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The effect of landscape on functional connectivity and shell
shape in the land snail Humboldtiana durangoensis
Benjamín López 1 , Omar Mejia Corresp., 1 , Gerardo Zúñiga 1

1 Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Mexico
City, Mexico
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The populations of Humboldtiana durangoensis have experienced a drastic reduction in the
effective population size; in addition, the species is threatened by anthropogenic activities.
For the aforementioned, landscape genetics will serve as a tool to define the potential
evolutionarily significant units (ESU) for this species. To complete our objective, we
evaluated the effect of cover vegetation and climate on the functional connectivity of the
species from the LGM to the present as well as the effect of climate on shell shape. Partial
Mantel tests, distance-based redundance analysis and a Bayesian framework were used to
evaluate connectivity. On the other hand, geometric morphometrics, phylogenetic
principal component analysis and redundancy analysis were used for the analysis of shell
shape. Our results suggest that the suitable areas have been decreasing since the LGM;
also, vegetation cover rather than climate has influenced the genetic connectivity among
land snail populations, although temperature had a high influence on shell shape in this
species. In conclusion, vegetation cover was the main factor that determined the
functional connectivity for the land snail; however, local selective pressures led to different
phenotypes in shell shape that allowed us to postulate that each one of the previously
defined genetic groups must be considered as a different ESU.
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48 Abstract
49

50 The populations of Humboldtiana durangoensis have experienced a drastic reduction in 
51 the effective population size; in addition, the species is threatened by anthropogenic 
52 activities. For the aforementioned, landscape genetics will serve as a tool to define the 
53 potential evolutionarily significant units (ESU) for this species. To complete our 
54 objective, we evaluated the effect of cover vegetation and climate on the functional 
55 connectivity of the species from the LGM to the present as well as the effect of climate 
56 on shell shape. Partial Mantel tests, distance-based redundance analysis and a 
57 Bayesian framework were used to evaluate connectivity. On the other hand, geometric 
58 morphometrics, phylogenetic principal component analysis and redundancy analysis 
59 were used for the analysis of shell shape. Our results suggest that the suitable areas 
60 have been decreasing since the LGM; also, vegetation cover rather than climate has 
61 influenced the genetic connectivity among land snail populations, although temperature 
62 had a high influence on shell shape in this species. In conclusion, vegetation cover was 
63 the main factor that determined the functional connectivity for the land snail; however, 
64 local selective pressures led to different phenotypes in shell shape that allowed us to 
65 postulate that each one of the previously defined genetic groups must be considered as 
66 a different ESU. 
67
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93

94 Introduction

95 Species dispersal can be affected not only by essential processes (e.g., the movement, 

96 mating, and reproductive fitness of the individuals) but also by ecological and 

97 topographical factors (e.g., abiotic variables, land cover, line features and landforms) 

98 associated with the landscape (Manel et al. 2003; McRae et al. 2008). Especially in land 

99 snails, dispersal is a process that is highly dependent on a set of variables associated 

100 with the landscape, such as climate and vegetation cover, which represent a high 

101 physiological cost for the snail (Dörge et al. 1999; Schweiger et al. 2004; Hylander et al. 

102 2005; Aubry et al. 2006). Thus, in a heterogeneous landscape, the differentiation 

103 between populations may be increased not only by the historical events and 

104 microevolutionary factors but also by the ecological and topographical factors that 

105 determine the habitat or structural connectivity (McRae 2006; McRae et al. 2008; Bell et 

106 al. 2010).

107 Due to their low vagility, patchy distribution and preference for particular 

108 microhabitats (Dörge et al. 1999; Hylander et al. 2005; Aubry et al. 2006), land snails 

109 are excellent models for exploring the effects of landscape on the movement of 

110 individuals among suitable patches, or in other words, on the functional connectivity 

111 (Tischendorf and Fahrig 2000). The effect of the Pleistocene climate changes on the 

112 phylogeographical structure and demographic history of land snails has been widely 

113 documented (Ross 1999; Haase et al. 2003; Davison and Chiba 2006; Holland and 

114 Cowie 2007; Dépraz et al. 2008; Guiller and Madec 2010); as well as changes in 

115 vegetation cover that have caused a decline in abundance and species density 

116 (Hylander et al. 2004). However, neither the effect of vegetation cover nor the effect of 

117 the climate on functional connectivity have been explored yet.

118 The snails of the genus Humboldtiana represent a group of nearly 60 species 

119 that have an insular distribution in the mountainous regions from South Texas and New 

120 Mexico to Central Mexico (Thompson 2006, Mejía and Zuñiga 2007). Many species 

121 have very small ranges, with the exception of three species that are widely distributed 

122 (Mejía et al. 2018). H. durangoensis is distributed in the Madrense Centro ecoregion of 

123 the Sierra Madre Occidental in Durango state, mainly in cold temperate forests in an 
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124 altitudinal gradient ranging from 1600 to 2800 m asl. This vegetation community has 

125 historically been exploited in Durango state and has also experienced droughts and 

126 fires that have led to fragmentation and habitat loss (Aragón-Piña et al. 2010). For these 

127 reasons, forest loss has turned into a global conservation issue due to its effect on 

128 biodiversity (Fahrig 2003).

