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ABSTRACT
Aim. This study has three broad aims: to (a) develop genus-specific primers for High
Resolution Melt analysis (HRM) of members of Cyclopia Vent., (b) test the haplotype
discrimination of HRM compared to Sanger sequencing, and (c) provide an example of
usingHRMtodetect novel haplotype variation inwildC. subternataVogel. populations.
Location. The Cape Floristic Region (CFR), located along the southern Cape of South
Africa.
Methods. Polymorphic loci were detected through a screening process of sequencing
12 non-coding chloroplast DNA segments across 14 Cyclopia species. Twelve genus-
specific primer combinations were designed around variable cpDNA loci, four of which
failed to amplify under PCR; the eight remaining were applied to test the specificity,
sensitivity and accuracy of HRM. The three top performingHRMPrimer combinations
were then applied to detect novel haplotypes in wild C. subternata populations, and
phylogeographic patterns of C. subternata were explored.
Results. We present a framework for applying HRM to non-model systems. HRM
accuracy varied across the PCR products screened using the genus-specific primers
developed, ranging between 56 and 100%. The nucleotide variation failing to produce
distinct melt curves is discussed. The top three performing regions, having 100%
specificity (i.e. different haplotypes were never grouped into the same cluster, no false
negatives), were able to detect novel haplotypes in wild C. subternata populations
with high accuracy (96%). Sensitivity below 100% (i.e. a single haplotype being
clustered into multiple unique groups during HRM curve analysis, false positives) was
resolved through sequence confirmation of each cluster resulting in a final accuracy of
100%. Phylogeographic analyses revealed that wild C. subternata populations tend to
exhibit phylogeographic structuring across mountain ranges (accounting for 73.8% of
genetic variation base on an AMOVA), and genetic differentiation between populations
increases with distance (p< 0.05 for IBD analyses).
Conclusions. After screening for regions with high HRM clustering specificity—akin
to the screening process associated with most PCR based markers—the technology was
found to be a high throughput tool for detecting genetic variation in non-model plants.

Subjects Molecular Biology, Plant Science
Keywords High Resolution Melt analysis (HRM), Cape Floristic Region (CFR), Phylogeography,
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INTRODUCTION
Describing intra-population genetic diversity across a species range requires access to
sufficiently variable genetic markers that can be applied to large sample sets in an efficient
and cost effective manner. The lack of widely transferable marker systems with these
qualities has impeded phylogeographic work in the past, especially in developing countries
that harbour much of the planet’s biodiversity (Beheregaray, 2008). High Resolution Melt
analysis (HRM, sometimes acronymed to HRMA) is a high throughput and cost effective
means of screening sequence variation post Polymerase Chain Reaction (PCR), offering the
unique advantage of providing rapid insights into the levels of sequence variation among
samples through melt curve clustering. Having the flexibility to lend itself to a variety of
applications, the technology has been widely adopted in clinical (reviewed by Vossen et al.,
2009) and crop research (reviewed by Simko, 2016). However, despite its apparent benefits,
HRM appears to be underutilized for non-model organisms.

TheHRMprocess is briefly described here. The inclusion of aDNA saturating fluorescent
dye during PCR produces double stranded DNA molecules with dye bound to each base
pair. As such, the presence of double stranded PCR product is measured by its fluorescence.
As the PCR products are heated the double stranded DNA molecules dissociate, or melt,
releasing the dye, resulting in a decrease in detected fluorescence. The rate at which a DNA
fragment melts is dependent on the binding chemistry of the nucleotide sequence of the
complementary strands under analysis. Therefore, by plotting the decrease in fluorescence
against the steady rate of temperature increase, a melt curve determined by the DNA
template under analysis is produced. The resultant melt curve differences (curve shape and
melt peak (Tm)) are potentially indicative of sequence variation among PCR products.

The genotyping and mutation scanning abilities of HRM have been tested using well
described systems in the past, including: artificially generated SNPs (Reed & Wittwer, 2004)
and loci from the human genome (Ebili & Ilyas, 2015; Garritano et al., 2009; Li et al., 2014;
Reed & Wittwer, 2004), where the technology was found to be highly sensitive and specific,
with reproducible results. These studies suggest that HRM is capable of detecting single
SNP variation with an average sensitivity of 95% (sd = 8%) and specificity of 97% (sd =
7%) in amplicons of various lengths (50–1,000 bp, Reed & Wittwer, 2004; 51–547 bp, Li et
al., 2014; and 211–400 bp, Garritano et al., 2009). However, such accuracy is only possible
if the starting DNA template is of sufficient quality and quantity (Ebili & Ilyas, 2015). Being
non-destructive in nature, the PCR products can also be Sanger sequenced post HRM
(Vossen et al., 2009). The power of the HRM approach to screen sequence variation is that
it helps to avoid redundant sequencing of identical nucleotide motifs (Dang et al., 2012;
Vossen et al., 2009), thereby potentially reducing overall sequencing costs of projects where
intra-population genetic variation may be low, as in the slow evolving chloroplast genome
of plants (Schaal et al., 1998). In addition, HRM has been shown to be more sensitive
than traditional gel electrophoresis methods for microsatellite genotyping (Distefano et al.,
2012). Fast, reliable and cost effective—HRM appears to be an ideal molecular tool for
studies that require the characterization of a large number of samples that are likely to
exhibit low nucleotide variation.
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Despite its apparent utility, HRM has rarely featured in phylogeographic work. Smith,
Lu & Alvarado Bremer (2010) were some of the first to apply HRM to population genetics.
By melting short amplicons (40–60 bp) that targeted known SNPs, they successfully
genotyped 121 accessions from five wild swordfish (Xiphias gladius Bloch, Xiphiidae)
populations. Cubry et al. (2015) were successful in applying HRM for the discrimination of
four cpDNA haplotypes that corresponded with the geographic structuring of black alder
(Alnus glutinosa (L.) Gaertn., Betulaceae), screening 154 accessions across 23 populations.
These studies, and most others applying HRM to non-model organisms (Dang et al.,
2012; Li et al., 2012; Radvansky et al., 2011), set out to develop HRM primers having prior
knowledge of the nucleotide variation under analyses. Unfortunately, such knowledge is
generally not available for the study of non-model organisms and the application of HRM
for detecting and genotyping of novel genetic variation in wild populations is still rare
(Nunziata et al., 2019; Sillo et al., 2017). High Resolution Melt analysis appears to be an
underutilized resource by phylogeographers.

