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ABSTRACT
Background. Alternative splicing (AS) is an important mechanism for regulating gene
expression and proteome diversity. Tumor-alternative splicing can reveal a large class
of new splicing-associated potential new antigens that may affect the immune response
and can be used for immunotherapy.
Methods. The RNA-seq transcriptome data and clinical information of stomach
adenocarcinoma (STAD) cohort were downloaded from The Cancer Genome Atlas
(TCGA) database data portal, and data of splicing events were obtained from the
SpliceSeq database. Predicting genes were validated by Asian cancer research group
(ACRG) cohort and Oncomine database. RT-qPCR was used to analysis the expression
of ECT2 in STAD.
Results. A total of 32,166 AS events were identified, among which 2,042 AS events were
significantly associatedwith patients survival. Biological pathway analysis indicated that
these genes play an important role in regulating gastric cancer-related processes such
as GTPase activity and PI3K-Akt signaling pathway. Next, we derived a risk signature,
using alternate acceptor, that is an independent prognostic marker. Moreover, high
ECT2 expression was associated with poorer prognosis in STAD. Multivariate survival
analysis demonstrated that high ECT2 expression was an independent risk factor for
overall survival. Gene set enrichment analysis revealed that high ECT2 expression was
enriched for hallmarks of malignant tumors. The ACRG cohort and Oncomine also
showed that high ECT2 expression was associated with poorer prognosis in gastric
cancer patients. Finally, RT-qPCR showed ECT2 expression was higher in STAD
compared to the normal tissues.
Conclusion. This study excavated the alternative splicing events in gastric cancer, and
found ECT2 might be a biomarkers for diagnosis and prognosis.

Subjects Bioinformatics, Genomics, Gastroenterology and Hepatology, Data Mining and
Machine Learning
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INTRODUCTION
Gastric cancer (GC) have the second-highest mortality of cancers worldwide (Siegel, Miller
& Jemal, 2019;Miller et al., 2019).With the rapid development ofmedical immunology and
molecular biology techniques, immunotherapy as a new treatment method has received
extensive attention in the field of cancer therapy. Immunotherapy is currently the most
promising direction for the treatment of GC patients, however, not all GC patients are
suitable for this type of approach (Fuchs et al., 2018; Panda et al., 2018; Roh et al., 2017).
Finding the right antigen for targeted vaccines is a big challenge in people who benefit
from immunotherapy (Nishino et al., 2017). Due to the heterogeneity of tumors, the
current biomarkers for predicting prognosis have certain limitations. Therefore, this field
requires new biomarkers as prognostic indicators to effectively enhance prognosis and
individualized treatment.

Alternative splicing (AS) refers to the process from the precursor of mRNA to mature
mRNA, in which different splicing methods enable the same gene to produce multiple
different mature mRNA, and eventually produce different proteins. AS is an important
mechanism for regulating gene expression and producing proteome diversity (Nilsen &
Graveley, 2010). AS occurs frequently in tumors and is closely related to the occurrence
and development of tumors (Kim, Goren & Ast, 2008; Oltean & Bates, 2014). It has been
found that AS affects the family of protein genes that often mutate in tumors and changes
the protein-protein interaction in tumor-related signaling pathways, indicating that AS
is also an important cause of tumorigenesis (Oltean & Bates, 2014). Abnormal expression
of splicing factors leads to changes in the variable splicing of genes (Blencowe, 2003), and
may cause the formation of specific cancer-producing splicing isoforms, and leading to
cancer (Pradella et al., 2017). Thus, tumor-alternative splicing can reveal a large class of
new splicing-associated potential new antigens that may affect the immune response and
can be used for immunotherapy.

The purpose of this studywas to identifyAS inGC, and to provide new splicing-associated
potential new antigens on GC. Firstly, we comprehensively detected the landscape of AS
events in GC. Secondly, we construct of the prognostic predictor in GC patients. Moreover,
we construct survival-associated alternative splicing events. Finally, we used RT-qPCR to
detect the expression of ECT2 in GC and paired adjacent normal tissue.