129 Conservation efforts in several countries have traditionally been focused on 

130 “surrogate” species, which can create the umbrella effect for other sympatric species 

131 and, at the same time, serve to attract attention and funding (Caro and O’Doherty 

132 2001). Illustrative examples of this situation in Mexico are the efforts to recover the tiny 

133 vaquita porpoise (Phocoena sinus) and the Mexican wolf (Canis lupus baileyi). 

134 Nevertheless, very few efforts have been conducted to preserve “non-charismatic 

135 species” such as land snails. In fact, none of the nearly 1500 species of native land 

136 snails that occur in Mexico (Thompson and Hubert 2011) is included in the Mexican law 

137 for endangered species or in the IUCN Red List, a situation that highly contrasts with 

138 European land snails (Cuttelod et al. 2011); at the same time, few studies of the 

139 phylogeographic structure or population genetics have been performed with Mexican 

140 land snails (López et al. 2017; López et al. 2019).

141 On the other hand, while there is a lack of agreement on how to define an 

142 evolutionarily significant unit (ESU) (but see the review in Fraser and Bernatchez 2001), 

143 we agree with those proposals that suggest that ESUs must include genetic, ecological 

144 and morphological differentiation (Crandall et al. 2000) that reflect the adaptive 

145 distinctiveness. Previous papers have evaluated the population genetics and 

146 phylogeographic structure of H. durangoensis in the Madrense Centro region using 

147 microsatellite DNA markers and mitochondrial and nuclear DNA (López et al. 2017; 

148 López et al. 2019). The microsatellite analysis recovered seven genetic groups and 

149 signals of a strong genetic bottleneck in the populations, while the mitochondrial and 

150 nuclear DNA sequences found three main genetic groups that also showed signals of 

151 drastic reduction in the effective population size.

152 To evaluate the effects of vegetation cover and local climatic variables on the 

153 genetic differentiation of the snail H. durangoensis, we analyzed the functional 

154 connectivity in three temporal frames: the last glacial maximum (21,000 years bp), the 
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155 middle Holocene (6000 years bp) and the present. In addition, we evaluated the effect 

156 of the climate on shell size and shape using phylogenetic comparative methods. 

157 Despite the lack of agreement regarding the effects of the climate on shell traits, a 

158 strong relationship between the phenotype, genetic variation and climate would be 

159 expected (Dowle et al. 2015), because land snails as other groups with low vagility and 

160 dispersal abilities, tend to develop local morphological adaptations due to restrictive 

161 gene flow (Fitzpatrick 2012; Pfenninger and Posada 2002). Both approaches together 

162 will allow us to postulate the ESU for this land snail in the Sierra Madre Occidental in 

163 Western Mexico.

164 Methodology

165 Resistance surfaces

166 The geographic centroids of each one of the seven genetic groups of H. durangoensis 

167 previously defined by microsatellite loci by López et al. (2017) were used to determine 

168 the effect of the landscape on functional connectivity (Fig. 1). Whereas the landscape 

169 can include a large number of variables, in the present work, we followed two 

170 approximations to evaluate the functional connectivity between snail populations. The 

171 first was to use an approximation of the Grinnellian niche defined from a set of 

172 bioclimatic variables (Bell et al. 2010; Ortego et al. 2012; Poelchau and Hamrick 2012); 

173 the second was to analyze the effect of vegetation cover, because it is known that it 

174 affects the dispersion of terrestrial snails (Labaune and Magnin 2002; Armbruster et al. 

175 2007; Ström et al. 2009; Edworthy et al. 2012; Kappes et al. 2009), especially in 

176 mountain populations where periods of glaciation and deglaciation promoted the 

177 contraction and expansion of vegetation cover (Armbruster et al. 2007). In both cases, 

178 the different models were generated for three different time frames, including the current 

179 period and two time periods representing the extreme conditions experienced during the 

180 late quaternary: the middle Holocene (6000 years bp), which was warmer and wetter 

181 than the present, and the last glacier maximum (LGM), which was characterized by dry 

182 and colder climates (21,000 years bp).

183 To reduce the error in the parameterization, validation, and comparison of the 

184 models (Barve et al. 2011), the available geographic space for the taxon (M) was 

185 defined as the Ecoregion Madrense Centro (González- Elizondo et al. 2013). Grinnellian 
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186 niche models were constructed with the 19 climatic variables available in WorldClim 

187 (Hijmans et al. 2005) and the 18 climatic and topographic variables available in 

188 ENVIREM (Title and Bemmels 2018). The models were made at a resolution of 30 arc-

189 seconds, but in the case of the last glacial maximum (LGM), the variables were used at 

190 their native resolution of 2.5 minutes, and a bilinear interpolation was performed to 

191 decrease the resolution to 30 arc-seconds with the disaggregate function of the raster 

192 library ver. 2.6-7 in R (Hijmans 2017). The atmospheric circulation model used was the 

193 MPI-ESM-P, since it has shown better performance with respect to other models of 

194 circulation (Tang et al. 2017).. The bioclimatic variables were clipped to the geographic 

195 space with the crop and mask functions of the raster library ver. 2.6-7 in R (Hijmans 

196 2017).

197 Species niche model

198 The environmental suitability areas were defined by a maximum entropy algorithm 

199 (MAXENT v. 3.2.19, Phillips et al. 2006) from 28 records of H. durangoensis available in 

200 museums and our own collections. We selected this algorithm because it produces 

201 reliable results even with a small quantity of data (Elith et al. 2006; Heikkinen et al. 

