
Submitted 3 September 2019
Accepted 27 April 2020
Published 26 May 2020

Corresponding author
Caterina Funghi,
caterina.funghi@students.mq.edu.au,
caterina.funghi@live.com

Academic editor
Farzin Shabani

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.9209

Copyright
2020 Funghi et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Estimating food resource availability
in arid environments with Sentinel 2
satellite imagery
Caterina Funghi1,2, René H.J. Heim2,3, Wiebke Schuett1,4,5, Simon C. Griffith2,5

and Jens Oldeland3

1 Institute of Zoology, Universität Hamburg, Hamburg, Germany
2Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
3 Institute for Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany
4 School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
5Department of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New
South Wales, Australia

ABSTRACT
Background. In arid environments, plant primary productivity is generally low and
highly variable both spatially and temporally. Resources are not evenly distributed in
space and time (e.g., soil nutrients, water), and depend on global (El Niño/ Southern
Oscillation) and local climate parameters. The launch of the Sentinel2-satellite, part
of the European Copernicus program, has led to the provision of freely available
data with a high spatial resolution (10 m per pixel). Here, we aimed to test whether
Sentinel2-imagery can be used to quantify the spatial variability of a minor tussock
grass (Enneapogon spp.) in an Australian arid area and whether we can identify different
vegetation cover (e.g., grass from shrubs) along different temporal scenarios. Although
short-lasting, the Enneapogon grassland has been identified as a key primary food
source to animals in the arid environment. If we are able to identify and monitor
the productivity of this species remotely, it will provide an important new tool for
examining food resource dynamics and subsequent animal responses to them in arid
habitat.
Methods.We combined field vegetation surveys and Sentinel2-imagery to test if satellite
spectral data can predict the spatial variability of Enneapogon over time, through
GLMMs. Additionally, a cluster analysis (‘gower’ distance, ‘complete’ method), based
onEnneapogon seed-productivity, and total vegetation cover inOctober 2016, identified
three clusters: bare ground, grass dominated and shrub dominated. We compared the
vegetation indices between these different clusters from October 2016 to January 2017.
Results. We found that MSAVI2 and NDVI correlated with the proportion of
Enneapogon with seeds across the landscape and this relationship changed over time.
Both vegetation indices (MSAVI2 and NDVI) were higher in patches with high seed-
productivity of Enneapogon than in bare soil, but only in October, a climatically-
favorable period during which this dominant grass reached peak seed-productivity.
Discussion. MSAVI2 and NDVI provided reliable estimates of the heterogeneity of
vegetation type across the landscape only when measured in the Austral spring. This
means that grass cover is related to seed-productivity and it is possible to remotely and
reliably predict food resource availability in arid habitat, but only in certain conditions.
The lack of significant differences between clusters in the summer was likely driven by
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the short-lasting nature of the vegetation in the study and the sparseness of the grass-
dominated vegetation, in contrast to the shrub vegetation cluster that was particularly
well measured by the NDVI.
Conclusions. Overall, our study highlights the potential for Sentinel2-imagery to esti-
mate and monitor the change in grass seed availability remotely in arid environments.
However, heterogeneity in grassland cover is not as reliably measured as other types
of vegetation and may only be well detected during periods of peak productivity (e.g.,
October 2016).

Subjects Animal Behavior, Ecology, Ecosystem Science
Keywords Arid environment, Remote sensing, Vegetation survey, Sentinel 2, Behavioral
ecology

INTRODUCTION
In Australian arid environments, plant primary productivity is generally low and highly
variable both spatially and temporally, as a result of low levels of average rainfall that are
aseasonal, and with high variance in the scale and timing of rainfall events (Noy-Meier,
1973;Morton et al., 2011). Even at a very local scale both annual rainfall, and the individual
rainfall events can be very variable (Acworth et al., 2016). As well as presenting an ecological
challenge for arid adapted organisms (Letnic & Dickman, 2006; Morton et al., 2011), this
pattern of rainfall presents a significant challenge to research on Australian arid zone
ecology. For example, in their analysis of 44 years of rainfall data collected over 17 rain
gauges across around 380 km2 of the Fowlers Gap Arid Zone Research Station, Acworth
et al. (2016) demonstrated that the rainfall measured in one part of the station is often
poorly correlated with that measured in other parts. In a number of representative years,
some parts of the research station received more than twice as much rainfall as others,
despite being less than 20 km apart (Acworth et al., 2016). Although at a wide scale a
large rainfall event tends to have comparable effects across large areas, ecologically, the
difference between these levels of rainfall across local patches will be profound. However,
studies that explore the response of animals to rain typically use rainfall records that were
taken at distance from the studied population (Zann & Straw, 1984; Zann et al., 1995),
and in many cases use interpolated values between two weather stations that may be
hundreds of kilometers from the study area (e.g., Crino et al., 2017; Pavey & Nano, 2013).
To further confound the problem, the primary productivity on the ground is the result of
complex interactions between soils, the water responses of different plant species, climate,
seasonality, herbivores’ foraging activity, and the total amount and speed at which the rain
falls (Reynolds et al., 2004; Morton et al., 2011; Nano & Pavey, 2013). For example, rainfall
events that are timed with the optimal growth phenology of certain species, can elicit a
large response on those, but not others. This will promote great landscape heterogeneity
at a small spatial scale, and complicate the link between rainfall and net-productivity of
components of the arid zone community (Watson, Westoby & Holm, 1997; Fernández,
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2007), in turn making it difficult to draw generalizations about rainfall pulses and arid
productivity (Reynolds et al., 2004).

