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Environmental DNA (eDNA) analyses provide an efficient and objective way of monitoring
and assessing biodiversity; however, only a few studies have explored the utility of eDNA
approach for environmental indices targeting stream insects, which are useful indicators of
river health. Here, we evaluated whether eDNA analyses of aquatic insect communities
could derive indices that are currently used for environmental assessments. The structure
of the aquatic insect community was investigated using eDNA metabarcoding, targeting
the Cytochrome Oxidase subunit 1 gene in mitochondrial DNA, and a conventional Surber
net sampling method. The surveys were conducted at six reaches located along an
upstream to lowland gradient of two rivers in Japan in July and November 2016. eDNA
metabarcoding detected 93 families of aquatic insects, which was three-fold more than
that detected by the conventional Surber-net sampling method (especially families in
Coleoptera, Diptera, and Hemiptera). The mean sensitivity from eDNA metabarcoding
against the conventional method was 66.8% in July and 55.3% in November. Community
dissimilarity analysis demonstrated that community structures were clustered by each
season for both eDNA and conventional methods. Focusing on the Ephemeroptera,
Plecoptera, Trichoptera, and Diptera, we found that spatial and seasonal trends in the ratio
of sequence reads (eDNA metabarcoding) and individuals (conventional Surber net
sampling) were mostly consistent. Our findings suggest that the number of sequence
reads derived from eDNA metabarcoding is useful to obtain indices for environmental
assessments for coarse spatial scale along rivers (up-, mid- and low land region) based on
aquatic insects.
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17 Abstract

18 Environmental DNA (eDNA) analyses provide an efficient and objective way of monitoring and 

19 assessing biodiversity; however, only a few studies have explored the utility of eDNA approach 

20 for environmental indices targeting stream insects, which are useful indicators of river health. 

21 Here, we evaluated whether eDNA analyses of aquatic insect communities could derive indices 

22 that are currently used for environmental assessments. The structure of the aquatic insect 

23 community was investigated using eDNA metabarcoding, targeting the Cytochrome Oxidase 

24 subunit 1 gene in mitochondrial DNA, and a conventional Surber net sampling method. The 

25 surveys were conducted at six reaches located along an upstream to lowland gradient of two 

26 rivers in Japan in July and November 2016. eDNA metabarcoding detected 93 families of 

27 aquatic insects, which was three-fold more than that detected by the conventional Surber-net 

28 sampling method (especially families in Coleoptera, Diptera, and Hemiptera). The mean 

29 sensitivity from eDNA metabarcoding against the conventional method was 66.8% in July and 

30 55.3% in November. Community dissimilarity analysis demonstrated that community structures 

31 were clustered by each season for both eDNA and conventional methods. Focusing on the 

32 Ephemeroptera, Plecoptera, Trichoptera, and Diptera, we found that spatial and seasonal trends 

33 in the ratio of sequence reads (eDNA metabarcoding) and individuals (conventional Surber net 

34 sampling) were mostly consistent. Our findings suggest that the number of sequence reads 

35 derived from eDNA metabarcoding is useful to obtain indices for environmental assessments for 

36 coarse spatial scale along rivers (up-, mid- and low land region) based on aquatic insects. 

37

38

39 Introduction
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40 Stream ecosystems are threatened by global anthropogenic impacts, including damming, water 

41 abstraction, and land-use changes (WWF, 2016). For sustainable development and resource use 

42 of freshwater, the management of stream environments requires effective methods and indicators 

43 to measure and assess the environmental impacts. To understand the status of waterbodies, the 

44 macroinvertebrate fauna is commonly used as an indicator due to their high sensitivity to 

45 deterioration of water quality. Furthermore, aquatic insect community is core of ecological food 

46 web in river ecosystem since they are major consumers of first production as well as energy 

47 source for higher consumers. Thus, monitoring the aquatic insect fauna is important both in 

48 ecological and bio-assessment aspect. However, conventional surveillance based on kick net or 

49 Surber net sampling is subject to several issues. Firstly, a field sampling process include errors 

50 between observers, e.g., experienced or untrained observers (Zurell et al., 2010). Subsequent 

51 processes, sorting and morphological identification, are the most time-consuming parts and 

52 requiring a trained person, and also often includes identification error (Haase et al., 2006). In 

53 addition, the direct sampling methods cannot avoid to destruct natural habitat and organism’s 

54 bodies. These difficulties have become a bottleneck for sufficient surveys.

55 DNA-based approaches are prospected to overcome these difficulties and provides alternative 

56 tools for multiple taxa detection and identification (Baird and Hajibabaei, 2012; Hering et al., 

57 2018; Leese et al., 2018). DNA metabarcoding examining bulk or tissue samples has great 

58 contribution to reveal taxonomic names with high resolution and small failure even if organisms 

59 are difficult to be identified morphologically (Carew et al., 2013; Elbrecht and Leese, 2015; 

60 Hajibabaei et al., 2011; Serrana et al., 2018). Hence, DNA-based identification of benthos is 

61 widely applied to biomonitoring applications (Aylagas et al., 2014). It is less time consuming 

62 because it does not require individual identification. In addition, the analysis skill can be 

63 acquired in a short period compared to morphological identification skills. However, several 

64 issues (e.g., sampling bias, disturbance of habitat, ethical problem etc.) still remain in the DNA-

65 based approaches using bulk/ tissue samples because the approaches use the same sampling 

66 methods and treat the sampled organisms as traditional approaches.