Here we test the application of HRM for non-model taxa, Cyclopia, a commercially
important plant genus endemic to the CFR. This study: (a) develops a set of genus-specific
primers for the HRM analysis of non-coding cpDNA loci to test: (b) the haplotype
discrimination sensitivity, specificity, and accuracy of HRM, and (c) the potential
application of HRM for haplotype detection in wild Cyclopia populations, focusing here on
C. subternata. This study demonstrates that (when optimized) HRM is a fast, accurate, and
cost effective tool for haplotype detection in non-model organisms, successfully describing
the geographic structuring of genetic diversity in wild C. subternata populations.

MATERIALS & METHODS
Taxonomic background and sampling
This study focuses on members of the genus Cyclopia Vent., which is endemic to the Cape
Floristic Region (CFR) and consists of 23 described species; two of which are considered
extinct (Cyclopia filiformis Kies, Cyclopia laxiflora Benth.) and various others ranging from
critically endangered to vulnerable (SANBI, 2017). Cyclopia species and populations tend
to exhibit highly localised distributions (Schutte, 1997), making them potentially vulnerable
to genetic pollution from foreign genotypes translocated for the cultivation of Honeybush
tea and associated products (Ellstrand & Elam, 1993; Levin, Francisco-Ortega & Jansen,
1996; Potts, 2017; Schutte, 1997)—an increasingly common practice in the CFR (McGregor,
2017). The characterization and conservation of wild Cyclopia genetic diversity is therefore
of high importance.

To maximise the amount of genetic variation detected and the transferability of the
primers designed across the genus, 14 species (summarized in Table 1, closed circles in
Fig. 1) were sampled from the full geographic range of the genus. Additionally, eight
wild populations (open circles in Fig. 1) of C. subternata Vogel. were sampled to test the
potential application of HRM for haplotype detection using the genus-specific primers
generated. Between 10 and 24 samples were collected per C. subternata population. Fresh
leaf material was clipped from the growing tips of wild specimens over the period of
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Table 1 Species and non-coding cpDNA regions screened for HRM primer development for the non-model plant genus CyclopiaVent.

Non-coding cpDNA regions sequenced (dependent on successful amplification)

Species rpl32-trnL
intergenic
spacer

ndhA
intron

trnQ-50rps16
intergenic
spacer

atpI-atpH
intergenic
spacer

petL-psbE
intergenic
spacer

trnD-psbM
intergenic
spacer

trnG-trnG2G
intergenic
spacer

30trnV-ndhC
intergenic
spacer

TrnfM-trnS psbJ-petA psaI-accD psbD-trnT

C. alpina X X X X

C. aurescens X X X X X X X

C. bolusii X

C. burtonii X X X X

C. buxifolia X X X X

C. galioides X

C. genistoides X X X X X

C. intermedia X X X X X X X X X X X

C. longifolia X X X X X X X X X X X

C. maculata X X X X X

C. plicata X X X X X X

C. pubescens X X X X X X X X X X X

C. sessilifolia X X X X X X X X X

C. subternata X X X X X X X X X X

Following PCR amplification, only clear, bright bands visualized through gel electrophoresis were selected for sequencing with a maximum of six and a minimum of one sample selected for sequencing per
species.
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Figure 1 Sample distributionmap. Study domain superimposed with the distribution of the CFRs fyn-
bos biome, to which Cyclopia is endemic. Inset indicates the position of the study domain in relation to
South Africa and the African continent. Distribution of samples included in non-coding cpDNA haplo-
type screening for HRM primer development are displayed (filled circles) in conjunction with the loca-
tions of the C. subternata populations included in the phylogeographic analysis (open circles). Closed cir-
cles are numbered based on species identity: 1= C. galioides, 2= C. genistoides, 3= C. buxifolia, 4= C.
maculata, 5= C. sessilifolia, 6= C. burtonii, 7= C. aurescens, 8= C. bolusii, 9= C. subternata, 10= C. pli-
cata, 11= C. alpina, 12= C. intermedia, 13= C. longifolia, 14= C. pubescens.

Full-size DOI: 10.7717/peerj.9187/fig-1

2015–2018 and placed directly into a silica desiccating medium for a minimum of two
weeks prior to DNA extraction. All sampling was approved by the relevant permitting
agencies, Cape Nature (Permit number: CN35-28-4367), the Eastern Cape Department of
Economic Development, Environmental Affairs and Tourism (Permit numbers: CRO 84/
16CR, CRO 85/ 16CR), and the Eastern Cape Parks and Tourism Agency (Permit number:
RA_0185).

DNA extraction
Whole genomic DNA was extracted from silica-dried leaf material using a CTAB approach
modified from Doyle & Doyle (1987), the full extraction protocol is described in Methods
S1. Extracted DNA was suspended in 50 µL molecular grade water for PCR amplification
with the products sequenced using Sanger sequencing (Sanger, Nicklen & Coulson, 1977).
Samples that failed to amplify during PCR, were subject to repeat DNA extracted from new
leaf material and then PCR amplified.

Developing Cyclopia specific HRM primers
While HRM has been shown to successfully detect sequence variation in PCR products
of various sizes (see introduction), it has been suggested that shorter PCR products are
likely to produce more pronounced melt curve differences than larger products with the
same nucleotide variation (Dang et al., 2012; Dobrowolski et al., 2009; Li et al., 2014; Liew
et al., 2004; Smith et al. 2013; Taylor et al., 2011). Universal marker systems, such as those
developed by Shaw et al. (2005) and Shaw et al. (2007) are therefore unlikely to be directly

Galuszynski and Potts (2020), PeerJ, DOI 10.7717/peerj.9187 5/26

https://peerj.com
https://doi.org/10.7717/peerj.9187/fig-1
http://dx.doi.org/10.7717/peerj.9187


transferable to HRM, as they amplify relatively large PCR products, thus HRM specific
primers must be developed to target shorter, variable regions.

Developing HRM primers requires prior knowledge of the nucleotide variation of
regions across samples. The means of acquiring such data is dependent on the resources
available to the researcher and the availability of existing sequence data for the study
organisms. Thus template data could range from Next Generation Sequencing derived
genomic data to the application of HRM to existing microsatellite markers, or existing
data available from international nucleotide sequence databases such as GenBank
(https://www.ncbi.nlm.nih.gov/genbank/).