To improve our understanding of animal responses to rainfall, we need to better quantify
local primary productivity, rather than using rainfall (or interpolated rainfall) as a proxy.
Great progress has been made in satellite remote sensing, increasing our ability to study
the general response of vegetation to rainfall in remote and arid areas. Data archives have
become freely available (e.g., Landsat by NASA active since 1972, Wulder et al., 2016)
and new satellites have been launched, specifically for land cover change monitoring. For
example, the Sentinel 2 satellite, part of the European Copernicus program, provides data
with a high spatial resolution (10 m per pixel) that is freely available (running between
2016 and 2028; Skidmore et al., 2015). In temperate climates, where the relationship
between abiotic (e.g., rainfall, temperature, soil nutrients) and vegetation productivity is
more predictable, satellite remote sensing information has been widely integrated into
wildlife research, such as the response to plant phenology of both herbivorous (e.g., mule
deer Odocoileus hemionus, Hurley et al., 2014) and non-herbivorous birds and mammals
(reviewed in Pettorelli et al., 2011).

Despite this progress, the use of satellite remote sensing to address questions in
animal ecology in the arid and semi-arid environment remains particularly challenging.
Ground cover is heterogeneous and often sparse with a low vegetation cover and a
high soil reflectance (Nagendra, 2001; Okin & Roberts, 2004; Ren, Zhou & Zhang, 2018).
However, specific vegetation properties (e.g., density, biomass productivity) can be
summarized by calculating spectral vegetation indices, usually combinations of two or
more wavelengths/bands (reviewed in:Kalaitzidis, Heinzel & Zianis, 2010;Xue & Su, 2017).
Many studies of arid areas have tried themost suitable vegetation indices to reliably estimate
the variation in vegetation type and density across the landscape (e.g., Asia, Kang, Wang &
Liu, 2018; Africa,Mapfumo et al., 2016; North and Central America, Théau & Weber, 2010;
Australia,Chen, Scientific & Gillieson, 2014), finding that a vegetation index based on higher
spatial resolution imagery better represent the actual situation on the ground. However, the
use of a single vegetation index to summarize such a complex environment is not a reliable
tool (Okin & Roberts, 2004; Hamada et al., 2019). Given the sparseness and patchiness of
vegetation in the landscape, modern and highly resolved Sentinel 2 imagery (compared to
previously used Landsat data at 30 m resolution) may provide a better tool to predict the
productivity of different components of the vegetation, such as grasses. Data with a higher
resolution will be more suitable in reflecting the heterogeneity of complex vegetation
patterns on the ground, and the signal may be less overwhelmed by more dominant, and
perennial shrub species such as Acacia spp. This is important because whilst there may
be a general ‘greening response’ to rainfall, it does not necessarily provide evidence of a
resource base for a particular guild of animals. For example, the nutritional requirements
of the seed-eating zebra finch (Taeniopygia guttata) have been well characterized, with
the seeds of dominant grass species such as Enneapogon spp. making up a considerable
portion of their diet (>80%) in the Austral spring, triggering reproduction (Morton &
Davies, 1983). However, these grasses often occur amongst patches of chenopod shrubs
that provide little or no nutrition to this granivorous species, and may have a greening
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response to rainfall, perhaps at other times of the year, that does not support growth of
Enneapogon spp. Therefore, remotely measured indices derived from a suboptimal spatial
resolution for the landscape in study, such as the Landsat-derived Normalised Difference
Vegetation Index (NDVI, Tucker, 1979), may reveal a strong response that may be driven
by variation in chenopod shrubs, and not reflect a response by other components of the
vegetation, such as seed grasses, that are of relevance to granivorous species.