67 Recently, environmental DNA (eDNA) is being paid attention and becoming more attractive due 

68 to its unique advantages (Rees et al., 2014; Smart et al., 2015). eDNA potentially reduces 

69 sampling bias due to its simple sampling method (e.g. grab sampling of water, soil, etc.). In 

70 addition, it can escape from the issues such as disturbance of habitat and ethics. Although the use 

71 of eDNA still remains lots of elusiveness especially in its ecology (e.g., production and 

72 degradation rates, transportation in a river (Roussel et al., 2015)), it provides ecological 

73 information which cannot be obtained from conventional methods. eDNA metabarcoding can 

74 detect taxa as many as or more than traditional methods (Fernández et al., 2018; Macher et al., 

75 2018). Moreover, a community trait revealed by eDNA is corresponding to that revealed by 

76 conventional surveys (Deiner et al., 2016; Bista et al., 2017). However, only a few eDNA studies 

77 focus on aquatic insect community using metabarcoding while fish or amphibians are intensively 

78 investigated. Furthermore, the utility of eDNA towards environmental assessment indices 

79 focusing on aquatic insects in stream ecosystem has not been examined.
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80 Here, we investigated the applicability of eDNA metabarcoding to environmental assessment 

81 indices based on aquatic insects. We compared the results of eDNA metabarcoding against 

82 conventional Surber-net sampling at different locations along two rivers in two seasons. We 

83 focused on detection sensitivity, richness of taxa, and relative abundance and evaluated the 

84 indices obtained by eDNA metabarcoding.

85

86

87 Materials & Methods

88 2.1. Aquatic insect sampling by surber net.

89 Field surveillance were conducted at Hirose River and Natori River, which are located in the 

90 Natori river basin, Miyagi Prefecture, northeast Japan. The length of Hirose River channel is 

91 45.2 km and the catchment area is 315.9 km2. Natori River is 55.0 km long and the catchment 

92 area is 623.0 km2 (not including the Hirose River basin). Sampling was conducted in July and 

93 November 2016 at the six reaches from upland- to lowland-domains along the two rivers (site 

94 H1–H3 and N1–N3; see Figure 1 and Table S1). These are temperate rivers that originate in the 

95 mountains and flow through the hills at the middle reach and through urbanized flatlands at the 

96 lower reach, and finally output into the Pacific Ocean. Conventional aquatic insect collection 

97 was conducted using a Surber net of 250-µm mesh size, in a 30 cm x 30 cm quadrat at randomly 

98 selected a riffle and a pool habitat in river body (collection area in total: 0.18m2 /reach). 

99 Collected invertebrates were placed in a 99.5% ethanol solution and morphologically 

100 identification using a stereomicroscope (Leica MZ APO, Leica, Germany) by referring to the 

101 identification key for the aquatic insects of Japan (Kawai and Tanida, 2018). Because 

102 morphological identification was difficult for some aquatic insects, particularly Chironomidae 

103 and some Baetidae individuals, population abundance and richness were summarized at family 

104 level.

105

106 2.2. eDNA sampling, filtration, and DNA extraction

107 Water samples for eDNA analysis were collected at the same sites and on the same days but 

108 before the conventional collection method. The plastic bottles for eDNA sampling were 

109 sterilized with 10% chlorine bleach (Kao corporation, Tokyo, Japan) and rinsed with tap water in 

110 the laboratory, and subsequently washed three times with river water at the collection site before 

111 sampling. At each site, 1 L of flowing surface water were collected (Mächler et al., 2016) and 

112 transported to the laboratory on ice in a cool box. Water samples were filtered on that day using 

113 vacuum filtration with 47-mm diameter glass-fiber filters with 0.7-µm pore size (GF/F, 

114 Whatman, 1 L/filter). These filtered samples were stored at −20°C until DNA extraction. DNA 

115 was extracted from the filters through lysis using proteinase K at 56°C for 30 min. After 

116 incubation, the supernatant was subjected to phenol-chloroform-isoamyl alcohol extraction and 

117 ethanol precipitation. Eventually, the elution was purified using the OneStep PCR Inhibitor 

118 Removal Kit (Zymo Research, Irvine, CA, USA) with a final volume of 100 µl.

119
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120 2.3. Library preparation and sequencing

121 Target regions (cytochrome oxidase subunit 1 gene (CO1) in mitochondrial DNA) of extracted 

122 DNA were amplified using the universal primer for invertebrates developed by Folmer et al 

123 (Folmer et al., 1994). The primer set of LCO1490 (5′-GGT CAA CAA ATC ATA AAG ATA 

124 TTG G-3′) as forward primer and HC02198 (5′-TAA ACT TCA GGG TGA CCA AAA AAT 

125 CA-3′) as reverse primer, resulting in an amplification of a 658-bp fragment. For MiSeq library 

126 preparation, a three step PCR was conducted. The first PCR was performed in a total volume 20 

127 µl PCR mixture containing 10 µl of TaqTM HS Low DNA (TaKaRa, Kyoto, Japan), 0.4 µl each 

128 of 10 µM forward and reverse primers, 17.2 µl ultra-pure water, and 2.0 µl of template DNA. 