For Cyclopia, however, existing sequence data (predominantly from the ribosomal ITS
region) exhibited low levels of differentiation amongst species (Galuszynski & Potts, 2017;
Van Der Bank et al., 2002), lacking the variation required for population level analyses.
Therefore, polymorphic loci were identified from non-coding cpDNA regions via Sanger
sequencing (Sanger, Nicklen & Coulson, 1977) of PCR products amplified using the
protocols and universal primers described by Shaw et al. (2005) and Shaw et al. (2007).
A total of 16 non-coding cpDNA regions under went PCR, however four regions failed to
amplify (and could not be sequenced). The 12 regions that were sequenced are summarized
in Table 1, all necleotide sequence data is availible from GenBank and accession numbers
are provided in Table S1.

Sequences were assembled using CondonCode Aligner [v2.0.1] (Codon Code Corp,
http://www.codoncode.com). The PHRED base-calling program (Ewing et al., 1998) was
used to assign a quality score for each sequence, then sequences were automatically
aligned using ClustalW (Thompson, Higgins & Gibson, 1994) and visually inspected for
quality. All short indels (<3 bp) occurring in homopolymer repeat regions were considered
alignment errors and removed from the alignment. The consensus sequence alignment for
polymorphic regions were exported and utilized in HRM primer design.

Primer design was guided by two constraining factors: (1) sequences had to contain
conservative regions with a high GC content that could form the primer binding template,
and (2) these regions had to flank polymorphic sites. Wherever possible, internal HRM
primers were designed in a way that would split a region into neighboring loci, as suggested
by Dang et al. (2012). This approach allows for adjacent loci to be sequenced in a single
run by amplifying the full region, and then during alignment, split the region into the
neighboring loci that underwent HRM analysis. This approach reduces the time involved
in sequence alignment and number of samples required to be sequenced forHRMclustering
verification.

High Resolution Melt specific primers were designed using the online resource Primer-
Blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The sub-family Faboideae was
used as the reference taxon to check for primer specificity searched against the NCBI
Reference Sequence representative genomes (http://www.ncbi.nlm.nih.gov/refseq/); PCR
product size was limited to between 50 and 550 bp (as this falls within the amplicon
size predicted to produce the highest levels of genotyping accuracy; Dang et al., 2012;
Dobrowolski et al., 2009; Li et al., 2014; Liew et al., 2004; Taylor et al., 2011), primer melting
temperature was set at 60 ◦C (± 3 ◦C) (as suggested by Taylor et al., 2011) and a maximum
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Table 2 Cyclopia specific primers designed for testing HRM haplotype discrimination. Primers used to screen haplotype variation in wild C.
subternata populations are indicated in bold. Primer details provided include; non-coding cpDNA region the primers are located in, as well as each
primers’ annealing temperature (Tm) in degrees Celcius, GC content, and sequence motif.

Region Primer Direction Tm (◦C) GC (%) Sequence (5′→3′)

MLT_C1 F 57.3 43.5 ACTCCTCTTCTATTCATGGGGA
MLT_C2 R 58.0 50.0
MLT_C3 F 61.8 40.9 TCAACGAACGATTCGAGGAATA

trnG intron

MLT_C4 R 61.1 45.5 TGCTTCAATCTCTCCTACCCAA
MLT_M1 F 58.0 43.5 TGTCGAGAACCCTTATACTCTCApctL-psbE intergenic

spacer MLT_M2 R 58.7 47.6 TACCAAGGGTGTCTTTCGAGT
MLT_S1 F 64.3 50 ATTACAGATGAAACGGAAGGGC
MLT_S2 R 61.5 45.5 TGGGGGTTTCAAAGCAAAGG
MLT_S3 F 61.5 45.5 CCTTTGCTTTGAAACCCCCA

atpI-atpH intergenic
spacer

MLT_S4 R 66.4 36.5 TTCCCGTTTCATTCATTCACATTCA
MLT_U1 F 59.1 40.0 AGGTACTTCTGAATTGATCTCATCC

ndhA intron
MLT_U2 R 62.2 52.4 GCAGTACTCCCCACAATTCCA
MLT_V1 F 59.9 60.0 CTCCTTCCCTAAGAGCAGCGrpl32-trnL intergenic

spacer MLT_V2 R 59.2 40.0 GTTGGAATAATCTGAATTAGCCGGA

of 20 primer pairs were returned per search. The positions of these primers within their
respective region alignment were manually evaluated to ensure that they occurred in well
conserved sites, i.e., any primers occurring across polymorphic loci were discarded.

Eleven genus-specific primer pairs (Table S2) were developed from seven of the twelve
non-coding cpDNA regions, of which eight primer pairs successfully amplified PCR
products and were thus selected for HRM screening (Table 2). The remaining three were
excluded from the analysis due to poor PCR amplification. The primer pairs selected
for HRM screening amplified between four and six unique haplotypes each, across five
cpDNA regions (nucleotide differences are summarized in Table 3). Primers selected for
the evaluation of HRM accuracy are reported in Table 2.

Testing PCR amplification of HRM primers
The genomic DNA extracted for samples that amplified unique haplotypes (as determined
from the sequence data used to develop HRM primers) was quantified using a NanoDrop
2000c spectrophotometer (Thermo Fisher Scientific, Wilmington, DE19810r Scientific,
USA) and 5 ng/L DNA dilutions were made for HRM analysis. High Resolution Melt
analysis was conducted for all primer pairs developed, with 16 replicates amplified per
sample (haplotype). However, only replicates that produced sufficient PCR products, as
determined from PCR amplification curves (see examples in Figs. 2 and 3) were included in
the evaluation of HRM haplotype discrimination (number of replicated subjected to HRM
analysis for each haplotype are reported in Table 3). This PCR amplification screening
approach was adopted as the aim of this phase of the study was to test the haplotype
discrimination abilities of HRM based on the underlying nucleotide differences between
haplotypes and not the quantity and quality of PCR product under analysis (which can
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Table 3 Nucleotide differences and clustering results for HRM discrimination of known haplotype. Sample ID of the accessions that were PCR amplified in replicates
of 16, the number of replicates that successfully amplified during PCR and subject to HRM analysis is given (N), followed by HRM haplotype discrimination (sensitivity,
specificity and accuracy), the grouping of each replicate into a HRM cluster is provided for each haplotype amplified per primer combination (clusters 1–11), a summary
of the nucleotide differences between haplotypes is also provided.