To date, most of the work on Australian extended arid grassland areas have attempted to
relate satellite remote sensing information to areas dominated by perennial, sclerophyllous
and tall grass species (Chen, Scientific & Gillieson, 2014). While Australian arid primary
productivity is generally considered to be based on perennial, summer grasses like Triodia
and Plechrachene spp. (Dickman et al., 2014); during the Austral spring, when the climate
is most amenable for reproduction in many groups of animals such as birds (Duursma,
Gallagher & Griffith, 2017), andwhile the summer grasses are still quiescent, theEnneapogon
spp. are the most dominant grasses representing the main food source for a variety of
animals (Buckley, 1982; Hoffmann, 2010). The Enneapogon genus is composed by minor
tussocks (around 30 cm height), with 15 short-perennial species present in Australia
(i.e., biannual, Foulkes et al., 2014; Kakudidi, Lazarides & Carnahan, 1988). The seed-
productivity of Enneapogon grassland is commonly represented by a matrix of different
Enneapogon species (hereafter generally called ‘Enneapogon’) that peaks in favourable
springs, in response to winter rains, and before the perennieal summer grasses start to
grow.

By correlating the actual vegetation cover with remotely acquired spectral vegetation
indices, it will be possible to determine the extent to which a remotely acquired signal
represents vegetative growth in a particular area, and reflects different components of the
plant community (Chen, Scientific & Gillieson, 2014). The seed-productivity and ground
cover of Enneapogon in the arid landscape is not reliable and depends on the complex
interactions with rainfall and other abiotic factors (e.g., temperature, soil nutrients). If the
higher spatial resolution of Sentinel 2 imagery is able to capture the seed-productivity of
Enneapogon in the arid landscape, this will provide new opportunities to understand the
ecological response of seed-eating animals that primarily use these grasses over time and
space. Here we combined field vegetation surveys and Sentinel 2 images that temporally
matched the field sampling to directly test: (1) whether satellite remote sensing data
(i.e., spectral vegetation indices that measure vegetation structure and cover) can be used
to predict the spatial variability of Enneapogon seed-productivity in a heterogeneous and
arid environment and (2) whether the spectral vegetation indices might be used to identify
different vegetation cover (e.g., grass from shrubs) along different temporal scenarios. This
would allow studies to remotely and reliably monitor the actual food availability dynamics
in arid habitat, providing new insight to the study of arid zone animal population dynamics.
The study objectives were addressed through twomain field approaches. The first approach
aimed to directly quantify Enneapogon seed-productivity across the landscape over an area
of approximately 12.5 km2, during October, December 2016 and January 2017. We tested
the reliability of soil-adjusted and non-adjusted vegetation indices calculated from Sentinel
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2 images with 10 m spatial resolution, to predict the spatial variability of Enneapogon seed-
productivity across four months. In other words, we tested whether the satellite-derived
indices can be used to predict times with low grass cover, and those times when grass
cover and productivity are at their peak. The duration of the study from October 2016 to
January 2017 permitted the capture of vegetation changes associated with the changing
season and conditions in this arid environment, from an exceptionally productive Austral
Spring in October (Fig. S1) to a dry Austral Summer in December–January 2017. We
expected a link between Sentinel 2-derived vegetation indices and Enneapogon grassland at
least in October, when the dominant grass was at its peak of seed productivity and ground
cover. The second approach aimed to characterize the general vegetation composition of
the landscape in the field, to group areas dominated by different vegetation (i.e., shrub
dominated, or Enneapogon dominated) through a cluster analysis, and to test the reliability
of the indices over four months between areas with different vegetation types. In this
way, we quantified the spatial heterogeneity of the landscape and tested whether it will
be possible, in the future, to assess the food productivity (i.e., Enneapogon seeds at its
productivity peak) remotely. Determining the extent to which Sentinel’s higher spatial
resolution is capable of reliably representing vegetation heterogeneity in arid areas, across
the landscape and over time, particularly for different parts of the vegetation community
such as grasses, will guide the potential application of this imagery to become an important
tool in attempts to understand the relationship between primary productivity and the
ecological responses of animals in such an ecologically unpredictable environment.

MATERIAL AND METHODS
Study area and field surveys
The study was focused on an area - Gap Hills - located in the north of the Fowlers Gap
Arid Zone Research Station (31◦05′13.1

′′

S, 141◦42′17.4
′′

E), New South Wales, Australia.
Fowlers Gap is one of the few long-term study sites in the Australian arid zone, where
the population dynamics of several animal species have been monitored over long periods
of time. Therefore, it is a strategic location to test whether food resource availability
(i.e., primary productivity) can be reliably assessed remotely, to start linking animal
dynamics and food availability in arid environments in the future. In October 2016, 36
quadrats of 10 m × 10 m were established in an area within 2 km of an artificial water
dam (Fig. 1A), an important resource for the animals in the study area. In each quadrat,
we identified all plants at the lowest taxonomical level possible (i.e., species or genus).
For every identified plant, we estimated the percentage of vegetation cover and noted the
dominant genus of the overstorey, the understorey and for grasses. The total vegetation
cover was estimated by considering the highest vegetation cover between the overstorey,
understorey and grasses.