202 2006; Hernandez et al. 2006). In a preliminary analysis, the 19 WorldClim and 18 

203 ENVIREM variables were included with the default parameters and log output to 

204 minimize the correlation and maximize their contributions to the model. The relative 

205 importance of each variable was determined from its percentage of contribution and for 

206 the loss of predictive power when each variable was excluded using a jackknife test. In 

207 addition, to select those variables with correlation coefficients lower than 0.6, 

208 environmental information was extracted from each geographic point, and a Pearson 

209 correlation test was performed with the function corr.test in the psych library of R 

210 (Revelle 2018). Thus, the geographic distribution model was obtained with the selected 

211 variables and assumed 10,000 pseudoabsence points separated by one kilometer from 

212 the presence records (Barbet-Massin et al. 2012). The statistical evaluation of the 

213 model was carried out in 10 repetitions and the data were partitioned into 75% for 

214 training and 25% for evaluation with a logistical output. The predictive power of the 

215 model was evaluated using a partial ROC test with 100 bootstrap replicates (Barve 
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216 2008). Finally, the suitability area available for the species in each temporal frame was 

217 estimated with the DEM surface tools in ArcGIS 10.

218 Vegetation models

219 The random forest (RF) classification algorithm was used to obtain the modeled 

220 vegetation cover (Breiman 2001). This method categorizes a set of data based on the 

221 classification and regression of the trees from a bootstrap analysis (Breiman 2001). The 

222 INE-INEGI (1997) vegetation cover map was used as an input file. Because this 

223 classification contains many vegetation types for the Madrense Centro ecoregion, prior 

224 to the analysis, the vegetation types were reclassified into five categories based on the 

225 ombrothermal horizons of the Sierra Madre Occidental (Macías-Rodríguez et al. 2017): 

226 (1) temperate forests, (2) cold temperate forests, (3) grasslands, (4) tropical forests and 

227 (5) drylands. The model was trained to take into account the variables sets of BIOCLIM 

228 and ENVIREM and to select only those that explained more than 50% of the variation 

229 based on the mean decrease accuracy criterion; these models were made with the 

230 randomForest 4.6-14 library in R (Breiman 2001).

231 Isolation by resistance

232 To evaluate the resistance of the landscape between the genetic groups, the resistance 

233 isolation model (IBR) was implemented in CIRCUITSCAPE 3.4.2 (McRae 2006). This 

234 method produces a resistance/conductance matrix between the pairs of sites that are 

235 obtained by assigning an arbitrary resistance/conductance value per pixel 

236 corresponding to the relative resistance of the landscape to the genetic flow. The result 

237 was a resistance value that depended on the distance between the localities, the 

238 number of possible pathways and the heterogeneity of the landscape (McRae 2006). 

239 The following resistance values were assigned to the forest structure: 60 (cold 

240 temperate forests), 110 (temperate forests), 200 (grasslands), 300 (tropical forests) and 

241 360 (drylands).

242 For the surface derived from the niche modeling, resistance values were 

243 assigned considering five symmetrical categories defined by the range between the 

244 minimum training presence (MTP) and the highest suitability value obtained by the 

245 Maxent model. The values were assigned with the ifelse and raster R libraries (Hijmans 

246 et al. 2005), and three different approaches were used to evaluate the relationship 
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247 between the paired FST values among the seven genetic groups (López et al. 2017) and 

248 resistance values. Three matrices were considered in this analysis: the genetic paired 

249 distances, the log10-transformed Euclidean geographical distances, and the paired 

250 resistance distances obtained from CIRCUITSCAPE for the two evaluated resistance 

251 surfaces (climate and vegetation). In the first approximation, the Mantel partial test was 

252 used to evaluate the effects of the two variables while controlling for the effect of a 

253 third.. The significance of the partial correlation of the Mantel test was obtained by 1000 

254 random permutations using the partial.mantel.test function of the NFC library (Bjørnstad 

255 2013). In the second approach, a distance-based redundancy analysis (dbRDA) was 

256 used in the vegan 2.5 library (Oksanen et al. 2013) considering the genetic distances, 

257 geographic distances, and the effect of vegetation cover , as well as the effect of the 

258 climatic distances on the mean of the resistance values (Noguerales et al. 2016). The 

259 characterization of the environmental space was performed with the randomPoints 

260 function in R that generated 1000 random geographic points and with the extract 

261 function to obtain the climatic point value per site. Then, the main function in R was 

262 used to perform the PCA, and later, the dist function in R was used to obtain the 

263 eigenvalues of the environmental distances for the first three components considering 

264 only the loadings of the geographic points corresponding to the genetic groups; finally, 

265 the significance of the dbRDA was evaluated with the anova.cca function in R. Lastly, in 

266 the third approach, given that in the two previous analyses the climate component was 

267 not significant (see Tables 1 and 2), we only evaluate the effects of geography (G), 

268 vegetation cover (E) and both (G + E) on functional connectivity through a Bayesian 

269 framework implemented in the Sunder 0.0.4 library (Botta et al. 2015). The algorithm 

270 implemented in SUNDER assumed that the covariance of the allelic frequencies among 

271 the populations would decrease as a function of the geographical and environmental 

272 distances (Botta et al. 2015). Thus, to estimate the effect of the set of G, E, and G+E 

273 variables, 10 independent chains with 107 iterations and sampling every 1000 steps 

274 were used with uniform priors with large upper bounds (Botta et al. 2015).

