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ABSTRACT
In the past decade, researchers have carried out a massive amount of research on
the application of biochar for contaminants removal from aqueous solutions. As an
emerging sorbent with great potential, biochar has shown significant advantages such
as the broad sources of feedstocks, easy preparation process, and favorable surface
and structural properties. This review provides an overview of recent advances in
biochar application in water and wastewater treatment, including a brief discussion
of the involved sorption mechanisms of contaminants removal, as well as the biochar
modification methods. Furthermore, environmental concerns of biochar that need to
be paid attention to and future research directions are put forward to promote the
further application of biochar in practical water and wastewater treatment.

Subjects Natural Resource Management, Environmental Contamination and Remediation,
Environmental Impacts
Keywords Biochar, Wastewater treatment, Modification methods, Sorption mechanism,
Contaminants removal

INTRODUCTION
Biochar with rich carbon content is a thermal decomposition product derived frombiomass
under a condition that lacks oxygen (Sohi, 2012). These innovations about converting
organic matters into valuable materials such as biochar and the subsequent applications
have drawn the attention of relevant fields. Initial studies have focused on the ability of
biochars as soil amendments to sorb inorganic nutrients and improve the soil quality
or promote other environmental services (Sanroman et al., 2017). Numerous researches
have shown the interests of biochar in improving soil properties and increasing crop
yield (Windeatt et al., 2014; Agegnehu, Srivastava & Bird, 2017; Awad et al., 2017;ÖZ, 2018;
Yu et al., 2019), which ultimately contributes to soil carbon sequestration and reduction
of greenhouse gases (Windeatt et al., 2014). In recent years, progress in the production
of various biochars has improved their performance and expanded their application in
multidisciplinary fields. Researches on biochar are being carried out in more and more
countries, with broad and diverse purposes depending on the feedstocks, production and
modification methods, and the local economy and environment (Tan et al., 2015).

Water and wastewater treatment is one of the emerging subsets of biochar application.
Due to the properties of large surface area and pore volume, rich organic carbon content and
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mineral components, abundant and diverse functional groups, biochar displays prominent
sorption ability for both inorganic and organic contaminants in aqueous solutions (Ahmad
et al., 2014). Traditional techniques for contaminants removal from the aqueous phase,
for example, ion exchange, membrane separation, chemical precipitation, and sorption
using activated carbon, have disadvantages such as high cost and inevitable generation
of a large number of chemical residues with no economic value (Oliveira et al., 2017).
In contrast, biochar can be produced from green wastes, mainly agricultural biomass
and solid wastes such as woodchips, straws, shells, bagasse, and manure (Ahmad et al.,
2014; Nanda et al., 2016; Thornley, Upham & Tomei, 2009). The resources of feedstocks
are among the wealthiest renewable resources in the ecosystem (Yao et al., 2012; Xu et al.,
2013), providing more options to produce such renewable sorbents, which benefits the
low-income communities to some extent. Moreira, Noya & Feijoo (2017) compared the
global environmental impacts between the production process of biochar and activated
carbon. Themain findings encouraged biochar to be an environmentally friendly alternative
to activated carbon, mainly reflected by net mitigation of carbon emissions in the biochar
production process.

Biochar is a by-product of thermochemical transformation such as pyrolysis,
hydrothermal carbonization, gasification, and torrefaction (Meyer, Glaser & Quicker,
2011). Reports have shown that the physicochemical properties of biochar such as surface
area, porosity, acid–base behavior, surface functional groups, and element composition
depend on pyrolysis temperatures and feedstock types (Ahmad et al., 2014;Uchimiya, Ohno
& He, 2013;Nachenius et al., 2013;Manariotis, Fotopoulou & Karapanagioti, 2015), making
vital implications on its efficiency and suitability in removal of target contaminants (Oliveira
et al., 2017), including a series of organic contaminants (e.g., dyes, phenols, polycyclic
aromatic hydrocarbons (PAHs), pesticides, antibiotics) and inorganic contaminants
(e.g., heavy metals, nitrate (NO3

−), ammonium ion (NH4
+), phosphate (PO4

3−), fluoride
(F−)) from wastewater (detailed discussion is given in the section ‘‘Biochar application in
water and wastewater treatment’’).