To quantify the variability of seed-productivity in the Enneapogon spp. across the
landscape, we performed a weekly 50 m transect along the NE-SW line from the NE corner
of every quadrat, during three weeks, between the 28th October and the 16th November
2016. The average of the data gathered over these three weeks corresponded to the October
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Figure 1 Map of the 36 surveys across the Gap Hills and the visual representation of the vegetation
composition in the three vegetation clusters. The spatial distribution of the 36 quadrat 10 m× 10 m sur-
veys on ESRI satellite image, coloured according to the cluster analysis. Map credit: OpenStreetMap, 2016.
Licensed under CC BY 3.0 SA. (b) Non-metric Multidimensional Scaling (NMDS) visual representation of
the vegetation composition (genus of plants identified) and the quadrats surveyed in the three vegetation
clusters considered. Grass (blue) and Shrub (green) vegetation categories were identified through a cluster
analysis. The Bare ground group (yellow) was manually sorted being the total cover estimation less than
10% from the grass and shrub clusters. The stress value measures the goodness of fit of the data represen-
tation in multivariate space. Graphical distance represents similarity of the green and blue clusters. The lo-
cation of the vegetation genus represents their co-occurrence.

Full-size DOI: 10.7717/peerj.9209/fig-1

values used in the statistical analysis. For every meter in each of our transects, we noted
the name of the grass (genus level) and counted the number of spikelets with seeds and
vegetative (without seeds) within 10 cm. Additionally, we randomly collected 50 spikelets
with seeds of the most dominant grass genus, Enneapogon, from different individuals
around the transect (and quadrat) area. In this way, the seed-productivity was calculated
by estimating the proportion of Enneapogon spp. with seeds multiplying it with the average
dry weight of one spikelet across the three weeks of sampling (g*seed/transect, analytical
balance: Sartorius BP211D, Wood Dale, Illinois, 0.01 mg). In December 2016 and January
2017, we returned once to every location and performed the transect surveys. We estimated
the seed-productivity of each transect location, that overlapped with each quadrat location,
per each month. We multiplied the proportion of Enneapogon spp. with seeds by the
average dry weight of one spikelet (from October–November spikelet collection).

In order to characterize the general vegetation composition of the landscape and identify
areas dominated by different vegetation, we used the field-based data from our quadrats of
October 2016 to estimate the presence of vegetation co-occurrence. We identified the most
dominant 19 plant genera and built a matrix of the contribution of each to the plant cover
across the plots. The cover-plot matrix was combined with the estimation of total cover
and Enneapogon seed-productivity (‘gower’ distance in ‘vegdist’ for ‘vegan’ package and
‘complete’ method in ‘NbClust’ for ‘NbClust’ package in R; R Core Team, 2014, Charrad et
al., 2014;Oksanen et al., 2017) to run a global non-metric multidimensional scaling analysis
(NMDS) to identify different vegetation clusters (Fig. 1B): the Enneapogon-based (‘grass’)
and the shrubs-based (‘shrub’, Table S1). Furthermore, an indicator species analysis was
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run to statistically assess the strength of species-clusters associations. This analysis is
based on permutation tests and an indicator value index that is the product between the
relative frequency of occurrence for each species in each cluster and the relative abundance
(cover) of each species in each cluster (‘IndVal.g’ methods in the ‘multipatt’ function in
‘indicspeces’ package, De Cáceres & Legendre, 2009). The quality of the overall ecological
conditions is also determined by the amount of bare ground, and we manually built a third
cluster selecting the ‘bare ground’ quadrats, defined by total vegetation cover estimation
being less than 10% (Fig. 1). Later we used the same clusters to test the suitability of the
satellite-derived vegetation indices to discriminate between a subset of quadrat locations
identified inside these clusters.