MATERIAL AND METHODS
Data acquisition
A total of 407 samples (375 GC samples and 32 normal samples) were enrolled for
comprehensive integrated analysis. The data were download from The Cancer Genome
Atlas (TCGA) database. In addition, we used the Data Transfer Tool (provided by GDC
Apps) to download the level 3 mRNASeq gene expression data and clinical information
of those patients. In addition, data of splicing events were obtained from the SpliceSeq
database (Ryan et al., 2012). The filter condition is sample percentages with PSI values≥75
and1PSI≥ 30% (Ryan et al., 2012). Finally, the resulting matrix files and PSI files are used
for subsequent analysis.
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Gene Set Enrichment Analysis (GSEA)
GSEA abandons the previous method that the analysis software only focuses on a group
of up-regulated or down-regulated genes, and focuses on a group of genes with the same
or similar biological processes, through a comparative analysis of the overall changes of a
group of genes, and then explain the effects of different treatments on the sample or reveal
the biological significance (Subramanian et al., 2007). GSEA was used to enrich key Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of high and low ECT2 expression
in GC.

Oncomine database analysis
The expression level of the ECT2 gene in various types of cancers was identified in the
Oncomine database (Rhodes et al., 2007). The threshold was determined according to the
following values: P-value of 0.001, fold change of 1.5, and gene ranking of all.

Quantitative reverse transcription polymerase chain reaction
(qRT- PCR) assays
Total RNA from cells or tissues was isolated using TRIzol (Invitrogen, Canada) reagent, the
specific operation is carried out with reference to the instructions for the operation of the
kit. RNA (1 µg) was converted into cDNA using the RevertAid First Strand cDNA Synthesis
Kit (Takara, China). qRT-PCR was performed using SYBR Green Mixture (Takara, China)
in the ABI StepOne-Plus System (ABI7500, USA). Target gene expression was normalized
against GAPDH. The primer sequences are F: 5′-CAGACTCCGAAGGAAGTTGTATG-
3′,R:5′-TCCACTGAGCCGTGGGATGTCA-3′.

Statistical analyses
We used the R packages (‘‘UpSetR’’) to get a overview of AS events profiling in GC
(Conway, Lex & Gehlenborg, 2017). We combine the survival data with the AS data to
obtain survival-related AS data for subsequent analysis, then use the R package (‘‘UpSetR
and survival’’) to analyze the variable shear events associated with survival. A univariate
Cox regression analysis was employed by ‘‘survival’’ package in R to identify survival-
associated splicing events. Next, a multivarite Cox regression was analyzed upon meaful
genes (p< 0.05) screened from univariate regression. Subsequently, Cytoscape 3.5 was
employed to construct the potential regulatory network. R language packages (ggplot2,
pheatmap, pROC, and corrgram) are used for other statistical computations and figure
drawing.

RESULT
The landscape of AS events in gastric cancer
60,754 AS events of 22,039 genes were identified. In detail, we detected 31,730 exon skip
(ES) in 6,973 genes, 8,393 alternate terminator (AT) in 3,666 genes, 10,005 alternate
promoter (AP) in 4,025 genes, 4,006 alternate acceptor site (AA) in 2,799 genes, 3,450
alternate donor site (AD) in 2,401 genes, 2,944 retained intron (RI) in 1,956 genes, and 226
mutually exclusive exons in 219 genes respectively (Figs. 1A and 1B). After strict filtering
by survival, 32,129 AS events of 17,913 genes were identified, including 12,894 ESs in 5,598
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Figure 1 The landscape of AS events in gastric cancer. (A–B) UpSet plot of interactions between the
seven types of alternative splicing events in GC. (C–D) UpSet plot of interactions between the seven types
of survival associated alternative splicing events in GC. One gene may have up to five types of alternative
splicing to be associated with patient survival. (E–F) Volcano plots of alternative splicing events difference
for TCGA datasets. Red represents a significant difference, blue represents no significant. (G) Top 20 path-
ways of GO analyses of genes from OS-related alternative splicing events. Rich factor represents gene en-
richment in a specific pathway. (H) Top 20 pathways of KEGG analyses of genes from OS-related alter-
native splicing events. Rich factor represents gene enrichment in a specific pathway. GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; CC, cellular component; MF, molecular function; BP,
biological process; OS, overall survival. P < 0.05 was statistically significant.