Primer pair N Sen Spe Acc HRM grouping of replicates into cluster 1–cluster 11 Nucleotide difference summary

1 2 3 4 5 6 7 8 9 10 11

MLT C1-MLT C4 (150
bp) (TrnG intron)

19 20 72 205

T A T A

Haplotype A 14 71 94 88 2 10 2 G T G .

Haplotype B 16 69 44 52 11 4 1 . . . .

Haplotype C 11 91 49 58 10 1 . . . C

Haplotype D 11 73 44 50 8 1 3 . . G .

MLT C3-MLT C4 (236
bp) (TrnG intron)

41 48-55 62

T # A

Haplotype A 14 100 43 57 14 . # T

Haplotype B 16 56 27 36 9 6 1 . – .

Haplotype C 12 58 79 75 4 7 1 G # .

Haplotype D 14 79 36 46 11 3 . # .

#= AAAAATTG

MLT M1-MLT M2 (170
bp) (pctL-psbE inter-
genic spacer)

84 88 110 118

G G G A

Haplotype A 15 93 98 97 14 1 A . . .

Haplotype B 16 94 67 74 15 1 . . . .

Haplotype C 14 93 98 97 1 13 . T . .

Haplotype D 16 94 67 74 15 1 . . T G

MLT S1-MLT S2 (217
bp) (atpI-atpH inter-
genic spacer)

53 54 62-
80

95

T A – G

Haplotype A 12 100 100 100 12 . . – .

Haplotype B 15 100 100 100 15 . . – A

Haplotype C 11 100 100 100 11 A C – .

Haplotype D 14 100 100 100 14 A C # .

#= TTCATAGATAACTAGTTAG
(continued on next page)
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Table 3 (continued)
Primer pair N Sen Spe Acc HRM grouping of replicates into cluster 1–cluster 11 Nucleotide difference summary

1 2 3 4 5 6 7 8 9 10 11

MLT S1-MLT S4 (527
bp) (atpI-atpH inter-
genic spacer)

75 76 86-
104

117 267 281 287 382 477-
481

T A – G C C T C *

Haplotype A 14 100 79 83 14 . . – . T . . . –

Haplotype B 10 80 100 98 8 2 . . – A . . . . –

Haplotype C 14 100 79 83 14 . . – . T . . . *

Haplotype D 14 86 100 98 12 2 A C # . . T G . *

Haplotype E 16 100 100 100 16 . . – A . . . A –

Haplotype F 14 71 100 95 10 2 2 A C – . . T G . *

#= CATAGATAACTAGTTAGTT, *= TTTTC

MLT S3-MLT S4 (310
bp) (atpI-atpH inter-
genic spacer)

52 66 72 167 262-
266

C C T C –

Haplotype A 15 100 100 100 15 T . . . –

Haplotype B 12 92 100 95 11 1 . . . . –

Haplotype C 11 91 100 95 10 1 T . . . #

Haplotype D 16 100 100 100 16 . T G . #

Haplotype E 14 93 100 95 13 1 . . . A –

#= TTTTC

MLT U1-MLT U2 (345
bp) (ndhA intron)

15 22 47 79 135-
141

149 172 183 220 253 289

T T G C # C A A G T A

Haplotype A 16 100 100 100 16 . . . . # . . . . . .

Haplotype B 11 73 100 96 8 3 . C . A # A C G . G T

Haplotype C 15 93 100 99 14 1 C . . . # . . . . . .

Haplotype D 16 63 100 91 10 3 2 1 . . A . # . . . . . .

Haplotype E 12 92 100 99 11 1 . . A . – . . . A . .

#= TATCCCC

MLT V1-MLT V2 (340
bp) (rpl32-trnL inter-
genic spacer)

34-38 56 104

# T T

Haplotype A 14 86 65 71 12 2 – . .

Haplotype B 10 91 99 98 10 # . .

Haplotype C 12 92 66 73 12 # A A

Haplotype D 10 100 89 92 10 # A .

#= ATTATT
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Figure 2 High ResolutionMelt curve examples.Melt curves and their difference curves for the PCR
products amplified by three of the genus specific primers developed. Curves are ordered in decreasing
HRM clustering accuracy and the bottom curves (E, F) were generated using the primer pair MLT T1-
MLT T2 (TrnQ-5’rps16 intergenic spacer) that was excluded from HRM analysis due to poor amplifi-
cation resulting in inconsistent melt curve production, the details of this primer pair, in addition to all
primer pairs that were excluded from HRM haplotype discrimination analysis due to poor PCR amplifi-
cation, are provided in Table S1. HRM curves (A, C, E), the normalized change in florescence associated
with PCR product dissociation when heated. Melt domain identification and melt curve normalization
was automated by the HRM software in this study, this process may be required to be performed manually
on other platforms. A reference melt curve is selected and used as a baseline to plot melt curve differences
across the melt domain, therefore difference curves (B, D, E) have different X axes. HRM clusters are au-
tomatically generated and colorised by the HRM software used. Melt curves were generated from the PCR
products generated using the primer pairs, (A, B) MLT S1–MLT S2 (atpI-atpH intergenic spacer), (C, D)
MLT C3–MLT C4 (trnG-trnG2G intergenic spacer), and (E,F) MLT T1–MLT T2 (trnQ-5’rps16 intergenic
spacer).

Full-size DOI: 10.7717/peerj.9187/fig-2

vary due to pippetting errors). Regions that failed to produce consistent PCR amplification
curves (possibly due to non-specific primer binding), were excluded from subsequent
analysis (see examples of PCR and HRM curves excluded from analysis in Figs. 2 and 3).

PCR and HRM reactions
All reactions (PCR amplification and subsequent HRM) took place in a 96 well plate CFX
Connect (Bio-Rad Laboratories, Hercules, California, U.S.A.) in 10 µL reaction setups,
consisting of 4 µL genomic DNA (5 ng/µL), 1 µL each primer (10 mM) and 5 µL Precision
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Figure 3 Framework used to developed, test, and apply HRM to the genus Cyclopia, a group of non-
model organisms. This involves identifying polymorphic loci (A), designing taxon specific primers (B),
testing PCR amplification success of the taxon specific primers (C), testing the HRM clustering accuracy
of PCR products of known nucleotide sequence motif (D), and then screening novel nucleotide variation
across loci that have proven to result in high HRM accuracy (E).