Satellite imagery
In order to best match the period of field data collection (Enneapogon seeds productivity
sampled between 28th October and 16th November 2016) and the satellite-derived indices,
we chose the imagery available from Sentinel 2 (Copernicus Earth Observation Program,
Thales Alenia Space, ESA, 2015), with cloud free conditions for the study period, which
was 29th October 2016. To analyze the temporal changes, from the Austral spring ‘boom’
(October–November) to the dry arid summer (December–February), the images selected
were taken from the 18th December 2016 and the 27th January 2017 (both 0% cloud
cover). We were unable to use images from November, because it was cloud affected.
Images were projected into the WGS 84/UTM zone 54S coordinates reference system. For
removing atmospheric effects, we applied the dark object subtraction procedure (Chavez,
1988) using the Semi-Automatic classification tool (Congedo, 2016) which is available
as a plugin for QGIS (v 2.18.17, QGIS Development Team, 2019). For the high spatial
resolution satellite images from all periods (October, December 2016 and January 2017),
we calculated the two vegetation indices previously shown to perform well in arid and
semi-arid areas (Chen, Scientific & Gillieson, 2014, Table S2). The Modified-Soil-Adjusted
Vegetation Index (MSAVI2, Qi et al., 1994) is adjusted for the reflectance of the exposed
soil, whereas the Normalized Difference Vegetation Index (NDVI, Tucker, 1979) is not
adjusted. Both of these indices use the near infrared (NIR, 0.84 µm, band 8) and red
wavelength reflectance (Red, 0.66 µm, band 4, Table S2). The indices were calculated at
native spatial resolution (10 m for MSAVI2,NDVI), for each of the 36 GPS plots/transects
points (±5 m, GPSMAP R© 64s, Garmin, Olathe, USA), projected into WGS 84/UTM zone
54S coordinates reference system. Therefore, we obtained the value of MSAVI2 andNDVI
for a 10 × 10 m (proxies of pixel) square which included the GPS point used as reference
for the field-based work.

Statistical analysis
The spectral vegetation indices used are measurements of vegetation structure and cover,
therefore, to validate the satellite remote sensing information against field based data
across time, we considered the sampled transects that had a value of the Enneapogon
seed-productivity larger than zero. Further, in order to balance the sample sizes of transects
(larger in October), we additionally subset the transects considering the ones that in
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October had higher than mean seed-productivity. Therefore, for these analyses the final
sample size was 23 transects: three transects were repeated each of the three months in
study, ten repeated twice and ten transects had no repeated measurements (i.e., nobservation
= 39). Our measures of Enneapogon seed-productivity (i.e., the product of the proportion
of Enneapogon with seed and the average dry-weight of one spikelet) had a distribution
not suitable to be modeled (neither as proportion nor Gaussian). For the analyses of
the spectral vegetation indices validation, we used directly the proportion of Enneapogon
with seeds over the total number of spikelets counted for each transect survey, which was
highly correlated with the Enneapogon seed-productivity (rho=0.9, P < 0.001, n= 39).
Having checked that the subset data met the assumptions for the spatial autocorrelation
(Moran’s I test) and the linear model assumptions, we built two separate Generalised
Linear Mixed Models (GLMM) with proportional error distribution that is a binomial
weighted for the total of the proportion (i.e., total number of spikelets counted for each
transect survey). The proportion of Enneapogon with seeds of the subset locations was
fitted as the dependent variable. Either MSAVI2 or NDVI of the same quadrat (measured
at 10 m ×10 m pixel as approximation of transect line surveys), the months (October,
December and January) and their interaction were fitted as explanatory variables; transect
location ID was fitted as random effect. Full models were always reduced by removing the
least significant terms in a stepwise process, starting with the interactions as determined by
likelihood ratio test between models (Crawley, 2007); until only significant terms remained
and terms included in significant interactions. For GLMMs we used the package ‘lme4’
(Bates et al., 2014). Furthermore, we estimated a model quality index for each model, the
conditional pseudo-R2 (using ‘r.squaredGLMM’ function in ‘MuMIn’ package, Barton,
2019) that represents the variance explained by the entire model, including both fixed and
random effects.

We tested the performance of the soil-adjusted MSAVI2 and the NDVI in distinguishing
between patches with different vegetation cover over time. We tested a best-case scenario
in which we considered a subset of five quadrats that were most representative of the three
different clusters (i.e., five of each type, Table 1) to balance the sample size and thereby
excluding quadrats with mixed vegetation types that might otherwise confound these
estimates. Having checked for significant differences between the quadrats representing
each cluster (Table S3), a series of paired Wilcoxon’s signed rank tests, separately for each
month, was run between the subset of quadrats representing each cluster. Each of the three
tests were Bonferroni adjusted for multiple comparison. For comparison tests we used the
package ‘stats’ and all statistical analyses were conducted within the statistical environment
of R (R Core Team, 2014).

RESULTS
The spatial autocorrelation value, Moran’s I, for the proportion of Enneapogon with seed
(nIDlocation = 23) in study was −0.02, not significantly different from randomness (i.e.,
Moran’s I = 0, p= 0.8). The proportion of Enneapogon with seed was related with both
MSAVI2 (Table 2, Fig. 2A, n IDlocation =23, nobservation = 39) and NDVI (Table 2, Fig. 2B, n
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Table 1 Summary of number (n) of quadrats, Enneapogon seed-productivity (mean± SD) and total
vegetation cover (mean± SD) of the clusters’ subset used for the temporal analysis.