Full-size DOI: 10.7717/peerj.9174/fig-1

genes, 5,518 ATs in 3,192 genes, 6,253 APs in 3,620 genes, 2,817 AAs in 2,111 genes, 2,410
ADs in 1,782 genes, 2,182 RIs in 1,469 genes, and 145 MEs (mutually exclusive exons) in
141 genes respectively (Figs. 1C and 1D). These data suggest that a single gene may have
multiple types of mRNA splicing events. ES is the primary splicing event and ME is a rare
splicing event in GC patients.

To better understand the prognostic role of AS event in GC, we used a multivariate
Cox regression analysis. Multivariate Cox regression showed that 2,042 AS events of
1,615 genes, including 805 ESs in 660 genes, 297 ATs in 203 genes, 461 APs in 304 genes,
157 AAs in 153 genes, 174 ADs in 164 genes, 130 RIs in 113 genes, and 18 MEs in 18
genes respectively, were significantly associated with OS (P < 0.05) (Figs. 1E and 1F). To
better understand the biological processes of the OS-associated genes, we annotated their
function using gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway. The results showed that OS-associated genes are enriched in GTPase
activity and PI3K-Akt signaling pathway (Figs. 1G and 1H). Obviously, most of the top 20
significant OS-associated AS events were better prognostic factors (Z < 0) (Figs. 2A–2G).
For instance, AA of ECT2, LMO7, STAT3, CBX7, TRAPPC2L, TSC2,TROAP, ZNF410
and HNRNPR were adverse prognostic factors in GC patients, however others were better
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Figure 2 Forest plots for subgroup analyses of survival associated AS events in TCGA-STAD cohort. (A) Forest plots of top 20 survival associ-
ated AA, AD, AP, AT, ES, ME and RI events in GC. (A) Forest plots of top 20 survival associated AA events in GC. (B) Forest plots of top 20 sur-
vival associated AD events in GC. (C) Forest plots of top 20 survival associated AP events in GC. (D) Forest plots of top 20 survival associated AT
events in GC. (E) Forest plots of top 20 survival associated ES events in GC. (F) Forest plots of top 20 survival associated ME events in GC. (G) For-
est plots of top 20 survival associated RI events in GC.The color scale of the circles represents p-values by the side, the larger the circle, the smaller
the P value. Horizontal bars represent Z score.

Full-size DOI: 10.7717/peerj.9174/fig-2

prognostic factors (Fig. 2A). Table 1 shows the top 15 most significant AS events for up-
and down-regulation.

Construction of the prognostic predictor in GC patients
Next, risk score constructed using the top 20 significant OS-related AS events of the eight
types, identified by multivariate Cox proportional hazards regression. As the patient’s risk
score increases, the number of dead patients increases, indicating that the risk score is
related to survival. At the same time, as the patient’s risk score increases, the PSI value of
AS increases (Figs. 3A–3X). For instance, the PSI value of AP RCAN1-60494 increases as
the risk value increases (Fig. 3C).

Next, the area under the curve (AUC) of ROC was generated, the result showed that risk
score exhibited the AUC of 0.841 in AA, followed by AD, ES, All, ME, AP, AT and RI model
with AUC of 0.827, 0.818, 0.801, 0.765, 0.759, 0.756 and 0.716, respectively (Figs. 4A–4P).
The K-M curve was used to analyze the survival time of patients in the low-risk and
high-risk groups. The results show that in each Cox regression model constructed from
eight types of AS events, high risk score had a poor survival (Figs. 4A–4P). In addition,
Both the univariate (HR: 1.71; 95% CI [1.51–1.95]) and multivariate Cox regression
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Table 1 The detailed information of the top 30 most different AS events.