With increased application of biochar being carried out in the water and wastewater
treatment, this paper reviews recent advances in the biochar application, including a brief
discussion of the involved mechanisms in the removal of specific organic and inorganic
contaminants. Moreover, this review briefly covers the modification methods of biochar
based on different emphases and explains how the modification alters the properties of
biochar, as well as the removal efficiency. Furthermore, remained environmental concerns
and future research directions are highlighted, with possible solutions put forward.

SURVEY METHODOLOGY
The literature reviewed in this paper was obtained on databases of ScienceDirect, Web of
Science, Google Scholar, and the Chinese journal database CNKI. The keywords used to
search for literature on the databases are as follows: biochar, cellulose, lignin, pyrolysis, and
carbonization associated with the feedstocks and biochar production methods; industrial,
agricultural, pharmaceutical, heavy metals, dyes, pesticides, antibiotics, and persistent
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contaminants reflecting biochar application; electrostatic interaction, precipitation,
complexation, hydrophobic effect, and chemical bonds referred to sorption mechanisms;
porosity, surface area, functional groups, magnetization, and biochar-based composites
related tomodificationmethods. Besides, literature research was specially conducted within
the papers on ‘‘Special Issue on Biochar: Production, Characterization and Applications -
Beyond Soil Applications’’ published on ‘‘Bioresource Technology,’’ and papers published
on ‘‘Journal of Chemical Technology and Biotechnology,’’ whichwere presented in the 2017
European Geosciences Union session ‘‘Novel Sorbents for Environmental Remediation’’
(Sanroman et al., 2017;Manariotis, Karapanagioti & Werner, 2017).

SORPTION MECHANISMS
The sorption ability of biochar for contaminant removal has been well documented.
However, there are lacking studies on corresponding sorption mechanisms for target
contaminants, which have fundamental meanings for improving the removal efficiency.
Sorption mechanisms vary according to the properties of both contaminants and biochar.
Here, the dominant mechanisms in the removal of heavy metals and organic contaminants
are illustrated in Fig. 1.

Heavy metals
Heavy metals in the water environment mostly come from anthropogenic activities such
as smelting, mining, and electronic manufacturing effluents (Li et al., 2017). Biochar has
been suggested to be used for heavy metals removal from contaminated water. Removal
mechanisms vary depending on the valence state of the target metal at different solution pH
(Li et al., 2017). Fourmechanisms dominating heavymetals removal fromwater by biochar
are proposed as follows (Qian et al., 2015; Tan et al., 2015; Li et al., 2017): (i) electrostatic
attraction between heavy metals and biochar surface; (ii) ion exchange between heavy
metals and alkali or alkaline earth metals or protons on biochar surface; (iii) complexation
with π electron-rich domain or surface functional groups; (iv) co-precipitation to form
insoluble compounds. Here, specific examples are used to explain each mechanism.

Solution pH could strongly influence the surface charge of biochar. pHPZC is the
solution pH at which the net charge of the biochar surface is zero. Biochar is positively
charged at solution pH < pHPZC and binds metal anions such as HAsO4

2− and HCrO4
−.

On the contrary, biochar is negatively charged at solution pH > pHPZC and binds metal
cations such as Hg2+, Pb2+, and Cd2+ (Li et al., 2017). These processes are the electrostatic
attraction. For instance, Wang et al. (2015) applied pinewood biochar pyrolyzed at 600 ◦C
(pHPZC >7) to sorb As(V) from water at pH 7, with a maximum sorption capacity of
0.3 mg g−1. As(V) mainly exists in the form of HAsO4

2− at pH 7. The biochar surface is
positively charged since the solution pH < pHPZC. In that case, HAsO4

2− interacts with the
protonated functional groups on biochar surface by electrostatic attraction.