129 The PCR conditions were as follows: 35 cycles at 94°C for 5 s, 50°C for 5 s, 68°C for 10 s; and a 

130 final extension at 68°C for 7 min. The fragment size of amplicons and concentrations were 

131 verified by electrophoresis using the Agilent 2100 Bioanalyzer DNA7500 kit (Agilent, Santa 

132 Clara, CA, USA). PCR products were purified using the Agencourt AMPure XP (Beckman 

133 Coulter, Brea, CA, USA) and the purified products were used as template for the following. The 

134 second PCR was performed to add the overhang sequences that required amplification with the 

135 Nextera XT Index Kit v2 for Illumina MiSeq analysis using Ex Taq Hot Start Version (TaKaRa, 

136 Kyoto, Japan). The PCR conditions were as follows: 94°C for 2 min; followed by 5 cycles of 

137 94°C for 30 s, 50°C for 30 s, 72°C for 30 s; and a final extension at 72°C for 5 min. The 

138 amplicons were electrophoresis verified and purified in the same way as those from the first 

139 PCR, and the purified products were used as templates for the following. The third PCR was 

140 performed using Ex Taq Hot Start Version and Nextera XT Indice Kit v2 set A (Illumina, San 

141 Diego, CA, USA). The PCR conditions were follows: 94°C for 2 min; followed by 8 cycles of 

142 94°C for 30 s, 50°C for 30 s, 72°C for 30 s; and a final extension at 72°C for 5 min. After 

143 purification by AMPure XP and verification by BioAnalyzer, the final PCR amplicons were 

144 quantified using the Qubit dsDNA High Sensitivity Kit. The sequencing of prepared libraries 

145 was performed following the manufacturer’s instructions for MiSeq.

146

147 2.5. Bioinformatics

148 The sequence lengths were 658 bp; therefore, the forward and reverse reads in our study could 

149 not be merged while MiSeq Reagent Kit v3 (600 cycles) were adopted. Elbrecht and Leese 

150 (Elbrecht and Leese, 2017) demonstrated that invertebrate species could be identified at the 

151 reverse side of the CO1 region through an in silico PCR. Therefore, we conducted subsequent 

152 analysis using the reverse side sequence. At first, raw sequence reads were subjected to the 

153 Trimmomatic v0.36 software to discard low-quality sequences and read sequence lengths of 

154 <150 bp. Filtered reads were clustered into operational taxonomic units (OTUs) with an identity 

155 cut-off value of 97% which is common approach for invertebrate metabarcoding analyses 

156 (Macher et al., 2018) using QIIME (Caporaso et al., 2010); subsequently, OTUs with singleton 

157 sequences were removed. The most frequently occurring sequences in each OTU were extracted 

158 as representative sequences. Taxonomic identification was performed by BLAST search using 

159 the QIIME script “assign_taxonomy.py” with minimum percent identity of 85% (See Text S1) 
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160 and maximum e-value of 10−50 (Fernández et al., 2018). The assignment was performed against 

161 3,433,026 sequences retrieved from the NCBI database by the following search criteria: 

162 cytochrome [all fields] AND oxidase [all fields] AND mitochondrion [filter]. After assignment, 

163 eight orders, namely Ephemeroptera, Plecoptera, Trichoptera, Diptera, Coleoptera, Odonata, 

164 Megaloptera, and Hemiptera, which mostly include aquatic insect species, were extracted using 

165 the QIIME script “filter_taxonomy_from_table.py.” Subsequently, representative sequences of 

166 extracted OTUs were subjected to chimera check. To avoid unequal diversity comparison due to 

167 the differences of sequence depth among samples, either 250 or 2,500 reads were picked 

168 randomly because the smallest and the second smallest numbers of sequence reads were 290 

169 (N3_November) and 2,610 (H1_Nov sample), respectively. Good’s coverages were calculated 

170 based on OTUs to know what percent of the total taxa is represented in a sample using the 

171 QIIME script “alpha_diverisity.py”. A flow of bioinformatics analysis is shown in Figure S1.

172

173 2.6. Community structure analysis

174 Binary classification was conducted to measure the sensitivity and positive predictive value in 

175 the detection. The presence/absence of taxa obtained from the surber net sampling method were 

176 used as condition positive/negative, and the presence/absence of taxa obtained from the eDNA 

177 metabarcoding were used as test outcome positive/negative (Text S2).