Bare Grass Shrub

n quadrats 5 5 5
Enneapogon seed-productivity
(proportion*g−1)

0.03± 0.03 0.17± 0.03 0.001± 0.002

Total vegetation cover (%) 2.8± 1.1 26± 14.4 49.8± 26.8

Table 2 Summary of the GLMMs. Response variables, random terms, and variances (Var) are specified for each model. Values of fixed effects (es-
timated) and standard errors (S.E.) are logit estimates for the variables in the minimal adequate model. The X 2 (d.f.) and P values represent the sig-
nificance of the model, estimated from the comparison between the full model and the reduced one (without the interaction between fixed terms).
Statistically significant P values are marked in bold. Each model is based on a total of 39 observations of 23 transect locations.

Response variable Random term Var Fixed effect Estimate S.E. X 2(d.f.) P

IDlocation 3.91 MSAVI2: December (Intercept) 2.66 1.04
MSAVI2 −65.32 25.37
January 2.14 1.14
October −0.67 1.58
MSAVI2:January −69.15 25.45
MSAVI2:October 78.28 21.89

MSAVI2
Prop. Enneapogon
with seeds

MSAVI2:Month 43.65(2) <0.001
IDlocation 4.36 NDVI: December (Intercept) 2.75 1.02

NDVI −30.76 11.22
January 2.96 1.24
October −0.65 1.57
NDVI:January −47.55 14.2
NDVI:October 37.32 11.32

NDVI
Prop. Enneapogon
with seeds

NDVI:Month 41.58(2) <0.001

IDlocation = 23, nobservation = 39) but the relationship changed over time, as the interaction
between vegetation index andmonthwas significant for bothmodels (Table S4). InOctober
2016, (nIDlocation = 21), the higher the proportion of Enneapogon with seed (correlated
with seed productivity), the higher were the vegetation indices. The indices reflected the
variability in Enneapogon with seed across the landscape (Table 2). In December 2016
(nIDlocation = 12) and January 2017 (nIDlocation = 6) the same relationship was negative,
although the reduced sample size does not allow general interpretations (Fig. 2). The
conditional pseudo-R2 (model quality index) was 0.68 for the model with the MSAVI2 and
0.7 for the one with NDVI.

The three clusters identified differed in their vegetation composition (Fig. 1, Table S1).
The bare ground plots (n= 10), represented mainly bare soil with a total cover of less
than 10% (3.5 ± 1.5% mean ± SD); the grass cluster was composed of plots (n= 21)
in which Enneapogon and succulent smaller bushes (e.g., Scleroleana spp.) were indicator
species (Table S1), while only few forbs and Acacias spp. appeared (Table S1). For the shrub
plots (n= 5), located in close proximity to the water channel, the indicator species were
herbaceous and leafy shrubs vegetation (e.g., Acacias spp.,Medicago spp., Table S1).
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Figure 2 Graphical representation of the relationships modeled with GLMMs. Binomial-GLMMs of
the proportion of Enneapogon with seeds and the spectral indices MSAVI2 (A) and NDVI (B) as predic-
tor. Lines represent the predicted relationships for October 2016 (blue), December 2016 (red) and January
2017 (green).

Full-size DOI: 10.7717/peerj.9209/fig-2

Table 3 Summary of the pairedWilcoxon’s signed rank between cluster subsets (n= 10 for each com-
parison). Vegetation index (VI), cluster pairs tested (Pairs), month, coefficient test (Z) and significance
(P) are specified for each comparison. Statistically significant values are marked in bold.

VI Pairs Month Z P

Bare-Grass October 0.6 0.03
Bare-Shrub October 0.7 0.01
Shrub-Grass October 0.7 0.01
Bare-Grass December 0.4 0.1
Bare-Shrub December 0.6 0.02
Shrub-Grass December 0.4 0.2
Bare-Grass January 0.4 0.2
Bare-Shrub January 0.6 0.02

MSAVI2

Shrub-Grass January 0.5 0.06
Bare-Grass October 0.5 0.06
Bare-Shrub October 0.7 0.01
Shrub-Grass October 0.7 0.01
Bare-Grass December 0.6 0.03
Bare-Shrub December 0.7 0.01
Shrub-Grass December 0.6 0.02
Bare-Grass January 0.4 0.2
Bare-Shrub January 0.7 0.01

NDVI

Shrub-Grass January 0.7 0.01

With respect to NDVI, there were significant differences between bare ground and
shrub vegetation patches, and shrub and grass patches in October, December and in
January (Table 3). A significant difference between the NDVI of bare ground and grass
patches was only detected in December (Table 3, Figs. 3D–3F), although the test value
Z -score was just over the significance threshold.
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The equivalent results for the MSAVI2 index revealed significant differences across the
three different vegetation cover in October, when the vegetation was at its peak (Table 3,
Fig. 3A), but in December and January, during the dry Summer, the difference between
bare ground and shrub was significant, whereas the comparisons between other clusters
were not significantly different (Table 3, Figs. 3B, 3C).