Biochar pyrolyzed from biomass has plenty of exchangeable cations on the surface,
such as some alkali or alkaline earth metals (Na, K, Mg, Ca) that can be replaced by heavy
metal ions during the sorption. Lu et al. (2012) studied mechanisms for Pb sorption by
sludge-derived biochar. They found a certain amount of Na+, K+, Mg2+, and Ca2+ released

Wang et al. (2020), PeerJ, DOI 10.7717/peerj.9164 3/34

https://peerj.com
http://dx.doi.org/10.7717/peerj.9164


Figure 1 Sorptionmechanisms of heavy metals and organic contaminants on biochar.
Full-size DOI: 10.7717/peerj.9164/fig-1

from the biochar, probably as a result of metal exchanges with Pb2+. Zhang et al. (2015)
studied mechanisms for Cd sorption and showed that there was almost an equal amount
of sorbed Cd and total released cations (Na, K, Mg, Ca) from the biochar, indicating the
cation exchange as a leading role in Cd sorption.

Xu et al. (2016) compared different complexation mechanisms of Hg sorption on
bagasse and hickory chips biochar. X-ray photoelectric spectroscopy (XPS) showed that
the formation of (-COO)2Hg and (-O)2Hg attributed mostly to Hg sorption on bagasse
biochar. The sorption capacity decreased by 18% and 38% when using methanol to block
-COOH and -OH functional groups. Nevertheless, the blocking did not affect Hg sorption
on hickory chips biochar since the formation of Hg- π bindings between Hg and π

electrons of C=O and C=C dominated the sorption. Pan, Jiang & Xu (2013) investigated
Cr(III) sorption on several crop straws biochars. The order of their sorption capacity was
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in accordance with the abundance of oxygen-containing functional groups, suggesting the
importance of Cr(III) complexation with functional groups.

Mineral components in biochar are also crucial in the removal process, which acts as
other sorption sites and makes contributions to heavy metals sorption by precipitation
(Xu et al., 2013). For example, precipitation was implied to be the dominant mechanism
for Cd removal on dairy manure biochar owing to its relatively high soluble carbonate
and phosphate content (Xu et al., 2013). With the temperature increasing from 200 to
350 ◦C, Cd sorption capacity increased from 31.9 to 51.4 mg g−1 as a result of the increased
mineral content in biochar, especially the soluble carbonate (from 2.5% to 2.9%). X-ray
diffraction followingCd sorption evidenced thatCd-carbonate andphosphate formed in the
biochar (Zhang et al., 2015).Moreover,Trakal et al. (2014)used Fourier transform-infrared
spectroscopy (FT-IR) to follow Cd sorption on biochar with high ash content produced
from grape husks and stalks. They suggested that surface precipitation of Cd-carbonate has
shifted the peaks of carbonate. A similar mechanism can be found in the sorption of Pb.
Formation of Pb-carbonate Pb3(CO3)2(OH)2 and Pb-phosphate Pb9(PO4)6 contributed
most to the high removal rate of Pb (Cao et al., 2009).

Organic contaminants
It has been proved that biochar produced from biomaterials has favorable removal ability
for organic contaminants (Gwenzi et al., 2017). In general, pore-filling, hydrophobic
effect, electrostatic interaction, and hydrogen bonds are the main mechanisms of organic
contaminants sorption by biochar, differing according to the physicochemical properties
of the contaminants and biochar.

Pore-filling is an essential mechanism for the sorption of organic compounds on
biochar. The sorption capacity is directly in proportion to the micropores’ surface area
(Han et al., 2013). Chen, Chen & Chiou (2012) revealed that the biochar’s surface area is
influenced by the pyrolysis temperature, affecting the uptake rate of naphthalene (NAP)
in solutions. The organic components in the biomass were more completely carbonized
at higher temperatures, so the biochar had a higher carbonization degree, larger surface
area, and more developed micropores, leading to an enhanced sorption rate. Moreover,
biochars produced at intermediate temperatures (250−350 ◦C) displayed relatively slow
sorption rates, owing to the difficult pore-filling into certain highly condensed organic
phases exited at these temperatures. Zhu et al. (2014) reported that the large surface area
and pore volume of carbonaceous materials commonly promote the sorption of organic
contaminants as a result of the pore-filling effect, which was also verified by research results
of Inyang et al. (2014) and Han et al. (2013).