Symbol AS type Z scores HR Lower 95% CI Upper 95% CI P-value

Upregulated
PPHLN1 AT 4.718722 708.4768 46.38922 10820.17 2.37E−06
ABL2 AP 4.622432 6.340252 2.897372 13.87423 3.79E−06
ABCB5 AT 4.201051 17.2989 4.575428 65.40413 2.66E−05
TLN2 AT 4.12608 169.3579 14.79387 1938.783 3.69E−05
WEE1 AP 3.955059 1530.346 40.41471 57948.17 7.65E−05
WBP1L AP 3.947781 32.83358 5.801072 185.8353 7.89E−05
RCAN1 AP 3.900007 9.044709 2.990575 27.35486 9.62E−05
CBWD3 ES 3.865012 53.47146 7.1086 402.2166 0.000111
TET2 AT 3.693635 125.1666 9.64922 1623.621 0.000221
MID1 AP 3.649145 84.6877 7.805195 918.8761 0.000263
KIF1B AT 3.64224 18.78038 3.875235 91.01454 0.00027
EPC1 AP 3.576018 37.37312 5.136439 271.9296 0.000349
TUBA1A AP 3.574184 3184.855 38.20425 265501.9 0.000351
OXR1 AP 3.489226 8.06321 2.49635 26.04417 0.000484
NAT6 AA 3.464763 22.01342 3.829565 126.5394 0.000531

Downregulated
CD44 ES −4.84614 0.000511 2.38E−05 0.010953 1.26E−06
ABL2 AP −4.62343 0.15761 0.072015 0.34494 3.77E−06
TMEM37 AP −4.47008 1.17E−05 8.01E−08 0.001697 7.82E−06
RASSF4 ES −4.36672 3.02E−06 1.00E−08 0.000906 1.26E−05
KIAA1147 AP −4.22552 4.51E−11 7.16E−16 2.84E−06 2.38E−05
PPP2R5D ES −4.20571 0.000117 1.73E−06 0.007964 2.60E−05
LOH12CR1 ES −4.20016 1.19E−05 5.96E−08 0.002359 2.67E−05
TLN2 AT −4.12622 0.005904 0.000516 0.067586 3.69E−05
CDKN3 AP −4.11316 3.16E−08 8.42E−12 0.000118 3.90E−05
FAM151B AT −4.10608 1.20E−08 1.99E−12 7.25E−05 4.02E−05
UBA52 AD −4.02392 0.020525 0.003092 0.136248 5.72E−05
CADPS AT −3.99005 0.048147 0.01085 0.213652 6.61E−05
SRSF7 RI −3.98842 0.082065 0.024019 0.280385 6.65E−05
ST5 AA −3.98063 0.011741 0.001316 0.104746 6.87E−05
WEE1 AP −3.95514 0.000653 1.73E−05 0.02474 7.65E−05

Notes.
HR, hazard ratio; CI, confidence interval; ES, exon skip; ME, mutually exclusive exons; RI, retained intron; AP, alternate
promoter; AT, alternate terminator; AD, alternate donor site; AA, alternate acceptor site.

analyses (HR: 1.64; 95% CI [1.44–1.86]) results indicated that the risk score and age were
all correlated with the OS (Figs. 5A and 5B).

Next, to determine which SF is associated with AS events associated with survival in the
GC, we performed a survival analysis of SF. The results showed that 26 SF was significantly
associated with overall survival. In addition, the correlation between the PSI value of
significant AS events and the expression of survival-related SF was investigated using the
Spearman test (Fig. 5C).
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Figure 3 Construction and analysis of risk score based on the prognosis-associated splicing events using multiple Cox regression analysis.GC
patients were divided into low- and high-risk groups based on the median value of risk score. The top of each assembly drawing represents survival
status and survival time of GC patients distributed by risk score, the middle part is the risk score curve of patients with GC, and the bottom part
shows the heatmap of the PSIs for the ten splicing events. Colors from blue to red indicate increasing PSIs from low to high. (A–C) Risk scores con-
structed using all types of prognosis-associated splicing events. (D–F) Risk scores constructed by AA-type of prognosis-associated splicing events.
(G–I) Risk scores constructed using AD-type of prognosis-associated splicing events. (J–L) Risk scores constructed using AP-type of prognosis-
associated splicing events. (M–O) Risk scores constructed using AT-type of prognosis-associated splicing events. (P–R) Risk scores constructed us-
ing ES-type of prognosis-associated splicing events. (S–U) Risk scores constructed using ME-type of prognosis-associated splicing events. (V–X) risk
scores constructed using RI-type of prognostic-associated splicing events.