275 Shell morphometrics

276 A total of 129 shells of H. durangoensis adults from the seven genetic groups used by 

277 López et al. (2017) were analysed: Las Peñas (20), El Salto (8), Progreso (3), Topia (7), 
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278 Potrero (46), Los Herreras (25) and Guanaceví (20). The shape of the shell was 

279 obtained using two approaches: a classical approach that assumed four linear shell 

280 measurements (height, SH; width, SW; aperture height, AH; maximum aperture width, 

281 AW) obtained with a digital micrometer with an accuracy of 0.01 mm; in addition, 

282 globosity (G=SH/WD), spiral height (SP=SH-AH) and shell volume (V) were calculated 

283 (Fig. S1). These variables were transformed to log10 to remove the allometric effect 

284 associated with growth following the method described by Mosimann (1970). Finally, the 

285 eigenvalues of the mean and the centroid values for each one of the genetic groups 

286 were recovered from a principal component analysis (PCA) for posterior analysis 

287 (Harigan et al. 1979). On the other hand, the shell shape was evaluated from 11 

288 landmarks according to Mumladze et al. (2013) (Fig. S1). Following the method 

289 proposed by Kistner and Dybdahi (2012), a total of five photos were taken per individual 

290 to eliminate the error associated with the orientation. The X/Y coordinates were digitized 

291 in TPSDIG ver 2.12 (Rohlf 2008). The average shape per genetic group was obtained 

292 from a generalized Procrustes analysis (GPA) with the gpagen function implemented in 

293 geomorph 3.0.7 (Adams et al. 2019). To eliminate the phylogenetic effect on the 

294 variation in shell shape, a phylogenetic principal component analysis (pPCA) was 

295 performed considering the shell shape of both, classical and geometric morphometrics 

296 approaches and a tree based on distances generated from FST values with the function 

297 phyl.pca in phytools (Revell 2012). Lastly, to determine whether there was a relationship 

298 between the shell shape and environmental conditions, a redundancy analysis (RDA) 

299 was performed considering the three matrices generated (means, centroids and 

300 geometric morphometrics) with the rda function following the method proposed by 

301 Borcard et al. (2018) in the vegan library ver 2.5 (Oksanen et al. 2013).

302 Results

303 Six variables made the greatest contribution to the model of the potential distribution: 

304 isothermality (Bio3), the minimum temperature of the coldest month (Bio6), the 

305 precipitation of the wettest month (Bio 13), the precipitation of the driest month (Bio 14), 

306 the precipitation of the coldest month (Bio 19), and the climatic humidity index. For the 

307 potential vegetation model, 11 variables were selected: isothermality (Bio 3), 

308 temperature seasonality (Bio 4), the annual temperature range (Bio 7), the annual 
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309 precipitation (Bio 12), the driest month precipitation (Bio 13), the seasonality of 

310 precipitation (Bio 15), the coldest quartile precipitation (Bio 19), the average monthly 

311 evapotranspiration potential of driest quarter (PETDriestQuarter), the monthly variability 

312 in evapotranspiration potential (PETseasonality), the average monthly 

313 evapotranspiration potential of the warmest quarter (PETWarmestQuarter), and the 

314 average evapotranspiration potential of the wettest quarter (PETWettestQuarter).

315 Environmental suitability and vegetation models

316 The results obtained for the modeling of the distribution area of H. durangoensis in the 

317 Madrense Centro region showed that the models constructed for the three temporal 

318 frames were satisfactory (P = 0). In general, our findings suggested that the areas of 

319 environmental suitability had decreased considerably in the last 21,000 years (38197 

320 km2 or 28.5% of the total area in the LGM, 32945 km2 or 24.5% in the mid Holocene and 

321 23620 km2 or 17.6% in the current). Our findings show that at present, the areas with 

322 high probability of occurrence are restricted to the northern portion of the distribution 

323 area (Fig. 1). The model of vegetation cover generated from the current vegetation map 

324 with random forest showed that the estimated success rate was 76.77% for the LGM, 

325 77.48% for the Middle Holocene and 75.57% for the current period (Table S1). In 

326 addition, in the last 21,000 years, a variation in the coverage area of each plant 

327 community was estimated, and the temperate forests increased the most, while the 

328 grasslands decreased the most (Table S1, Fig. S2).

329 Resistance and functional connectivity

330 The maps generated by CIRCUITSCAPE considering the structure of the vegetation 

331 cover suggested that the connectivity routes between the H. durangoensis genetic 

332 groups in the Central Madrense region have changed little in the last 21,000 years, 

333 although in the actual period, the areas of high resistance are larger compared to those 

334 in the LGM (Table 1, Fig. S2). The resistance surface from the environmental suitability 

335 models for the Mantel test and Mantel partial tests were not significant (Table 2, Fig. 

