution with canonical HRF and the extended BW model are

shown in Figs. 9 and 10.

The results in Fig. 9 show that GGC is greatly reduced after BOLD forward modeling

regardless of the generative or forward models. In BOLD signals generated with MVAR

modeling, causal effects are more visible after a modeled causality of 2.5 (Fig. 9A) although

these remain around 0.5. The same values are achieved by KIe,i sets and Kuramoto
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Figure 6 GGC DOI after EEG forwarding the time-series from the generative models with varying
coupling strengths. (A) MVAR models, (B) KIe,i sets, (C) Kuramoto oscillators, (D)–(F) Izhikevich
columns.
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Figure 7 GGC DOI after EEG forwarding the time-series from the generative models with varying
interaction delays. (A) MVAR models, (B) KIe,i sets, (C) Kuramoto oscillators, (D) Izhikevich columns.

oscillators after a coupling of 1 and 10 respectively. The Izhikevich columns only achieved

these values for pprojection > 0.4, pbranch > 0.6 or kunit > 0.3. Both the canonical HRF and

the extended BW show similar results.

By keeping the coupling strengths at the maximum values in Fig. 9 and varying the

interaction delay from 100 ms to 300 ms, the results in Fig. 10 suggest that all generative

and forward models benefit from higher delays. With MVAR modeling, 150 ms is the value

when causality is detectable (Fig. 10A) whereas for the remaining generative models this

value is at 200 ms. Again, there are no relevant differences between canonical HRF and

extended BW models.

DISCUSSION
This study explores four generative models that represent distinct methodologies:

multivariate MVAR modeling, neural mass models and spiking neuron populations.

Although most of these models have been used previously in simulation studies that

aim at benchmarking connectivity metrics, their capability to reflect causal interactions

in their generated neuronal time-series had not been compared yet. Also, these neuronal
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Figure 8 Model orders estimated with BIC and AIC for the time-series simulated with increasing
interaction delay after EEG forwarding with the generative models. (A) AR models, (B) KIe,i sets,
(C) Kuramoto oscillators, (D) Izhikevich columns. The lagged observations for these interaction delays
with 250 HZ sampling rate are [1, 5, 10, 15, 20, 25].

time-series are not limited to the LFPs, BOLD signals and EEG covered by this work but

these are the most widely used in connectivity studies.

Concerning the generative models in this work, both MVAR modeling and Kuramoto

oscillators offer the possibility to directly specify the frequency of their oscillatory activity

and therefore the frequency where connectivity occurs whereas in KIe,i sets and Izhikevich

columns this is not possible, at least directly. On the other hand, KIe,i sets and Izhikevich

columns are neurophysiologically plausible, as they offer the possibility to modulate

different types of excitatory and inhibitory neurons. This suggests two different uses for

these subgroups of generative models. MVAR modeling and Kuramoto oscillators, as

these allow to manipulate the strength and frequency of causal relationships (or even

the theoretical GGC in the MVAR modeling), seem more adequate for initial testing of

directed functional connectivity metrics (Baccalá & Sameshima, 2001), studying the effect

of post processing or other transformations in data prior to causality inference (Barnett

& Seth, 2011) or to compare different metrics performance in an extended benchmark

(Rodrigues & Andrade, 2014). Due to their superior neurophysiological realism, KIe,i

sets and Izhikevich columns are more useful to inquire about the effectiveness of certain

connectivity metrics for data recorded in specific brain locations with known dynamics
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Figure 9 GGC DOI in the 0.01–0.1 Hz band after BOLD forward modeling the time-series from the
generative models with varying coupling strengths. (A) MVAR models, (B) KIe,i sets, (C) Kuramoto
oscillators, (D)–(F) Izhikevich columns.

(Friston et al., 2014). For example, in Freeman (1987) coupled KI sets are used to simulate

chaotic EEG emanating from the olfactory system and in Richert et al. (2011) Izhikevich

columns are used to simulate a large-scale model of cortical areas V1, V4, and middle

temporal (MT) with color, orientation and motion selectivity.