Full-size DOI: 10.7717/peerj.9174/fig-3

Construct survival-associated alternative splicing events
The counterpart genes of risk score (AA) were ST5, PLK4, BDKRB2, NAT6, APOBEC3B,
ECT2, MORF4L2, STAT3, PARPBP, CBX7, TRAPPC2L, C19orf60, DHPS, TROAP,
ZNF410, and HNRNPR (Table 2). Compared with normal tissues, GC patients generally
contain a lower proportion of ST2 and CBX7 (P < 0.05), while the mRNA expression
of PLK4, NAT6, APOBEC3B, ECT2, MORF4L2, STAT3, PARPBP, TRAPPC2L, TROAP,
and HNRNPR were opposite (P < 0.05). Compared with normal tissues, GC patients
have no considerable difference of BDKRB2, ZNF410, and DHPS (Figs. 6A and 6B). K-M
analysis was used to evaluate the association between mRNA expression of 15 genes and
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Figure 4 ROC and K-M curves of eight risk scores constructed using survival-associated alternative
spicing events in GC. (A–P) K-M curves of all-type, AA-type, AD-type, AP-type, AT-type, ES-type, ME-
type, RI-type risk scores in GC patients, divided into low- and high-risk groups based on the median value
of the risk score, and ROC curves of all-type, AA-type, AD-type, AP-type, AT-type, ES-type, ME-type, RI-
type risk scores for predicting survival status of patients with GC.

Full-size DOI: 10.7717/peerj.9174/fig-4

OS, and the result indicate high expression of ECT2 predicts poor prognosis in GC patients
(Figs. 6C–6G).

High expression of ECT2 predicts poor prognosis in GC patients
Next, both the univariate (HR: 1.32; CI [1.11–1.56]) and multivariate Cox regression
analysis (HR: 1.26; CI [1.06–1.51]) results indicated that high ECT2 expression correlated
significantly with a poor overall survival (Fig. 7A). To identify signaling pathways that are
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Figure 5 Network of survival-associated AS splicing factors. (A) Univariate Cox regression analysis of
the association between clinicopathological factors (including the risk score) and OS of patients in the
TCGA datasets. (B) Multivariate Cox regression analysis of the association between clinicopathological
factors (including the risk score) and overall survival of patients in the TCGA datasets. (C) Correlation
network between expression of survival AS factors and PSI values of AS genes generated using Cytoscape.
Gray dots were survival associated splicing factors. Green/Red dots were favorable/adverse AS events.
Red/green lines represent positive/negative correlations between substances.

Full-size DOI: 10.7717/peerj.9174/fig-5

differentially activated in GC, we conducted GSEA between low and high ECT2 expression
data sets. We selected the most significantly enriched signaling pathways based on their
normalized enrichment score. The GSEA shows that cancer pathway, prostate cancer
pathway, and wnt signaling pathway are differentially enriched in ECT2 high expression
phenotype (Figs. 7B–7F), and parkinson’s disease, ribosome, oxidative, and Huntington
disease are differentially enriched in ECT2 low expression phenotype (Fig. 8B). Next, we
further validated ECT2 using data fromOncomine, TIMER, and GEO database. The results
showed that mRNA levels of ECT2 were significantly upregulated in GC patients compared
with normal samples, and high expression of ECT2 predicts poor prognosis in GC patients
(Figs. 8A–8C). To further validate ECT2 in GC, RT-qPCR was used to detect the ECT2
mRNA expression in GC, and paired adjacent normal tissue (PANT). Compared with the
PANT group, the ECT2 mRNA level was significantly higher in the GC group (Fig. 8D).
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Table 2 GC-specific genes involved in the ideal prognostic model.