336 S3). On the other hand, when considering the effects of vegetation cover, the Mantel 

337 test between the values of FST and vegetation cover was once again not significant in 

338 any of the three time frames; however, the Mantel partial tests yielded significant 

339 correlations when controlling for the effects of geography and vegetation cover in the 
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340 three time periods (Table 2). In the case of the redundancy analysis, the marginal tests 

341 for the three time frames showed a significant association between the genetic 

342 differentiation and geographic distance, explaining 24.26% of the variance, but were not 

343 significant when the resistance distances generated from the vegetation cover or from 

344 the climatic variables were considered (Table 3). In contrast, in the conditional tests as 

345 in the Mantel partial test, a relationship was again observed with the structure of the 

346 vegetation cover but not with that of the climate (Table 3). With respect to the results 

347 generated by SUNDER, when the climatic component was no longer considered, it was 

348 observed that during the LGM, it was the geographic component that best explained the 

349 variation, while for the Middle Holocene and the actual period, both the geographic 

350 component and the vegetation cover were important (Table 4).

351  Variation in shell size and shape

352 The values estimated from the morphometrics classical approach allow us to establish 

353 that the populations located in the north of the distribution area (Topia, Potrero, Los 

354 Herreras and Guanaceví) had larger sizes and higher spires in comparison with the 

355 populations in the center (Progreso) and south (Las Peñas and El Salto) of the 

356 distribution area (Table 5). The percentage of variance explained by the first three 

357 phylogenetic components was 99.47% for the means of the linear variables, 99.98% for 

358 the centroid size and 91.84% for the average shape obtained from the analysis of the 

359 geometric morphometrics. Finally, the redundancy analysis obtained from the analysis 

360 of the first three phylogenetic components was statistically significant (P<0.05). The 

361 bioclimatic variables associated with each dataset were different, although in all cases, 

362 they were exclusively temperature variables, with the temperature annual range (Bio 7) 

363 being the only common variable (Fig. 2). Although it was difficult to establish a pattern, 

364 the data retrieved from geometric morphometric analysis allowed us to suggest that 

365 larger shells with higher spirals are related to the max temperature of the warmest 

366 month (Bio 5), while smaller shells with the lower spirals were related to the temperature 

367 annual range (Bio 7) and mean temperature of the wettest quarter (Bio 8) (Fig. 2).

368 Discussion

369 Effects of the landscape on functional connectivity
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370 The functional connectivity in terrestrial snails was determined by the availability 

371 of microhabitats suitable for dispersal. Our findings showed that the variables related to 

372 the humidity and relative aridity of the terrain, as well as the precipitation of the driest 

373 and the wettest month, had a greater contribution to the potential distribution model 

374 generated by Maxent. These variables were related to the apparent rupture of the 

375 estivation period in May and to the period of activity and dispersion between July and 

376 September, as has been suggested for other members of the group (Baur 1986; Aubry 

377 et al. 2006). However, the climate component defined through the environmental 

378 suitability analysis with the MAXENT maximum entropy algorithm and by the method 

379 proposed by Noguerales et al. (2016) did not contribute significantly to explaining the 

380 functional connectivity of H. durangoensis populations. 

381 A possible explanation for this phenomenon might be related to the spatial 

382 resolution provided by the bioclimatic layers. It has been demonstrated that the 

383 geographic patterns of the areas of environmental suitability in the terrestrial mollusks 

384 were particularly dependent on the resolution of the grid, since this increases or 

385 diminishes the heterogeneity of the geographic space (Kadmon and Heller 1998). 

386 However, the models generated for land snails at a resolution of 30 arc-seconds (1 

387 km2), as used in this study, have been shown to be efficient in explaining the historical 

388 demographic reductions that are the consequence of contractions in the areas of 

389 environmental suitability (Horsák et al. 2010; Pfenninger et al. 2014; Mumladze 2014; 

390 Patrao et al. 2015). In this sense, the areas of environmental suitability for H. 

391 durangoensis have decreased from 28.5% in the LGM to 17.6% at the present, a result 

392 congruent with the population reductions recovered for this species with microsatellite 

393 markers and DNA sequences (López et al. 2017; López et al. 2019). Therefore, 

394 although the climate component apparently did not make a significant contribution to 

395 functional connectivity, its influence on the taxon cannot be denied because H. 

396 durangoensis likely experienced environmental tracking as a consequence of climate 

397 change, as has been demonstrated in alpine populations of Arianta arbustorum (Baur 

398 and Baur 2013).

399 On the other hand, the random forest algorithm has been shown to perform well 

400 in predicting the current vegetation types in heterogeneous geographic areas, as it was 
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401 very robust in relation to the number of classes in which plant communities were 

402 clustered, as has been verified by paleopalinological records for models generated for 

403 LGM (Waske and Braun 2009; Rodriguez-Galiano et al. 2012; Vanselow and Samimi 

404 2014; Hais et al. 2015). Thus, the results of efficiency in the assignment to plant 

405 categories with the random forest algorithm (Table S1) fall within the values obtained in 

406 other works (Waske and Braun 2009; Hais et al. 2015), suggesting that predictions of 

407 vegetation cover in this study are correct. Although our paleovegetation maps 

408 apparently did not show significant changes in vegetation cover (Fig. S2), the resistance 

409 results from Circuitscape suggested that these changes have occurred and that 

410 resistance values have increased from the LGM to the present (Table 1). One of the 

411 main limitations of analyses based on resistance surfaces is that the values assigned to 

412 each of the categories are arbitrary; however, it has been shown that the assigned 

413 resistance values have no effect on the habitat categories in a fragmented landscape 

414 (Schweiger et al. 2004; Wang et al. 2009). Consequently, as has been reported for 

415 other mountain snails (Schell and Hausdorf 2012; Hugall et al. 2002; Sherpa et al. 