178 Shannon’s diversity index was used to represent abundance and evenness of species in a 

179 community (α-diversity). The Chao-1 estimator was used to show community dissimilarities 

180 among samples (β-diversity) since the Chao estimator provides robust results when handling the 

181 samples containing rare occurrence species (Chao and Chiu, 2016; Olds et al., 2016). These 

182 diversity indices were calculated based on abundance at family level (R ver. 3.4.0, 

183 package”vegan” (Friendly et al., 2018)). As abundance data, the number of individuals for the 

184 samples obtained from the surber net sampling and the number of read counts for samples 

185 obtained from eDNA metabarcoding were used, respectively. Using the Chao dissimilarity 

186 measure, non-metric multidimensional scaling (nMDS) was performed to show the similarity in 

187 community structures between eDNA and conventional methods (R ver. 3.4.0, package library 

188 ”MASS” and library “labdsv”). A phylogenetic tree was constructed using the eDNA sequences 

189 in the ARB software (Ludwig, 2004) and UniFrac distances were measured from the tree. 

190 Principal coordinate analysis (PCoA) was conducted to identify factors explaining differences 

191 among samples with and without considering the number of read counts of each sequence 

192 (weighted or unweighted analysis) using QIIME.

193

194 2.7. Environmental assessment indices

195 To examine the consistency with the conventional Surber-net sampling, biological information 

196 obtained from environmental DNA was applied to existing environmental assessment indicators. 

197 One of the indicators is the average score per taxon method (ASPT) which use presence/absence 

198 data of taxa identified at family level. The ASPT was developed in 2016 by Japanese Ministry of 

199 the Environment (Ministry of the Environment Government of Japan, 2017) in accordance with 
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200 the biota in Japan based on the BMWP (Biological Monitoring Working Party) score method 

201 developed in 1976 by UK Ministry of the Environment. These score methods are used to assess 

202 water quality. The scores assigned to each taxon are shown in the Table S2. 

203 Another indicator is EPT indices or Diptera indices. For samples obtained using the conventional 

204 surber net sampling method, the EPT index (Net %EPT) was calculated using the relative 

205 abundance or the richness at family level of Ephemeroptera, Plecoptera, and Trichoptera, i.e., the 

206 ratio of the number of individuals/taxonomic-richness of EPT taxa to the total number of 

207 individuals/taxonomic-richness of the eight orders observed in the sample (Ephemeroptera, 

208 Plecoptera, Trichoptera, Diptera, Coleoptera, Odonata, Megaloptera, and Hemiptera). The 

209 Diptera index (Net %Diptera) uses the same method as the EPT index, but using Diptera instead 

210 of Ephemeroptera, Plecoptera, and Trichoptera. For eDNA-analyzed samples, EPT and Diptera 

211 indices (eDNA %EPT and eDNA %Diptera) were calculated using the number of reads, OTU 

212 richness, and assigned family richness. Here, the OTU richness refers to the number of OTUs 

213 included in the sample, and the assigned family richness refers to the number of families 

214 included in the sample. Same as the net sampling method, eDNA %EPT and eDNA %Diptera 

215 were the ratio of the number of reads/OTU-richness/assigned-family-richness of the eight aquatic 

216 insect orders (See Text S3 for formula).

217

218 Results

219 3.1. Community structure of aquatic insects revealed by eDNA analysis

220 Overall, 1,235,176 sequences (50,728–168,413 sequences/sample) passed through the sequence 

221 quality filter (Table 1). These sequences were used to create OTUs (Operational Taxonomic 

222 Unit) based on 97% sequence identity. As a result, 90,948 OTUs were formed. Out of these, 

223 66,175 OTUs included just one sequence (singletons), which were excluded from the analysis. 

224 Therefore, a total of 1,169,000 sequences (47,443–161,461 sequences/sample), generating 

225 24,773 OTUs, were analyzed. 

226 After a BLAST search (at the threshold of a minimum identity of 85% and e-value of 1.0E-50 

227 against the database that we constructed), we found that only 8.1% of the total sequences was 

228 assigned to aquatic insect taxa (Table 1 and Figure S2). The aquatic insects identified from all 12 

229 eDNA samples were 93 families, including eight Ephemeroptera families, four Plecoptera 

230 families, 15 Trichoptera families, three Odonata families, one Megaloptera family, 13 Hemiptera 

231 families, nine Coleoptera families, and 40 Diptera families. The community structure varied for 

232 each sample (Table S3). The mean number of assigned families was mostly the same in both 

233 seasons (mean ± S.D.:35.2 ± 6.6 taxa in July and 36.7 ± 13.2 taxa in November); however, the 

234 mean of the Shannon’s diversity index was slightly higher in July (1.48 ± 0.39 taxa in July and 

235 0.93 ± 0.48 taxa in November). The common taxa found in both seasons included 11 families 

236 found at more than five locations. Eighteen and 21 families were only detected in July and 