Symbol AS type Z scores HR Lower 95% CI Upper 95% CI P-value

ST5 AA −3.98063 0.011741 0.001316 0.104746 6.87E−05
PLK4 AA −3.62387 2.39E−30 2.28E−46 2.51E−14 0.00029
BDKRB2 AA −3.54094 0.043664 0.007716 0.247079 0.000399
ECT2 AA 3.464763 22.01342 3.829565 126.5394 0.000531
APOBEC3B AA −3.35143 6.97E−25 5.20E−39 9.34E−11 0.000804
NAT6 AA −3.21002 3.08E−05 5.41E−08 0.017498 0.001327
MORF4L2 AA −3.11388 0.031742 0.003618 0.27845 0.001846
LMO7 AA 3.030706 4.169178 1.656008 10.49635 0.00244
STAT3 AA 2.944662 58.29749 3.894351 872.6994 0.003233
SLC19A1 AA −2.9306 0.005836 0.000187 0.182022 0.003383
PARPBP AA −2.92667 0.033916 0.003518 0.327025 0.003426
CBX7 AA 2.889714 84.91815 4.174894 1727.252 0.003856
TRAPPC2L AA 2.868993 802.8213 8.323711 77432.05 0.004118
C19orf60 AA −2.86832 0.01071 0.000482 0.237716 0.004127
TSC2 AA 2.817036 12.70887 2.167305 74.52356 0.004847
DHPS AA −2.81067 0.070895 0.011197 0.448865 0.004944
TAF6L AA −2.78302 0.000388 1.53E−06 0.097973 0.005386
TROAP AA 2.765524 36.35456 2.848195 464.0322 0.005683
ZNF410 AA 2.741289 152873.2 30.03605 7.78E+08 0.00612
HNRNPR AA 2.733637 19.5677 2.320231 165.0245 0.006264

Notes.
HR, hazard ratio; CI, confidence interval; AA, alternate acceptor site.

DISCUSSION
Invasion and metastasis are the important characteristics of GC, and leads to a poor
prognosis. Surgery, radiotherapy, and chemotherapy are the predominant treatments for
GC. Immunotherapy represented by anti-PD-1/PD-L1 monoclonal antibody drugs and
CAR-T cell therapy has attracted much attention, and encouraging results have continued.
Both of them are essentially the ability of human autoimmune system to recruit and
activate human core immune guardian-T cells to identify and clear cancer cells through
antigen-antibody response (Le et al., 2017). However, not every patient responds to this
treatment, especially in GC (Grosser et al., 2019). Therefore, there is an urgent need to
clarify and identify new biomaker for therapeutic target.

Previous studies suggest that AS may be associated with 50% of the human
genetic diseases (Pan et al., 2008), including hypercholesterolemia (Zhu et al., 2007),
frontotemporal dementia (Ayala et al., 2005), and tumors (Kim, Goren & Ast, 2008). The
overall function of variable splicing is to increase the diversity of mRNA expressed from
the genome, altering the protein encoded by the mRNA, and the effect of variable splicing
on protein structure and function changes the phenotype (Lara-Pezzi et al., 2017). Studies
on the different phenotypes of the same species through variable shear have positive
implications for biological evolution (Bush et al., 2017; Lin, Taggart & Fairbrother, 2016).
AS provides a means for cells to diversify proteomes, and there is growing evidence that
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Figure 6 mRNA expression and K-M curves of genes from the fifteen splicing events used in constructing ‘‘risk score (AA)’’ in GC. (A) The
heatmap shows the expression levels of the fifteen genes in in 375 tumor patients and 32 normal tissues in TCGA dataset. (B) Vioplot visualizing the
differentially fifteen genes in gastric cancer. (C–Q) K-M curves of fifteen genes in GC patients, divided into low-and high-expression groups accord-
ing to the median value of mRNA expression of fifteen genes. * P < 0.05, ** P < 0.01 and *** P < 0.001.