416 2018), the altitudinal displacement of plant communities in mountainous regions during 

417 Quaternary climate changes could explain the dynamics of functional connectivity in H. 

418 durangoensis as has been postulated for other species distributed in the SMOc 

419 (Metcalfe et al. 2000; Anducho-Reyes et al. 2008; Bryson et al. 2011; López-González 

420 et al. 2014), 

421 Based on these findings, we hypothesized that the functional connectivity of H. 

422 durangoensis on different temporal scales has been promoted by the presence of both 

423 temperate and cold temperate forests and that two patterns can be distinguished as has 

424 been suggested in Helix aspersa and Cepaea nemoralis (Arnaud et al. 2003; Schweiger 

425 et al. 2004; Barahona-Segovia et al. 2019), for which two patterns can be distinguished. 

426 The first is a model of isolation by distance on a larger geographic scale (Pfenninger 

427 and Posada 2002; Arnaud et al. 2003; Schweiger et al. 2004), and the second is 

428 possible dynamic metapopulation promoted both by environmental and landscape 

429 heterogeneity on a fine geographic scale, as has been documented for other land snails 

430 (Arnaud et al. 2001; Baur and Baur 2013).

431 Variation of the shell in H. durangoensis
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432 The relationship between shell size and shape in land snails with climatic variables of 

433 temperature and precipitation has been widely studied and is well known (see review in 

434 Goodfriend 1986). However, while the effect of the genetic component on shell shape 

435 variation has been studied (Goodacre 2001; Dowle et al. 2015; Sherpa et al. 2018), few 

436 studies have attempted to control this effect (Webster et al. 2012; Kotsakiozi et al. 

437 2013), and none so far have evaluated this effect at the intraspecific level. Our findings 

438 showed, after controlling for the genetic effects, that the shell size and shape were 

439 determined by climatic variables of temperature and precipitation (Fig. 2). However, 

440 whereas these variables were not significant to explain the genetic relationships among 

441 the groups, they suggested that both the phenotype and genotype were the results of 

442 independent processes (Haase and Misof 2009); that is, the microhabitat conditions had 

443 a great effect on the shell despite the existence of gene flow (Chiba and Davison 2007; 

444 Fiorentino et al. 2013; Stankowski 2013; Proćków et al. 2017). Thus, whereas has been 

445 suggested that the use of comparative phylogenetic methods at intrapopulation levels 

446 may generate poor informative results (Niewiarowski et al. 2004), the power of 

447 resolution of these methods may depend on the taxon and the assessed trait (Martins 

448 and Housworth 2002), as has been found in this study.

449 In addition, our results suggested that populations with larger shells and 

450 apertures are distributed to the north, while populations with smaller shells and 

451 apertures were distributed to the south. The altitudinal interval of the sampled localities 

452 in the northern region (1,702-2,400 m asl) was lower than the altitudinal interval in which 

453 the populations in the southern region were collected (2,587-2,759 m asl), which was 

454 consistent with the results previously found in intrapopulation studies of the species of 

455 the genera Arianta, Vestia and Trochulus (Burla and Stahel 1983; Baur and Raboud 

456 1988; Sulikowska-Drozd 2001; Proćków

457 et al. 2017), where the populations from colder climates had smaller shells. This could 

458 be related to a greater probability of survival of organisms with small shells in 

459 unfavorable climatic conditions (Baur et al. 2014) and the greater resistance to 

460 crystallization temperatures (Ansart et al. 2014). At the same time, at higher altitudes, 

461 the duration of individual growth time is shorter (Anderson et al. 2007; Proćków et al. 

462 2017). However, there were also differences in the sizes of the aperture and the heights 
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463 of the spires between the north and south regions. These shells attributes could 

464 reflected microclimatic conditions, where small apertures tended to occur in the drier 

465 and higher altitude regions, meanwhile large apertures and higher spires ocuured at 

466 lower altitudes as has been reported in other species (Anderson et al. 2007; Haase and 

467 Misof 2009; Dowle et al. 2015).

468 How many ESUs?

469 In the literature, only two published works that addressed the definition of the ESUs of 

470 land snails have been published (Holland and Hadfield 2002; Ursenbacher et al. 2010); 

471 however, they did not remove the phylogenetic effects, which impacted their results. In 

472 the first study, a fragment of the mtCOI DNA was used and only the phylogenetic trees, 

473 genetic distances and AMOVA analysis in the 12 populations of the tree snail 

474 Achatinella mustelina were recognized as six ESUs that were reproductively isolated 

475 and distributed throughout a longitudinal transect of 24 km (Holland and Hadfield 2002). 

476 In the second study, which used microsatellite loci and performed a genetic structure 

477 analysis, two main clusters were found in Trochulus aureatus, although the authors 

478 decided to define each one of the nine sampled populations as different ESUs, even 

479 though they were separated by less than 200 meters (Ursenbacher et al. 2010). In 

480 opposition, our results suggest that each of the seven genetic groups previously 

481 identified by the analysis performed by López et al. (2017) must be considered an ESU, 

482 not only because of their genetic distinctiveness but also due to the phenotypical 

483 differences. The removal of the phylogenetic effect shows that temperature and 

484 precipitation variables were strong determinants of the shell size and shape of the 

485 species, which explained the morphological differentiation (Fig. 2).