237 November, respectively. Seasonal taxa in July included five Trichoptera and five Hemiptera 

238 families. Seasonal taxa in November included nine Diptera families. 
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239 Thirty-five aquatic insect families were collected by the conventional Surber net sampling 

240 method. Of these, 30 families were common with eDNA detections (Table S4A and S4B). Five 

241 families were not detected in any eDNA samples, but were found with net-sampling, including 

242 Isonychiidae (Ephemeroptera), Hydrophilidae (Coleoptera), Ptilodactylidae (Coleoptera), 

243 Psephenidae (Coleoptera), and Blephariceridae (Diptera). 

244 With respect to read counts for each taxon, the number of reads in all subsampled reads showed 

245 that Chironomidae had the largest number of sequence reads in each sample, except for July H1 

246 (Figure 2). The top five families in the number of reads in July were Chironomidae, Simuliidae, 

247 Drosophilidae, Baetidae, and Heptageniidae, accounting for 80% of reads in all subsampled 

248 reads. The top five taxa differed between July and November, with these being Chironomidae, 

249 Simuliidae, Ephemerellidae, Baetidae, and Empididae in November, and also accounted for 85% 

250 of taxa. The families that were detected in many eDNA samples were also observed at high 

251 frequency by the Surber net sampling, regardless of season. These families included Baetidae 

252 and Ephemereliidae (order: Ephemeroptera); Stenopsychidae (Trichoptera); and Simulidae, 

253 Chironomidae, Tabanidae, and Tipulidae (Diptera).

254

255 3.2. Comparing presence/ absence of taxa between two methods 

256 We compared presence/ absence of taxa between two methods using sensitivity (S, %) and 

257 positive predictive value (PPV, %). For subsampled 250 reads analysis, the mean sensitivity of 

258 eDNA against net-sampling at six locations was higher in July than the mean positive predictive 

259 value (mean ± S.D.: S; 53.0 ± 9.9% > PPV; 35.2 ± 8.9%) but reversed in November (S; 34.7 ± 

260 15.5% < PPV; 38.0 ± 9.2%). In contrast, for subsampled 2,500 reads analyses, the mean 

261 sensitivity was higher than the mean positive predictive values both in July (S; 65.5 ± 11.0% > 

262 PPV; 26.6 ± 5.2%) and November (S; 51.9 ± 21.4% > PPV; 25.4 ± 2.9%). Therefore, eDNA was 

263 mostly able to detect taxa by detected by Surber-net sampling but it might be attributed to a 

264 greater number of subsampling read counts, with broader coverage resulting in a higher rate of 

265 sensitivity (mean of Good’s coverage = 83.6 ± 4.6% for 250-read subsamples and 96.4 ± 1.7% 

266 for 2,500-read subsamples; Table 1).

267

268 3.3. Community structure analysis

269 The Shannon diversity index was 0.80–1.82 based on the eDNA analysis at the family level, and 

270 was 1.39–2.43 for individual counts based on the conventional method (Table 1). Because the 

271 dominant taxa from the eDNA analyzed samples had the great number of reads, the evenness of 

272 taxa at the community level was reduced, resulting in a lower Shannon diversity index from 

273 eDNA analysis. In addition, there was a significantly positive correlation between Shannon 

274 diversity indices obtained by eDNA metabarcoding and by the conventional method, supporting 

275 that samples with a greater Shannon diversity in the Surber net sampling approach had greater 

276 diversity in the eDNA analysis (Spearman’s rank correlation coefficient ρ = 0.66, p = 0.02, see 

277 Figure S3).
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278 Community dissimilarities among all samples using the Chao index as β-diversity were plotted 

279 on nMDS coordinate axes (Figure 3). Visually, the eDNA data showed that plots were separately 

280 distributed according to seasonal differences. The occurrence of specific families in July and 

281 November possibly made clusters be separated. In addition, the uppermost site of the Hirose 

282 River (H1) was clearly isolated from other sites. This is acceptable because the catchment area of 

283 site H1 has been covered only by forested area and absence of human impacts. Moreover, the 

284 habitat type of H1 was classified as plane-bed reach but the others were as pool-riffle reaches. 

285 Therefore, the species appearance is largely different from other sites. UniFrac analysis was 

286 carried out based on patterns from the 250 reads (Figure 3) and 2,500 reads (Figure S4) but there 

287 was no difference in trends between the 250- and 2,500-reads. Using both weighted and 

288 unweighted approaches, clusters were divided by season and same as the results obtained from 

289 the Chao estimator of dissimilarity. In summary, the community dissimilarity relationships were 

290 not modified markedly if we used assigned taxa data (Chao index), presence/absence 

291 (unweighted UniFrac) data or relative read counts (weighted UniFrac) data.