Full-size DOI: 10.7717/peerj.9174/fig-6
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Figure 7 GSEA identifies a ECT2-related signaling pathway levels. (A) Univariate and multivariate Cox regression analysis of the association be-
tween ECT2 and OS of patients in the TCGA datasets. (B) GSEA revealed that ECT2 in TCGA datasets were enriched for hallmarks of malignant tu-
mors. GSEA results showing T cell receptor signaling pathway (C), wnt pathway (D), prostate pathway (E) and pathway in cancer (F) are differen-
tially enriched in ECT2-related GC. ES, enrichment score; NES, normalized ES; Norm p-val: normalized p-value.

Full-size DOI: 10.7717/peerj.9174/fig-7

AS plays a key role in the development or progression of human disease, including GC
(Li & Yuan, 2017). The expression of tumor-specific splicing variants affects many cellular
activities closely related to cancer, such as cell proliferation, motility, and drug response
(Skotheim & Nees, 2007).

This article provides analysis of the alternative splicing of genomic maps from 375 GC
patients by reanalysing mRNA data. A total of 32,166 AS events were identified, among
which 2,042 AS events were significantly associated with patients survival. Biological
pathway analysis indicated that these SASEs play an important role in regulating gastric
cancer-related processes. Next, we derived a risk signature, using alternate acceptor, that
is an independent prognostic marker. Moreover, high ECT2 expression was associated
with poorer prognosis in STAD. Multivariate survival analysis demonstrated that high
ECT2 expression was an independent risk factor for overall survival, and as validated
in GEO database. GSEA revealed that high ECT2 expression was enriched for hallmarks
of malignant tumors. Finally, RT-qPCR showed ECT2 expression was higher in STAD
compared to the normal tissues.
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Figure 8 ECT2 expression levels in different types of human cancers. (A) Increased or decreased ECT2 in data sets of different cancers compared
with normal tissues in the Oncomine database. (B) Human ECT2 expression levels in different tumor types from TCGA database were determined
by TIMER. (C) Survival curves of OS in ACRG cohort (GSE62254). (D) ECT2 mRNA level was shown for the GC and paired adjacent normal tissue
(PANT). * P < 0.05, ** P < 0.01 and *** P < 0.001.

Full-size DOI: 10.7717/peerj.9174/fig-8

The ECT2 gene, located on human chromosome 3q26, is a highly conservative gene
(Solski et al., 2004). It can transform fibroblasts into cancer cells and interact with members
of the Rho GTP family to cause malignant transformation, induce cell division and regulate
the polarity of epithelial cells (Kim et al., 2014). ECT2 has been thought to be associatedwith
a variety of cancers. The expression of ECT2 is closely related to cell cycle regulation and
cell division. Down-regulation of ECT2 expression can block cells in G1 phase, and ECT2
expression can dynamically regulate the whole cell cycle (Fortin et al., 2012). Therefore,
ECT2 may play a very important role in the mechanism of tumorigenesis. Whether in
GC tissue or serum, the expression of ECT2 was significantly higher than that of normal
controls, and the expression of ECT2 was closely related to clinicopathological parameters
including tumor grade, TNM stage, and lymph node metastasis. Therefore, ECT2 plays an
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important role in the occurrence and development of gastric cancer, and may be the basis
for GC diagnosis and targeted therapy (Wang, Yan & Liu, 2016).

CONCLUSIONS
Our study depicts a comprehensive landscape of alternative splicing events in GC and
identified that SASEs can be used to predict overall survival of GC patients, and found
ECT2 might be a biomarker for diagnosis and prognosis. Further investigations are needed
to reveal the clinical and biological significance of the non-cancer cells and genes of
alternative splicing events in GC, so as to better guide the more effective diagnosis and
prognosis of gastric cancer.
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