486 Conclusions

487 The main conclusion of this work is that vegetation cover has a high impact on the 

488 functional connectivity of the land snail, as does climate, which is a strong determinant 

489 of shell shape in this species. Previous studies have found that young restored forests 

490 can achieve even higher snail diversities than old unperturbed forests (Hylander et al. 

491 2004; Ström et al. 2009), although this could depend on survival in microrefugia or 

492 dispersal from other patches. Forestry is one of the main economic activities in the state 

493 of Durango, Mexico, that exerts strong pressure on the populations of the land snail H. 
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494 durangoensis due to habitat loss and degradation. Nevertheless, the development of 

495 comprehensive management plans for the state (Conafor 2006) could guarantee the 

496 long-term survival of H. durangoensis, although further studies need to be performed to 

497 evaluate the potential effects of global climate warming on the species.
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Table 1(on next page)

Pairwise comparison of the resistance values obtained with Circuitscape using the
vegetation cover as resistance surface

The numbers in the first column correspond to the geographic centroid of each one of the
seven genetic groups recovered by López et al. 2017: 1) Guanaceví, 2) Los Herreras, 3), 4)
Topia, 5) Progreso, 6) El Salto and 7) Las Peñas.
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1 Table 1.  Pairwise comparison of the resistance values obtained 
2 with Circuitscape using the vegetation cover as resistance surface

Pair LGM mid 

Holocene

Current

1,2 209.87 308.20 305.42

1,3 196.76 318.14 294.33

1,4 169.83 227.74 226.22

1,5 309.86 359.06 356.54

1,6 428.33 507.67 518.36

1,7 371.76 424.61 420.29

2,3 235.52 357.59 334.44

2,4 182.15 243.87 247.67

2,5 284.65 341.65 344.16

2,6 402.27 489.54 505.29

2,7 345.54 406.29 407.04

3,4 164.42 236.34 213.96

3,5 308.73 377.72 352.35

3,6 427.46 526.63 514.47

3,7 370.94 443.65 416.48

4,5 224.20 238.48 240.16

4,6 343.37 387.74 402.65

4,7 286.93 304.84 304.74

5,6 209.67 251.50 264.47

5,7 159.03 175.71 173.63

6,7 162.45 227.27 239.57

3 The numbers in the first column correspond to the geographic 

4 centroid of each one of the seven genetic groups recovered by 

5 López et al. 2017: 1) Guanaceví, 2) Los Herreras, 3), 4) Topia, 5) 

6 Progreso, 6) El Salto  and 7) Las Peñas.
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Table 2(on next page)

Mantel partial test of the effect of isolation by distance (IBD) and isolation by resistance
(IBR) from climate and vegetation surfaces on the genetic differentiation of
Humboldtiana durangoensis populations for the three temporal frames used in thi

R= Spearman correlation coefficent between pairwise genetic distances (FST/(1-FST)) and the

Euclidean distance from the geography and pairwise resistance of CIRCUITSCAPE. p=
Statistical significance obtained from 1000 replicates.
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1 Table 2. Mantel partial test of the effect of isolation by distance (IBD) and isolation by 

2 resistance (IBR) from climate and vegetation surfaces on the genetic differentiation of 

3 Humboldtiana durangoensis populations  for the three temporal frames used in this study.  

LGM mid Holocene Current
Resistance model Comparison

R p R P R P

fst vs resistance 0.474 0.094 0.368 0.122 0.418 0.111

fst vs geogra|resistance 0.182 0.321 0.39 0.081 0.295 0.191Climate 

fst vs resistance|geogra 0.105 0.398 -0.181 0.362 -0.074 0.476

fst vs resistance 0.057 0.382 -0.144 0.29 -0.111 0.344

fst vs geogra|resistance 0.782 0.005 0.796 0.003 0.784 0.009Vegetation

fst vs resistance|geogra -0.699 0.012 -0.725 0.013 -0.706 0.021

4 R= Spearman correlation coefficent between pairwise genetic distances (FST/(1-FST)) and 

5 the Euclidean distance from the geography and pairwise resistance of CIRCUITSCAPE. 

6 p= Statistical significance obtained from 1000 replicates.  
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Table 3(on next page)

Effect of the geographic distance (IBD), vegetation and climate on the genetic
differentiation among the seven genetic populations of Humboldtiana durangoensis
obtained from the distance based redundance analysis (dbRDA) for the three temporal
frame

In the marginal test the effect of each one of the variables was evaluated separately,
meanwhile, in the conditional test, the effect of the geographic distance was included as a
covariate.F represent the proportion of variance, P the statistical significance and % var the
percentage of variance explained from each variable
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1 Table 3. Effect of the geographic distance (IBD), vegetation and climate on the genetic 

2 differentiation among the seven genetic populations of Humboldtiana durangoensis 

3 obtained from the distance based redundance analysis (dbRDA) for the three temporal 