292

293 3.4. Environmental assessment indices

294 ASPT by eDNA indicated always lower than conventional net sampling (Figure S5, mean ± S.D. 

295 of ASPT by Surber-net; 7.76 ± 0.20, eDNA; 6.95 ± 0.51). For eDNA, the scores from Plecoptera 

296 and Coleoptera were smaller than Surber-net sampling because of its lower detectability of 

297 Plecoptera and aquatic Coleoptera. As a result, most of ASPT calculated by the conventional 

298 sampling method indicated “very good” water quality (ASPT >7.5) but ASPT calculated by 

299 eDNA indicated “good” water quality (7> ASPT >=6.0). In addition, the spatial variation was 

300 consistent only in Natori river in July. Since the present ASPT assessment is constructed by 

301 aquatic invertebrate list, it does not match the taxonomic list from eDNA which includes 

302 terrestrial taxa and led different water quality evaluation.

303 Most %EPT indices derived by the three metrics (i.e. relative read counts, richness, and OTU 

304 richness) from eDNA were lower than the %EPT indices derived from Surber-net sampling. 

305 Most %Diptera derived from all eDNA metrics were higher than %Diptera derived from Surber-

306 net sampling (Figure 4). This difference was obtained because, out of all aquatic insect taxa 

307 detected by eDNA, the read count and taxonomic richness for Diptera were consistently higher 

308 than those of the other taxonomic groups. These trends were similar, regardless of the 

309 subsampled read numbers, i.e., 250- versus 2500- reads (Figure S6).

310 The trend in %EPT from Surber-net for the abundance metrics was consistent with the trends of 

311 %EPT from eDNA based on read counts metrics along river locations in both seasons. This trend 

312 was the same for %Diptera. The richness-based %EPT from Surber-net was consistent with 

313 richness-based %EPT from eDNA, except in November N1-N3. However, these results were not 

314 consistent with OTU richness-based %EPT from eDNA. Richness-based %Diptera from Surber-

315 net was not consistent with richness-based or OTU richness-based %Diptera from eDNA, except 

316 for November N1-N3. Thus, bio-assessment indices derived from relative population abundance 

PeerJ reviewing PDF | (2019:04:37104:1:2:NEW 13 Oct 2019)

Manuscript to be reviewed



317 of EPT or Diptera using Surber-net sampling showed a similar trend along stream location with 

318 indices derived from the relative read counts of eDNA metabarcoding.

319

320

321 Discussion

322 Long-term and large-scale monitoring is required to evaluate the impacts of anthropogenic 

323 activities and climate change, and transitions in monitoring methods that use molecular-based 

324 approaches are expected (Bush et al., 2019; Hering et al., 2018; Leese et al., 2018). In particular, 

325 there is interest in how biological information can be obtained using eDNA, which does not 

326 require the collection of whole organisms for analysis; and thus, eDNA analysis has been tested 

327 in various environments, including oceans, rivers, and terrestrial habitats (Cristescu and Hebert, 

328 2018; Deiner et al., 2017).

329

330 4.1. Aquatic insect taxa detected by eDNA analysis from rivers

331 We detected taxa that are mostly distributed in riparian/terrestrial habitats (e.g., Hemiptera, 

332 Diptera (e.g., Culicidae) and Coleoptera (e.g., Staphylinidae)), as well as lentic habitats (e.g., 

333 Aeshnidae and Epiophlebiidae in Odonata). Thus, our eDNA outputs provided larger taxa 

334 richness with three-fold more taxa and higher sensitivity of taxa detection than the conventional 

335 survey, as similar with the earlier report of eDNA from river systems (Macher et al., 2018). 

336 eDNA metabarcoding detect more taxa than sampling through conventional benthos capturing 

337 surveys (Macher et al., 2018) in contrast with pond systems where transportation is very small 

338 (Hajibabaei et al., 2019). This is because DNA is transported to downstream, with eDNA 

339 metabarcoding can result in the additional detection of upstream community, which is not 

340 sampled by conventional methods. In addition to the detection of aquatic insect in main streams, 

341 eDNA also can detect taxa that usually difficult to capture through Surber-net sampling in lotic 

342 locations (Deiner et al., 2016). In summary, eDNA sampled from river ecosystem have different 

343 traits from the conventional Surber-net sampling. 

344 To understand what community eDNA describes in rivers, we tried to figure out how much 

345 spatial range eDNA covers with referring earlier reports about ecology of eDNA. eDNA is 

346 decomposed and transported after release from organisms, with eDNA concentrations decreasing 

347 by 73% within 900 m of flowing downstream of a source (Nukazawa et al., 2018). Even 50–250 

348 m downstream of the source, eDNA is not detected when target organisms’ abundance or 

349 biomass is small (Jane et al., 2015; Pilliod et al., 2014). Thus, DNA sampled in rivers probably 

350 includes some DNA of large abundant organisms inhabiting up to around 1 km upstream. 

351 Adopting to our study, our samples may include negligible contamination of eDNA between 

352 samples, due to 3-5 km sampling site intervals.