DISCUSSION
Using on-ground measures of vegetation structure and Enneapogon seed-productivity we
tested the extent to which Sentinel 2 satellite images can be used to indicate habitat quality,
and potential food resource availability (i.e., Enneapogon), in the spatially heterogeneous
Australian desert and semi-desert. The results suggest it is possible to detect remotely
differences in vegetation cover between patches over time, if these patches were previously
chosen as dominated by specific vegetation types (e.g., grass, shrubs, bare ground),
although with some limitations. We based the vegetation characterization focusing on a
sample period (October 2016), where the whole vegetation in the study area was at the
‘boom’ phase of the characteristic ‘boom and bust’ cycle, as a consequence of good winter
rainfall (Morton et al., 2011), and confirmed by this period having the highest NDVI value
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since 2010 (Fig. S1). This allowed us to get a rare estimation of the vegetation cover and the
Enneapogon seed-productivity across the landscape during extremely favorable conditions.

Our results showed that both spectral vegetation indices were positively related to the
proportion of Enneapogon with seeds (highly correlated with seed-productivity) across the
landscape, at least in October. Furthermore, the cluster analysis showed that Enneapogon
was most likely to be spatially associated with succulent shrubs Scleroleana spp. On the
other hand, areas closer to the semi-permanent dam were dominated by Acacia and a few
species of forbs. The distribution of vegetation supported previous studies which found the
presence of artificially dam water to influence the spatial distribution of vegetation types,
perhaps through the effect of heightened grazing (around dams) that favors shrubland over
grassland (James, Landsberg & Morton, 1999). In our field site the water dam is also along a
dry-creek system that might further influence the vegetation response found, with the taller
and greener vegetation distributed along the ephemeral creek. Actually, dry creeks have
been demonstrated to increase the soil water content in the adjacent area, by prolonging
the effect of flood after rain events, and triggering a strong vegetation response (Kingsford,
Curtin & Porter, 1999; Morton et al., 2011). Therefore, it is likely that these environmental
structures and their associated effects interact to shape the spatial vegetation variation
detected by the Sentinel-derived indices, even at local scales.

The other aim of the present study was to validate the relationship between spectral
vegetation indices and vegetation patch cover over time. Plots that equate to the size of a
pixel in the satellite imagery are rarely comprised of pure vegetation cover of a single type
of vegetation in arid habitat. However, to validate the potential of Sentinel 2 imagery in arid
zone ecology, it is important to discriminate and monitor the cover of different vegetation
patch types over time. Thus, our results related the grass cover with seed-productivity,
allowing its monitoring from the space, knowing that the satellite-derived vegetation
indices will detect only the peak of cover/productivity. This suggests that in the future it
will be possible to monitor the seed-availability across Gap Hills remotely, if one can focus
on patches that are known to contain grass, and ignore the ‘greening’ signal from areas
of shrub cover. By doing this, and estimating the spectral vegetation indices from these
potential areas of grass, the imagery should be able to discriminate effectively between
times with low grass cover, and those times when grass cover and productivity is at its
peak. The lack of temporal reliability shown in December and January could be due to
the short-lasting nature of the vegetation, rather than an actual unreliability of the satellite
sensitivity signal. The spectral vegetation indices we used are designed to detect greenness
differences (i.e., wavelengths’ spectra) emitted from the vegetation (Kalaitzidis, Heinzel &
Zianis, 2010; Xue & Su, 2017). Therefore, they are expected to be influenced by vegetation
phenology. Additionally, when we considered the clusters’ subset that best characterized
the different dominant vegetation kind (or bare soil), we found that only in October the
MSAVI2was able to distinguish between areas with high Enneapogon seed-productivity, bare
soil and dense shrub vegetation. However, the difference between the most stable clusters,
the shrub and bare ground quadrats, held even when the environmental conditions became
more arid (January 2017), despite the reduced power of the analysis at that time due to the
reduced sample size of the quadrats’ subset. Other satellite remote sensing techniques and
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indices might be more suitable for detecting specific changes in phenology accounting for
changes in water, chlorophyll content and plant litter (e.g., Berry & Roderick, 2002; Szabó,
Gácsi & Balázs, 2016).

We detected a slight difference in performance between the soil-adjusted MSAVI2 and
soil-unadjusted NDVI along time and across clusters, with the NDVI always detecting the
difference between shrub and bare ground and shrub and grass patches, while MSAVI2
mainly distinguished between bare ground and shrub patches. Other studies in arid habitats,
found that at low vegetation cover (<30%), the unadjusted vegetation index performed
better than the adjusted one (e.g., Ren & Feng, 2014). Additionally, a previous study tested
the use of several vegetation indices across the whole Fowlers Gap Research Station, using
Landsat TM and intensive ground surveys (six transects of 3 km in 49 sites and 147 3
m × 3 m quadrats, (Chen, Scientific & Gillieson, 2014) found that both the MSAVI2 and
NDVI were reliable only in wet conditions. Our results showed that the MSAVI 2 andNDVI
reliably discriminate between high vegetation cover and bare ground areas over time.