All generative models are able to produce LFPs with detectable causal relations,

and these results show the relation between experimental parameters and simulated

causality. Only MVAR modeling allows for a direct specification of causality by solving

the analytical equations for GGC applied to the MVAR coefficients. Concerning the neural

mass models, the KIe,i sets show causal effects with lower coupling strength than the

Kuramoto oscillators as the first start having causal relations with k21 = 0.7 while the

second required values of k >3 for identifiable causality. In the Izhikevich columns, the

percentage of projecting neurons from the source column pprojection is the variable with

least influence in the observed GGC, except for when it is zero. Increases in both the

percentage of target connections per projection pbranch and the synaptic strength kunit lead

to increases in the observed GGC. Although it wasn’t tested in this work, it is possible

that these values change for different number of neurons per column. In all generative

Rodrigues and Andrade (2015), PeerJ, DOI 10.7717/peerj.923 20/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.923


Figure 10 GGC DOI in the 0.01–0.1 Hz band after BOLD forward modeling the time-series from the
generative models with varying interaction delays. (A) MVAR models, (B) KIe,i sets, (C) Kuramoto
oscillators, (D) Izhikevich columns.

models the modulation of the interaction delay is possible without loss of causal relations,

although the neurophysiologically realistic models show different frequency spectrums for

different interaction delays. This neuronal delay is also detected by the BIC and AIC, which

suggest higher model orders for higher interaction delays.

Forward models lead to a decrease in the absolute value of GGC, especially the

forward BOLD model where negative DOIs could be found in worst scenarios. EEG

forward modeling reduces the estimated GGC due to the added noise and to the volume

conduction effect that produces a “cross-talk” between the two neural populations and

electrodes; these effects would be more adverse if more neuronal populations were

added inside the three-shell sphere. Nevertheless, these results show that all generative

models produce LFPs that, when treated as activity from radial dipoles, preserve the

causal relations in the resulting EEG. BOLD forward modeling is more detrimental to

the preservation of causal effects, and this work did not model hemodynamic variability

between brain regions (Handwerker, Ollinger & D’Esposito, 2004) which would further

affect causality preservation in BOLD signal time-series (Deshpande, Sathian & Hu, 2009).

Causality was reduced approximately by a factor of 10 in all generative models, and there

were no concise differences between HRF convolution and BW modeling except for the

Kuramoto models where the last leads to smaller values of causality.

The overview from Table 1confirms our initial suggestions that AR models are suitable

for exhaustive benchmarks of causal measures to study their dependence on experimental

parameters and formulation, due to their low computational load associated with

versatility and analytical solution. For benchmarks with fewer experimental parameters

and increased concern in emulating neuronal data from frequency specific synchronized
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Table 1 Summary of the main results and characteristics for the four generative models.

AR models KIe,i sets Kuramoto oscillators Izhikevich columns

Causal relations with different strengths yes yes yes yes

Causal relations with different delays yes yes yes yes

Frequency specific causal relations yes no yes no

Analytic calculation of theoretical causality yes no no no

Neurophysiological model no yes yes yes

Can simulate different neuronal dynamics no no yes yes

Causality is preserved after EEG forwarding yes yes yes yes

Causality is preserved after hemodynamic forwarding yes yes yes yes

Expected computational load very low high average average

populations, the Kuramoto oscillators offer the best compromise between versatility and

computational load. Finally, to study causality in specific known neuronal dynamics both

the KIe,i sets or the Izhikevich are the most appropriate thanks to their ability to realistically

simulate varied neuronal populations.

CONCLUSION
This work presented and analyzed different modeling strategies to generate artificial

neuronal datasets for benchmarking purposes. LFPs are obtained by generative models and

can be used by forward models to produce other recordings of neuronal activity such as the

BOLD signal or EEG. All the analyzed models were able to transmit their causal structure

(ϕ21(1), k21, k, pprojection, pbranch, kunit) into their generated data but with different relations

between these and the identified GGC. This study only covered bivariate models, but

the same analysis could be performed with larger networks with large-scale fluctuations

(Cabral et al., 2011). This would be useful to identify the directed functional connectivity

metrics most appropriate to analyze large scale data such as fMRI BOLD signals from

resting state networks.
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