Full-size DOI: 10.7717/peerj.9187/fig-3

Table 4 Protocol for PCR amplification and subsequent HRM curve generation. Primer specific annealing temperatures (Tm) are provided in
Table 2.

Process Step Temperature Time Number of cycles

Initial Denaturing 95 ◦C 2 min 1
Denaturing 95 ◦C 10 sec
Annealing/Extension+ Plate Read Primers mean Tm 30 sec 40

PCR
Amplification

Extension + Plate Read 72 ◦C 30 sec
95 ◦C 30 sec 1Heteroduplex

formation 60 ◦C 1 min 1
HRM
analysis

HRM+ Plate Read 65–95 ◦C (in 0.2 ◦C increments) 10 sec/step 1

Melt Supermix containing hot-start iTaqTM DNA polymerase, dNTPs, MgCl2, EvaGreen
dye (Bio-Rad Laboratories, Hercules, California, U.S.A.).

Polymerase Chain Reaction amplification and melt conditions were as per
manufacturer’s specifications (Table 4) and the annealing temperature set to the primer
pair’s mean Tm (melting temperature), reported in Table 2. The automated clustering
algorithm of the High Precision Melt softwareTM (Bio-Rad Laboratories, Hercules,
California, U.S.A.) was performed on the normalized florescence data and used to group
melt curves into clusters that represent putative haplotypes. HRM clustering settings used
were 1Tm threshold at 0.05 ◦C and curve shape sensitivity settings and temperature
correction, 70% and 20 respectively.
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HRM discrimination of sequenced haplotypes
Following the descriptions of Altman and Bland (1994), HRM discrimination (sensitivity,
specificity and accuracy) was determined for each of the haplotypes amplified by the eight
HRM primers that produced sufficient PCR product for HRM analysis. Sensitivity, or the
true positive rate, refers to HRM’s ability to correctly assign haplotype replicates into the
same HRM cluster.

Sensitivity=TP/(TP+FN)

TP=TruePositiveFN= FalseNegative

Specificity, or true negative rate, is the measure of HRM’s ability to correctly discern
between haplotypes, grouping them into different HRM clusters.

Specificity=TN/(TN+FP)

TN=TrueNegativeFP= FalsePositive

The accuracy of HRM refers to how close haplotype clustering reflects the true identities
of the haplotypes and was measured as:

Accuracy= (TP+TN)/(TP+FP+TN+FN)

Since sensitivity below 100% will be accounted for during HRM cluster (i.e., putative
haplotype) confirmation by sequencing (with a subset of samples from each unique HRM
cluster sequenced), all regions with 100% specificity were included for the detection of
novel haplotypes in wild C. subternata populations.

The potential for HRM to detect haplotype variation in wild
populations
Only three regions (MLT S1–MLT S2, MLT S3–MLT S4, and MLT U1–MLT U2) were
found to have an HRM clustering specificity of 100% (Fig. 4). Thus these regions were
screened for haplotype variation across 142 accessions from eight wild C. subternata
populations.

The same approach as Dang et al. (2012) was employed, with each sample run in
duplicate and haplotype clustering performed on a single population basis with the
intention of reducing errors resulting from variation of PCR product concentration and
quality across samples from different population extractions. This was achieved by using
the built in well group function in the CFX ManagerTM Software (Bio-Rad Laboratories,
Hercules, California, U.S.A.), thus multiple populations could be included in a run, but
analyses separately for HRM clustering.

The cpDNA regions that were used to design the primers used for HRM haplotype
detection were amplified and sequenced (following the same protocols as before) to
confirm the haplotype identity of HRM clusters. The loci amplified by MLT S1–MLT S2
and MLT S3–MLT S4 are adjacent to one another and by sequencing the full atpI-atpH
intergenic spacer, the sequence identity of both loci could be confirmed with reduced
sequencing and alignment effort. Moreover, the position of the loci amplified by the HRM
primers occurred near the center of their respective parent regions and unidirectional
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Figure 4 Summary of the (A) specificity, (B) sensitivity and (C) accuracy for the regions used to test
haplotype discrimination by HRM.

Full-size DOI: 10.7717/peerj.9187/fig-4

sequencing using the reverse primers of Shaw et al. (2007) proved sufficient for verifying
the sequencemotifs underHRManalysis. Aminimumof three accessions representing each
HRM cluster (i.e., putative haplotype) in each population were sequenced for haplotype
verification. Samples whose replicates were classified as two different clusters, thus having
uncertain haplotype identity, were also sequenced to ensure they were assigned correctly.
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A total of 46 and 38 accessions were sequenced for the atpI-atpH intergenic spacer and
ndhA intron, respectively. Haplotype discrimination by HRM was calculated using the C.
subternata samples sequenced for haplotype confirmation, following the same formula as
before.

Phylogeographic analysis of C. subternata
The haplotypes detected via HRM clustering and confirmed by sequencing (described
above) were assembled following the same procedure described under ‘DevelopingCyclopia
specific HRM primers’. All wild C. subternata samples that underwent HRM analysis were
then assigned the haplotype identity of the HRM cluster they belonged using a custom R
script written by A.J.P (provided as File S1 which includes example files for running the
script). The cpDNA regions under investigation (atpI-atpH intergenic spacer and ndhA
intron) are maternally inherited in tandem and not subject to recombination (Reboud &
Zeyl, 1994), and were therefore concatenated for subsequent analysis.

The genealogical relationships among the concatenated haplotypes were determined
from a Statistical Parsimony (SP) network (Fig. 5 inset) constructed in TCS [v1.2.1]
(Clement, Posada & Crandall, 2000). Two C. intermedia E. Mey. individuals with existing
sequence data for the atpI-atpH intergenic spacer and ndhA intron generated during the
primer development phase of the study were included as outgroup taxa. Default options
were used to build the network and all indels were reduced to single base-pairs as the
software treats a multiple base pair gap as multiple mutations. Haplotype distributions
were mapped (Fig. 5) in QGIS [v3.2.2] (QGIS Development Team, 2018).