353

354 4.2. Difficulties in eDNA metabarcoding analysis 

355 The sensitivities of eDNA detection against the Surber-net sampling were mostly larger than 

356 positive prediction value, but the sensitivities themselves were not large (17.6-71.4%, Table 2). It 
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357 was possibly due to various difficulties in eDNA metabarcoding data analysis. One of the 

358 difficulties is insufficient reference libraries for the local aquatic insects’ community. Even for 

359 two samples that were registered as belonging to the same species in the NCBI database, the 

360 sequence identity was markedly reduced when they were collected from geographically distant 

361 regions. For example, the identity of the CO1 gene of Drusus discolor (Trichoptera: 

362 Limnephilidae) collected from Montenegro and Germany is only 51.7% (Text S1). Second issue 

363 is the threshold for taxonomic identification. Considering the discrepancy between the reference 

364 library and the query sequence, we investigated interspecific, intergeneric, and interfamilial 

365 genetic identity (Text S1). As a result, 85% identity threshold was employed for taxonomic 

366 assignment in this study. However, some species might not even reach this threshold and went 

367 undetected. Therefore, the accumulation of genetic information of local aquatic insects and the 

368 construction of a database is necessary to improve the assignment ratio of sequence data obtained 

369 from eDNA metabarcording. Third, a primer mismatches at the 3’ end, resulting in failed PCR 

370 primer binding. We found that the five families (i.e. Isonychiidae, Hydrophilidae, 

371 Ptilodactylidae, Psephenidae and Blephariceridae) not detected by our eDNA metabarcoding, 

372 had mismatches to the primers used in this study. Therefore, to analyze these five families, the 

373 primer should be modified or a new primer developed. Some refined primer sets for the 

374 metabarcoding of aquatic invertebrates have been developed (Elbrecht and Leese, 2017; 

375 Hajibabaei et al., 2012). The new primers success to reduce amplification bias between taxa 

376 compared to the primers used in the current study (Elbrecht and Leese, 2017) and led more 

377 aquatic insect taxa detection; thus, these primers could be used to improve the ability to measure 

378 taxa richness (alpha diversity). By these above reasons, the current study could not detect some 

379 specific taxa. Missing the detection of some specific taxonomic groups possibly affected the 

380 assessment results based on taxa richness directly.

381

382 4.3. Applicability of eDNA towards environmental assessments

383 For EPT or Diptera indices, we observed that the spatial trend of indices was more similar to that 

384 of the conventional method when these indices were based on relative abundance metrics, rather 

385 than taxa (p/a) metrics (Fig. 4). There are critical issues to use read counts derived by 

386 metabarcoding analysis. It is mainly due to PCR amplification bias with universal primers 

387 (Elbrecht and Leese, 2015). Therefore, relative read counts are regarded not to reproduce the 

388 original relative abundance straightforward. In case of our study, popular taxa revealed by Surber 

389 net sampling were also detected by eDNA metabarcoding. The popular taxa included that 

390 Chironomidae, Simuliidae, Epheremerellidae, Baetidae, and Heptageniidae (see Table S5). 

391 Additionally, we obtained large number of read counts of these taxa by metabarcoding (Figure. 

392 2). Thus, taxa with large number of reads by metabarcoding were consistent with taxa with large 

393 population detected by the conventional sampling. As numerous studies indicated, eDNA 

394 concentration or eDNA detection success rate is higher when the source organism is abundant, 

395 and spatially close (Doi et al., 2017; Pilliod et al., 2013) or temporally close (Thomsen et al., 

396 2012) to source organisms. Not many but a few previous eDNA metabarcoding studies reported 
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397 that the relative abundance of individuals or biomass was correlated with the relative read 

398 abundance derived from metabarcoding for mesocosms (Evans et al., 2016) and deep seawater 

399 environments (Thomsen et al., 2016). We have to care to analyze using read counts data, but 

400 according to our observation results, the read counts may provide information of popular taxa as 

401 well as the conventional Surber net sampling, even though eDNA metabarcoding cannot 

402 completely represent the original community composition. Thus, environmental assessment 

403 indices based on abundant taxa i.e. EPT or Diptera indices were able to indicate similar spatial 

404 variation among eDNA metabarcoding and the conventional Surber net sampling.

405

406

407 Conclusions

408 We compared aquatic insect communities revealed by the conventional Surber-net sampling and 

409 eDNA metabarcoding analysis. eDNA revealed community variations between seasons. 

410 Furthermore, taxa which is highly relative abundant based on individuals were likely to show 

411 highly relative abundance based on read counts. Consequently, environmental assessment indices 

412 using relative abundance such as EPT indices or Diptera indices indicated same spatial variations 

413 between two methods. Even though the use of read counts data obtained from metabarcoding 

414 should be carefully concerned, our findings suggest that read count data derived from eDNA 

415 metabarcoding analyses are able to use for the calculation of environmental assessment indices.