4 frames used in this study

Marginal tests Conditional tests

Variable F P % var F P % var 

LGM

Geographic 6.086 0.02 24.26 0

Vegetation 0.605 0.447 3.087 14.521 0.002 33.819

PCA1 1 0.327 4.999 0.244 0.623 1.013

PCA2 2.979 0.1 13.552 1.308 0.266 5.131

PCA3 0.098 0.748 0.515 1.536 0.238 5.956

mid Holocene 

Geographic 6.086 0.026 24.26 0

Vegetation 0.404 0.537 2.083 19.986 0 39.849

PCA1 2.106 0.166 9.976 1.916 0.177 7.286

PCA2 0.419 0.516 2.158 0.074 0.785 0.312

PCA3 1.211 0.284 5.992 2.888 0.105 10.473

Current 

Geographic 6.086 0.025 24.26

Vegetation 0.235 0.636 1.224 17.844 6.00E-04 37.704

PCA1 0.408 0.525 2.101 0.138 0.704 0.578

PCA2 2.095 0.161 9.933 1.723 0.213 6.617

PCA3 1.48 0.231 7.228 2.82 0.108 10.258

5 In the marginal test the effect of each one of the variables was evaluated separately, 

6 meanwhile, in the conditional test, the effect of the geographic distance was included as 

7 a covariate.F represent the proportion of variance, P the statistical significance and % var 

8 the percentage of variance explained from each variable
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Table 4(on next page)

Results of the Bayesian inference and model selection obtained from SUNDER to
evaluate the relative effect of geography and vegetation cover on the genetic
differetiation of the seven genetic groups of Humboldiana durangoensis.

G: Euclidean geographic distances; E: Resistance values obtained for the vegetation cover ;
G+E: combined effect of both variables. The numbers inside brackets in the iteration column
indicate the number fo times that each one of the three models has obtained the lower value
of likelihood in ten independent runs. The parameter β represents the magnitude of the
effect of the variable on the genetic covariance ( lower values indicate a more importanrt
effect).

PeerJ reviewing PDF | (2020:01:45428:0:1:NEW 4 Feb 2020)

Manuscript to be reviewed

REV
Tachado

REV
Tachado



1 Tabla 4. Results of the Bayesian inference and model selection obtained from SUNDER 

2 to evaluate the relative effect of geography and vegetation cover on the genetic 

3 differetiation of the seven genetic groups of Humboldiana durangoensis.

G E G+E
Period  Iteration 

Likelihood Bg Likelihood Be Likelihood Bg Be

LGM (6, 3, 1) -8975.22 4.13 -9053.74 521.65 -9044.04 4.15 1102.35

mid 

Holocene
(3, 3, 6) -6712.19 3.29 -6672.19 524.79 -6638.51 3.52 2040.62

Current (3, 2, 5) -9942 3.63 -9964.55 530.97 -9890.39 3.29 1711.27

4 G: Euclidean geographic distances; E:  Resistance values obtained for the vegetation 

5 cover ; G+E: combined effect of both variables. The numbers inside brackets in the 

6 iteration column indicate the number fo times that each one of the three models has 

7 obtained the lower value of likelihood in ten independent runs. The parameter  

8 represents the magnitude of the effect of the variable on the genetic covariance ( lower 

9 values indicate a more importanrt effect). 
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Table 5(on next page)

Average size (in mm) for the four measurements used in this study to evaluate the shell
shape of seven genetic groups of Humboldtiana durangoensis. Shell height (SH), Shell
width (SH) Aperture height (AH), Maximum Aperture width (AW). Additionally,
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1 Table 5. Average size (in mm) for the four measurements used in this study to evaluate 

2 the shell shape of  seven genetic groups of Humboldtiana durangoensis. Shell height 

3 (SH), Shell width (SH) Aperture height (AH), Maximum Aperture width (AW). Additionally, 

4 Globosity index (G), Spire Height (SP) and Shell Volume are showed   

Group SH SW ALH AW G SP V

Guanacevi 32.15 34.45 21.66 19.52 0.93 10.49 3.42

Los herreras 31.94 33 22.06 19.09 0.97 9.88 3.29

Potrero 32.86 35.4 22.32 20.34 0.93 10.54 3.47

Topia 31.13 32.56 23.18 18.98 0.96 7.95 3.22

Progreso 24.11 26.16 19.11 15.81 0.92 5 2.62

El Salto 28.94 31.3 21.28 17.97 0.93 7.66 3.16

Las Peñas 25.51 28.14 19.32 16.29 0.91 6.18 2.87
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Figure 1
Geographic map of the Region Madrense Centro in the Mexican state of Durango.

In the upper section a digital elevation model (DEM) was used to highlight the different
ombrothermal horizons defined by Macías-Rodriguez et al. (2017). The circles represent the
geographic centroid for each one of the seven genetic groups of Humboldtiana durangoensis

defined from microsatellite markers in López et al. (2017): 1 Guanaceví, 2 Los Herreras, 3
Potrero, 4,Topia, 5 Progreso 6, El Salto and 7 Las Peñas.In the lower section a suitability
distribution map from Maxent is showed for the three temporal frames used in this study
assuming a minimum training presence from the model A) Last Glacial Maximum (LGM,
0.172) (, B) Mid Holocene (0.369)and C) Current time (0.347)
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Figure 2
Redundancy analysis (RDA) for the shell shape of Humboldtiana durangoensis.

A) Average size from traditional morphometrics B) Centroid from traditional morphometrics
C) Consensus shape from geometric morphometrics and climate variables from Worldclim.
The direction and size of the arrows indicate the correlation between climate variables and
RDA axes. The circles represent the geographic centroid for each one of the seven genetic
groups: 1 Guanaceví, 2 Los Herreras, 3 Potrero, 4,Topia, 5 Progreso 6, El Salto and 7 Las
Peñas
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