The following population genetic differentiation measures were calculated from the
concatenated haplotypes: pairwise Gst (Nei, 1973), G‘‘’’st (Hedrick, 2005) (both indicators
of allele fixation) Jost (2008), which measures allelic differentiation between populations,
and Prevosi’s dist (Prevosti et al., 1975) a measure of pairwise population genetic distance
that counts gaps as evolutionary events (all gaps were reduced to single base pair events).
Thesemeasures provide insight into current allele distributions without assuming historical
gene flow patterns (Jost et al., 2018). Isolation By Distance (IBD) was evaluated among
populations testing the correlation between these genetic differentiation measures and
pairwise geographic distance using a Mantel test (Wright, 1943) with 9,999 permutations,
as implemented using the ade4 [v1.7] library (Dray & Dufour, 2007; Kamvar, Tabima &
Granwald, 2014) inR [v3.5.1] (R Core Team, 2018). In order to account for the possibility of
non linear population expansion, relationship between population differentiationmeasures
and the natural logarithm of geographic distance was tested following the same approach
(Rousset, 1997). Finally, genetic differentiation across themountain ranges that populations
were sampled from was tested via an Analysis of Molecular Variance (AMOVA) (Excoffier,
Smouse & Quattro, 1992). The mountain ranges included in the AMOVA included: the
Tsitsikamma (3 populations, 52 samples), Outeniqua east (2 populations, 31 samples),
Outeniqua west (2 populations, 35 samples), and Langeberg (1 population, 24 samples)
ranges, as described in Table 5.
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Figure 5 Haplotype distribution and number of accessions for the eight C. subternata populations
screened via HRM. Black circles mark C. intermedia samples collected from the Swartberg mountains and
included as out-group taxa. Inset is the genealogical relationship between haplotypes ascertained using
the Statistical Parsimony algorithm. Haplotype frequency is indicated as a proportion of the circles rep-
resenting each population, with total number of accessions provided in parenthesis. The color-coding in
the map corresponds to the SP network. Population naming follows the description in Table 4. GAR, Gar-
cia’s Pass located in the Langeberg; OUT, Outeniqua Pass and BP, Bergplaas MTO located in the western
Outeniqua mountains; KNYS, Diepwalle Knysna and PLETT, Plettenberg Bay in the eastern Outeniqua
mountains, and the BKB, Bloukrans Bridge; LK, Langkloof, and KP, Kareedouw Pass in the Tsitsikamma
mountains.

Full-size DOI: 10.7717/peerj.9187/fig-5

Table 5 Cyclopia subternata population locations. The geographic co-ordinates, number of accessions screened via HRM, and haplpotype fre-
quencies (as detected by HRM and verified by sequencing) are given for each C. subternata population. Nucleotide differences among haplotypes are
provided in Table S3.

Mountain range Population Co-ordinates N Haplotype

S E A B C D E

Langeberg Garcia’s pass (GAR) −33.96 21.22 24 – – – 24 –
Outeniqua W Outeniqua Pass (OUT) −33.88 22.40 20 14 – – – 6

Bergplaas MTO (BP) −33.91 22.67 15 15 – – – –
Outeniqua E Diepwalle, Knysna (KNYS) −33.92 23.14 15 15 – – – –

Plettenberg bay (PLETT) −34.06 23.26 16 16 – – – –
Tsitsikamma Bloukrans Bridge (BKB) −33.97 23.65 18 14 – 4 – –

Langkloof (LK) −33.87 23.91 10 9 – – – 1
Kareedouw pass (KP) −33.97 24.22 24 19 5 – – –

RESULTS
HRM discrimination of sequenced haplotypes
High Resolution Melt curve clustering of haplotypes identified via sequencing for primer
development produced variable results: sensitivity ranged from 56%–100%, specificity
ranged from 27%–100%, and accuracy ranged from 36%–100% (the number of replicates
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Table 6 Nucleotide varition not differentiated by HRM.

Primers Haplotypes Nucleotide difference Specificity

C-D T↔ G & C↔ A 18
B-C A↔ C 20MLT C1 - MLT C4 (TrnG intron)

B-D T↔ G 29
A-C GT↔ TA, G↔ T & T↔ A 88
A-D G↔ T & T↔ A 88
A-B GT↔ TA & G↔ T 93
A-D T↔ A 11

MLT C3 - MLT C4 (TrnG intron)
A-B 8 bp indel & T↔ A 22
B-D 8 bp indel 33
B-C T↔ G & 8 bp indel 65
C-D G↔ T 73
A-C T↔ G & T↔ A 83
A-C G↔ T & A↔ G 6MLT M1 - MLT M2 (pctL-psbE inter-

genic spacer) B-D A↔ G & G↔ T 93
MLT S1 - MLT S4 (atpI-atpH intergenic
spacer)

A-C 5 bp indel 0

A-C 6bp indel, T↔ A & T↔ A 11
A-D 6 bp indel & T↔ A 93

MLT V1 - MLT V2 (rpl32-trnL inter-
genic spacer)

C-D A↔ T 96

assigned to each HRM cluster is reported in Table 3 and sensitivity, specificity and accuracy
is summarized in Fig. 4).

Nucleotide differences between haplotypes failing to produce distinct melt curves, and
thus undifferentiated by HRM clustering, are summarized in Table 6. Of the haplotypes not
differentiated byHRM: two haplotypes differ by indels, while the remaining 15 comparisons
differ by at least one transversion, and two comparisons differed by a transversion and
transition. The haplotypes that did produce distinct melt curves differed by at least a
transition (26 cases), or multiple SNPs (16 cases), one haplotype differed by a 19 bp
indel, and another by a 6 bp indel. All haplotype sequence variation is summarized in
Table 3. As previously stated, the three HRM primer combinations with specificity of
100%, two targeting the atpI-atpH intergenic spacer (MLT S1–S2, MLT S3–MLT S4) and
one targetting ndhA intron (MLT U1–U2), were selected for haplotype discovery in wild
C. subternata populations.