416
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Table 1(on next page)

Sampling results from surbernet-collection and eDNA analysis outputs.
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Sampled month July November

sampling site H1 H2 H3 N1 N2 N3 H1 H2 H3 N1 N2 N3

Surber net sampling 　 　 　 　 　 　 　 　 　 　 　

sample size 

(individuals)
16 170 311 317 230 143 100 929 529 275 457 379

Identified 

family
8 16 13 17 18 14 17 19 16 17 14 18

Shannon's 

diversity
1.93 2.37 1.91 2.05 2.37 2.29 2.43 1.93 1.89 2.20 1.77 1.37

Metabercoding Reads 　 　 　 　 　 　 　 　 　 　 　

Raw 58,130 124,870 148,614 60,913 54,330 62,916 168,136 171,748 149,205 159,015 51,939 54,613

Filtered 56,697 122,384 145,593 59,396 52,681 61,479 163,677 168,413 145,639 155,025 50,728 53,464

Removed 

Singletons
53,803 116,649 136,700 56,121 50,001 58,273 153,815 161,461 137,835 146,232 47,443 50,667

Assigned as 

aquatic insect.
4,616 11,936 6,232 5,672 8,929 4,423 5,344 31,740 5,742 38,169 7,715 399

Chimera

Removed 
3,231 7,654 4,847 3,643 6,905 2,914 2,619 28,952 4,518 31,275 4,988 290

A. Insect /Total 6.0% 6.6% 3.5% 6.5% 13.8% 5.0% 1.7% 17.9% 3.3% 21.4% 10.5% 0.6%

Metabercoding taxonomy assigned as aquatic insect 　 　 　 　 　 　 　 　

Clustered 

OTUs
106 307 381 283 286 181 177 762 349 811 360 63

good's coverage 

(250)
88.8% 87.6% 76.0% 76.4% 86.0% 86.8% 83.6% 84.8% 77.6% 82.0% 86.4% 87.2%

good's coverage 

(2500)
99.1% 96.3% 95.5% 97.6% 96.7% 97.7% 93.9% 94.6% 98.6% 94.9% 95.2% -

Families 31 32 44 39 39 26 42 51 33 45 36 13

Shannon's 

diversity
2.17 2.04 1.75 1.99 2.03 1.29 2.29 0.83 1.69 1.09 0.98 0.89

1
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Table 2(on next page)

Sensitivity (S, %) and positive predictive value (PPV, %) by eDNA and Net sampling of
each samples.
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　 　 250 reads 　 2,500 reads

season July 　 November July 　 November

sites S (%) PPV (%) 　 S (%) PPV (%) S (%) PPV (%) 　 S (%) PPV (%)

H1 　 71.4 20.8 　 57.1 36.4 　 85.7 19.4 　 78.6 26.8

H2 50.0 42.1 22.2 36.4 56.3 31.0 27.8 21.7

H3 　 53.8 38.9 　 40.0 40.0 　 69.2 23.1 　 46.7 23.3

N1 46.7 29.2 25.0 33.3 60.0 23.7 37.5 26.1

N2 　 52.9 45.0 　 46.2 54.5 　 64.7 31.4 　 69.2 29.0

N3 42.9 35.3 　 17.6 27.3 57.1 30.8 　 ND ND

mean 　 53.0 35.2 　 34.7 38.0 　 65.5 26.6 　 51.9 25.4

SD 　 9.9 8.9 　 15.5 9.2 　 11.0 5.2 　 21.4 2.9

1
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Figure 1
Study field

Sampling sites in Hirose River (from upmost site, H1, H2, H3, in orange circle) and in Natori River (N1, N2,
N3, in blue circle) in the northeast part of Japan.

This map was modified by Uchida using a digital map provided by Geospatial Information Authority of Japan.
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Figure 2
Component of aquatic insect community by eDNA, subsampled 250 reads in
metabarcoding

Represent top 20 taxa for read counts through (A) sample series in July, (B) sample series in November.
Graph legends are shown with “taxonomic order: family name (relative abundance (%) through 6 samples).”
Taxonomic order used the following abbreviations: Ephemeroptera (E), Plecoptera (P), Trichoptera (T),
Diptera (D), Coleoptera (C), Hemiptera (H).
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Figure 3
Community dissimilarity plots.

Closed circles represent Hirose river samples (H1-H3) and open rhombuses represent Natori
river samples (N1-N3). Orange characters show July samples and blue characters show
November samples. a) Chao dissimilarity for surber net sampled community, b) Chao
dissimilarity for eDNA community, c) unweighted Unifrac analysis with 250 reads, d)
weighted Unifrac analysis with 250 reads. For panels c) -d), x axis showed PC1 (17.4% for
variation explain) and y axis showed PC2 (15.8%).
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Figure 4
The spatial change of EPT index and Diptera index for two rivers in July and November.

The spatial changes of EPT index are shown in panel a) Hirose in July, b) Natori in July, c)
Hirose in November and d) Natori in November. These of Diptera index are shown in panel e)
- f) by same order as %EPT. Black and blue marks represent the Surber-net results and eDNA
results (subsampled for 250 reads), respectively. Closed circles/rectangles with solid lines
represent relative abundance-based indices, and open circles/rectangles with dotted lines
and broken lines represent richness-based indices. For in the case of subsampled for 2,500
reads, please see Figure S6.
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