Although the overall size of our study area was much smaller than the area used in other
studies in the literature, the analysis of Sentinel’s imagery was able to capture the variability
across the landscape, when the vegetation was at its peak. Sentinel’s higher spatial resolution
has been shown to provide higher accuracy in the retrieval of vegetation phenology of an
heterogeneous landscape, like a Dutch barrier island, thanmedium-resolution sensors (e.g.,
MODIS, Vrieling et al., 2018). Sentinel-derived NDVI seems to better reflect soil moisture
condition of areas in extreme drought conditions than lower resolution sensor-based
NDVI (West et al., 2018). These results suggest that Sentinel’s higher spatial resolution
better represents ecologically heterogeneous environments such as the arid ones studied
here. This is important, because to understand the responses of particular animals to
their environmental fluctuations, we need to focus on the relevant patches of vegetation.
Some animals, such as kangaroos and others large herbivorous mammals, may respond
to the general greening response detected by the difference between shrub patches and
bare ground, because that will reflect the vegetative status and abundance of shrubs –their
food. However, for animals that are strictly granivorous i.e., which dependent solely on the
productivity of patches of grass that are detectable only when at peak seed-productivity, as
demonstrated here, a challenge remains.

An optimal spatial resolution allows a reliable estimation of the structural
characterization of plant association (e.g., species identification), maintaining information
on vegetation types and abundance, which relates with spectral heterogeneity (Nagendra,
2001). Thus, whilst in homogenous landscapes (e.g., woodland) a lower spatial resolution
may be optimal, more complex and patchy environments (e.g., arid areas) may require a
higher spatial resolution to be optimal. For example, to analyze the spatial movement of
Topi antelopes (Damaliscus lunatus) and vegetation phenology, MODIS images (250 m
spatial resolution) revealed a pattern that AVHRR (5 km spatial resolution) did not detect
(Bro-Jørgensen, Brown & Pettorelli, 2008). Furthermore, understanding animals’ individual
variation in habitat use is a key step to reveal their variation in breeding phenology and
to test the possible evolutionary responses to climate change (Dall et al., 2012; Merilä &
Hendry, 2014). For example, a study over 12 years showed a match between the phenology
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of oak trees across a woodland, with caterpillar availability, and the individual variation
in breeding phenology of a population of great tits (Parus major) and blue tits (Cyanistes
caeruleus, Cole et al., 2015). This means that it is possible to evaluate the synchrony
between trophic levels at a scale relevant to the individuals in a population, identify
the environmental cues used by animals to time their breeding and, consequently, to
understand how selection act on these phenological traits (Durant et al., 2007; Cole et al.,
2015). In this context, our results, showing the Sentinel-derived indices’ discrimination
of vegetation types, suggest that 10 m may be a sufficient resolution to catch some key
components of landscape variation in arid environments and, therefore provide a tool for
studying animal responses to environmental phenology at a scale relevant to individuals.

CONCLUSION
Overall, we showed that the spectral vegetation indices MSAVI2 and NDVI, calculated
from the freely available and spatially highly resolved Sentinel 2 satellite images, are able
to provide reliable estimates of both spatial and temporal vegetation cover, with some
limitations. The temporal reliability seemed to reflect the short-lasting nature of the key
plant species present. However, the fine discrimination between vegetation types (i.e.,
Enneapogon versus shrubs or bare ground) was accurate only during an ecologically
productive period, when this small dominant species reached their peak. Less subtle
vegetation type discrimination (i.e., bare ground vs shrub vegetation) held over time,
despite spatial heterogeneity and prolonged dry conditions that can reduce the ‘green-
vegetation’ signal, especially in an arid environment. Therefore, by previously identifying
patches covered by specific vegetation (e.g., performing vegetation surveys when the
vegetation in study is at its peak), using Sentinel 2-derived spectral vegetation indices,
it might be possible to track their responses to abiotic conditions (e.g., rainfall). In this
way, the actual condition of food resource availability (i.e., grass) across a habitat might
be estimated at high spatial resolution. Consequently, it would be possible to study how
animals respond to this unpredictable environment (including local rainfall variability,
Acworth et al., 2016) overcoming the complex relationship between rainfall and vegetation
responses, which make generalised predictions quite unreliable (Reynolds et al., 2004). We
suggest that the data generated by the Sentinel 2 will provide a reliable estimation of habitat
condition (and food availability) over time, with some limitation with respect to some
components of the vegetation. Satellite remote sensing of vegetation will enable better
long-term studies of animal responses to the unpredictable conditions in the arid zone.
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