Detection of haplotype variation in wild populations via HRM
High Resolution Melt curve analysis of accessions from wild C. subternata populations
revealed no variation in the cpDNA haplotypes amplified by the MLT S3–MLT S4 primer
combination, confirmed by sequencing, and the locus was subsequently excluded from
further analyses. Five distinct haplotypes were verified by sequencing a subset of samples
(ranging from three to eight individuals per population) from each HRM cluster for the
remaining two primer combinations.
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Of the 142 samples less than 29% were required to be sequenced for haplotype
confirmation. Both loci were found to have 100% specificity, i.e., HRM successfully
discriminated among all haplotypes detected in wild C. subternata populations. However,
haplotype richness was overestimated by HRM (sensitivity of 87.6% and 95.5% for MLT
S1–MLT S2 and MLT U1–MLT U2 respectively), both cpDNA regions had accuracies of
96%. However, as these additional clusters were sequenced for haplotype confirmation,
samples were assigned the true identity of haplotypes resolving any potential issues of low
sensitivity.

The final cpDNA dataset comprised 561 bp, 217 bp from the atpI-atpH intergenic
spacer (MLT S1–MLT S2) and 344 bp from the ndhA intron (MLT U1–MLT U2), with a
GC content of 29%. An additional 310 base pairs (bp) were amplified by MLT S3–MLT
S4, revealing no nucleotide variation. The dataset contained five polymorphic sites; four
transversions, one transition, and a seven bp indel (nucleotide differences summarised in
Table S3).

Cyclopia subternata phylogeography
The SP network revealed a radiation from a central ancestral haplotype, with fewmutations
separating haplotypes (Fig. 5 inset). The ancestral haplotype was present in all populations,
except the western most Garcia’s Pass population, located in the Langberg Mountains. This
population contains a single, unique haplotype. An additional two populations (Kareedouw
Pass and Bloukrans Bridge) were also found to contain rare, localized haplotypes and a
low frequency haplotype was detected in two populations located in the Tsitsikamma and
Outeniqua mountains (Fig. 5). Population genetic differentiation measures increased with
geographic distance (R2

= 0.77, 0.74, 0.70, and 0.76 for Gst, G’’st, Jost’s D and Provesti’s
dist respectively, p< 0.05 for all measures), with significance increasing when tested against
log transformed geographic distance (R2

= 0.64, 0.67, 0.61, and 0.65 for Gst, G’’st, Jost’s D
and Provesti’s dist as before, p< 0.05 for all measures). The AMOVA revealed significant
(p< 0.05) structuring across mountain ranges, accounting for 73.8% of genetic variation
(AMOVA results summarised in Table S4).

DISCUSSION
Anested framework (Fig. 3) was developed to test and applyHRM to non-model organisms,
members of the Cape endemic plant genus Cyclopia. Polymorphic sites were identified
via sequencing 12 non-coding cpDNA regions across 14 Cyclopia species. PCR primers
for HRM analysis were designed to flank these variable sites, producing 11 HRM primer
pairs across 7 regions. Eight of these pairs successfully amplified PCR products and were
subsequently analysed via HRM. Specificity of 100% was detected for three of the primer
pairs, which were then used to detect haplotype variation in wild C. subternata populations
with a haplotypes detection accuracy of 96%. Haplotype detection errors were due to false
negatives reducing HRM sensitivity. False negatives occur when HRM incorrectly assigns a
single haplotype to multiple clustering groups, an issue that is resolved when the haplotype
identity of HRM clusters is confirmed by sequencing. Optimized HRM was demonstrated
to be a powerful tool for detecting genetic variation in non-model organisms, providing
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immediate insights into within population genetic variation via automated melt curve
clustering and substantially reduced sequencing efforts. The framework provided here
offers a straightforward approach to develop and test the potential application of HRM to
non-model systems.

HRM discrimination of sequenced haplotypes
Differences in DNA melt curves, as detected by HRM, stem from the effects nucleotide
sequence chemistry has on melt peak intensity and curve shape. While HRM is reported
to be capable of discriminating between any SNP type, the approach may be constrained
by physical and chemical properties of the DNA fragment under melt analysis (Gundry et
al., 2008). Some nucleotide variations, namely class 3 (C↔ G) and class 4 (A↔ T) SNPS,
tend to produce negligible changes in melt behaviour (curve shape and melt peak) and
are often poorly detected by HRM (Dang et al., 2012; Gundry et al., 2008; Yamagata et al.,
2018). This is likely to be exaggerated when analysing longer PCR products, as shorter PCR
products produce more pronounced melt curve differences than longer nucleotide motifs
with the same SNP variation (Li et al., 2014; Liew et al., 2004; Taylor et al., 2011; Tindall et
al., 2009). Furthermore, nearest neighbour chemistry (the identity of nucleotides directly
adjacent to the SNP under investigation) has been shown to impact the melt peak of PCR
products, negating any change in melt peak produced by class 3 and 4 SNPs in some cases
(Yamagata et al., 2018).

Many of these observations are supported by the findings of this study, however some
important deviations were detected. Haplotypes that were successfully discriminated
by HRM tended to have a class 1 SNP (transitions, C ↔ T and A ↔ G) or multiple
SNPs differentiating them. However, seven haplotypes differing by multiple SNPs did
not produce distinct melt curves (Table 6), suggesting that some SNPs may potentially
counteract one anothers impact on the melt curve. Furthermore, haplotypes that differed
by a class 2 (transversions, C↔ A, G↔ T) and, as predicted, class 4 SNPs do not appear
to have detectable melt curve differences. It is, however, uncertain why in this study some
class 2 SNPs produced distinct melt curves in some cases (MLTM1 -MLTM2 andMLT S3
- MLT S4), but not in others (MLT C1-C4 and MLT C3 - C4). Nearest neighbor chemistry
does not appear to be provide insights into this as the SNPs had the same neighbouring
base pairs across PCR products. Furthermore, a class 2 SNP was differentiated by HRM
in a larger PCR product (527 bp) and not in the smaller products (386 bp and 236 bp),
indicating that shorter DNA fragments do not necessarily produce more distinct melt
curves than larger fragments with the same nucleotide differences.

The primer design choices in this study were largely based on the suggestions that
nucleotide variation in shorter DNA strands will have a more pronounced impact on
melt curve shape and intensity. This appears to have not been the case and larger PCR
products performed as well, if not better, than smaller regions, as detected elsewhere (Dang
et al., 2012; Dobrowolski et al., 2009). Future HRM primer design efforts should possibly
explore larger target regions that are more likely to cover multiple SNPs and thus produce
more distinct melt curves (Dang et al., 2012), such as the products amplified by primer
combinations; MLT S1–MLT S2, MLT S3–MLT S4, and MLT U1–MLT U2. This opens
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HRM up to exploration of existing universal primers, such as those of Shaw et al. (2005)
and Shaw et al. (2007), but additional PCR optimization may be required prior to being
applied to HRM.

Detection of haplotype variation in wild Cyclopia populations via HRM
High Resolution Melt analysis using the two best performing primer pairs that amplified
variable regions proved to be a highly accurate (96% for both regions screened) means
of detecting haplotypes variation in wild Cyclopia populations with no cases of different
haplotypes occurring in the same cluster (specificity = 100%).

A remarkable feature of HRM is its high and rapid throughput. Running samples in
duplicate on a 96 well plate allowed for 48 samples to be screened every three hours. As
such, all 142 wild C. subternata samples were screened across the two cpDNA regions in
two days, with immediate insights into the underlying levels of genetic variation (based on
HRM clusterings). This rapid data production comes at a minimal cost per sample, which
in this study amounted to $ 11.09 including all PCR amplification and sequencing for the
phylogeographic analysis of C. subternata. A costing analysis based on quotes obtained in
2017, for a broader Cyclopia research project that employed Anchored Hybrid Enrichment
(Lemmon, Emme & Lemmon, 2012) for nucleotide sequence generation, revealed that, while
the cost per bp was not greatly reduced when applying HRM ($ 0.013/bp) as compared
to Sanger sequencing ($ 0.015 /bp), and more costly than high throughput sequencing
approaches ($ 0.0005 /bp, excluding library preparation and bioinformatic services). The
true value of HRM lies in the ability to screen large numbers of samples, with the cost per
sample for HRM being 40% that of Sanger sequencing and 16% that of Anchored Hybrid
Enrichment.

Distribution of C. subternata genetic diversity
Despite the relatively low genetic differentiation and variation detected across wild C.
subternata populations, with a widespread haplotype detected in all populations sampled
in the Tsitsikamma and Outeniqua mountains, genetic diversity does appear to be
spatially structured. Geographically isolated haplotypes were detected in populations
in the Tsitsikamma mountains, and complete haplotype turnover was detected in Garcia’s
Pass population from the Langeberg; possibly a consequence of a genetic bottleneck
resulting from a small founding population, facilitating rapid fixation of rare alleles
(Klopfstein, Currat & Excoffier, 2006). These, and an additional low frequency haplotype
shared between Langkloof and Outeniqua populations, provided sufficient divergence
across mountain ranges to be detected by an AMOVA and roughly coincide with NJ
clustering of populations (Fig. S1). The transition between mountain ranges represents
steps of increased genetic differentiation between populations (supported by significant
IBD, (Slatkin, 1993), and the movement of seed and seedlings across these isolating barriers
for Honeybush cultivation should be avoided.

The population divergence described above is in contrast to that reported for the nuclear
genome ofC. subternata (Niemandt et al., 2018).WhileNiemandt et al. (2018) also detected
a genetically unique population (located in Harlem), no C. subternata was detected in this
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area during sampling activities despite assistance from landowners in locating wild C.
plicata Kies populations (iNaturalist observation 14257580) that have been harvested and
traded as C. subternata. We suggested that additional work be done to describe the C.
plicata and C. subternata populations in this area to confirm potential sympatry between
these two morphologically and ecologically similar species (Schutte, 1997). No genetic
divergence was reported between the two wild C. subternata populations (sampled from
the Tsitsikamma and Outeniqua mountains) screened and the Agricultural Research
Council’s (ARC) genebank accessions (Niemandt et al., 2018). Genetic material from this
genebank has recently beenmade commercially available for the establishment of cultivated
Honeybush stands, including in the Langeberg that supports the genetically distinct GAR
population (Joubert et al., 2011; Niemandt et al., 2018). The effective population size of
the C. subternata nuclear genome is a scale of magnitude larger than the cpDNA due to
the species high ploidy level (hexalpoid, 2n = 6x = 54, (Motsa et al., 2018; Schutte, 1997),
as such drift may occur more slowly. Additionally, pollen dispersal by carpenter bees
(Xylocopa spp) may reduce population divergence through rare long distance dispersal
events. Seed, in contrast, is dispersed locally by ants (Schutte, 1997) and dehiscent seed
pods and long distance dispersal is extremely unlikely, unless anthropogenically mediated;
this has likely been the case with genetic material actively redistributed across the CFR for
the establishment of cultivated populations and breeding trials (Joubert et al., 2011).

The geographic distribution ofC. subternata genetic diversity, as described here, indicates
that: (a) unique haplotypes occur within populations, and (b) these unique haplotypes
are spatially structured. These patterns of genetic diversity need to be acknowledged
in the management of this economically important species, with seed and seedling not
translocated outside of the mountain range that they were sourced from.

CONCLUSIONS
This study demonstrates that HRM is capable of discerning between cpDNA haplotypes,
with variable levels of success. When the top performing HRM regions were applied to
screening genetic variation in wild populations of the non-model organism, C. subternata,
all haplotypes were differentiated. While the framework described herein provides a clear
guideline on generating the markers required for applying HRM to non-model systems,
some analytical adjustments may be required based on the HRM platform available to
the lab in question. The high throughput of HRM offers the molecular ecologist the
opportunity to increase intrapopulation sample numbers without increasing project costs,
while the automated clustering provides real time insights into the underlying levels of
genetic variation. Furthermore, this technology may be particularly well suited to the
study of conserved and slow mutating nuclear regions and the chloroplast genome of
plants (Schaal et al., 1998) where low intrapopulation genetic variation is predicted and
redundant sequencing of the same nucleotide motifs is likely.

The Cyclopia specific primers developed here provide a starting point for assessing
potential issues of genetic pollution associated with the transition to commercial
Honeybush cultivation (Potts, 2017). However, further resolution may be required for
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more in depth population studies and additional cpDNA regions as well as low copy
nuclear loci should be explored for HRM primer development. Furthermore, the tools
produced here, while suitable for phylogeographic work (as demonstrated here), are
limited to the maternally inherited chloroplast genome and are not suitable for exploration
of interspecific hybrid detection in cultivated Honeybush populations.
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