Sun et al. (2013) explored the influence of deashing treatment on the biochar structure
and its sorption ability for phenanthrene (PHE). They reported that after deashing, the
hydrophobic domains of biochar increased while the polar functional groups decreased,
bringing about more hydrophobic sorption sites for non-polar organic compounds, which
promoted PHE sorption. Also, they found that the hydrophobic effect was more significant
for biochar prepared at higher temperatures. Ahmad et al. (2013) found that there was
a more carbonized portion in the biochar produced under high pyrolysis temperature,

Wang et al. (2020), PeerJ, DOI 10.7717/peerj.9164 5/34

https://peerj.com
http://dx.doi.org/10.7717/peerj.9164


resulting in better sorption for relatively hydrophobic trichloroethylene. As pyrolysis
temperature increased, the hydrogen- and oxygen-containing functional groups were
removed, leading to enhancement of the biochar’s hydrophobicity, thus improving the
sorption.

Different results also showed electrostatic interaction to be an essential mechanism
of polar organic contaminant sorption (Inyang et al., 2014). Xu et al. (2011) investigated
the sorption mechanism of Methyl Violet and found that electrostatic interaction, to
be more specific, the attraction between dyes molecules with -COO- and phenolic -OH
groups, promoted the sorption of Methyl Violet on biochar. Xie et al. (2014) stated that
the sorption of sulfonamides (SAs) on different biochars is well correlated with the
biochars’ graphitization degree and the π−π electron donor–acceptor (EDA) interaction
existed between the graphitic surface (π electron donors) and SAs (π electron acceptors),
accounting for the strong sorption.

Qiu et al. (2009) investigated the sorption mechanism of Brilliant Blue (BB) on straw-
based biochar. It was suggested that the mechanism involved hydrogen bonds. FT-IR
showed that after sorption, the intensity of the peak at 1,795 cm−1 reflecting C=O
stretching vibration shifted little, and the peak at 3447 cm−1 corresponding to -OH
stretching vibration had a bit change. There was a good chance that the intermolecular
hydrogen bonds (O-H- - -O bonds) existed between the H atom in -OH of BB molecules
and the O atom in C=O on biochar surface, vice versa. The negatively charged properties
for both biochar and BB also supported this weak interaction.

The co-existence of carbonized and non-carbonized proportions makes the biochar
surface heterogeneous; meanwhile, the two types represent different sorption mechanisms.
In addition to the sorption of organic compounds onto the carbonized proportion, the
partition into the non-carbonized organic matrix is also essential when biochars are
produced at lower temperatures (Zheng et al., 2010; Chen, Chen & Chiou, 2012; Cao et al.,
2009).

BIOCHAR APPLICATION IN WATER AND WASTEWATER
TREATMENT
Among the increased number of published reports, biochar can be directly used in
water and wastewater treatment as a sorbent for contaminants removal, or be used in
constructed wetlands (CWs) and in the soil to improve the water quality. Table 1 compiled
the references discussed within this section on the removal of various contaminants from
water and wastewater by biochar.

Industrial wastewater
As a dominant source of water contamination, the quantity of industrial wastewater and
types of water contaminants are booming due to the rapid development of the industry.
Biochar is becoming a new approach to remove various contaminants from industrial
wastewater, both for heavy metals and organic compounds.

Removal of Cd2+, Pb2+, Cu2+, Hg2+, Cr6+, and Ni2+ have received much attention
due to the adverse effects they could bring if released to the environment. Batch sorption
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Table 1 Removal of various contaminants fromwater and wastewater by biochar derived from different feedstocks.

Biomass feedstock Productionmethod Target contaminant Maximum removal ability Reference

Bamboo, bagasse, hickory
wood, peanut hull

Pyrolysis at 600 ◦C then
chitosan modification

Cd2+, Pb2+, Cu2+ 14.3 mg g−1 for Pb2+ Zhou et al. (2013)

Malt spent rootlets Pyrolysis at 850 ◦C for 1 h Hg(II) 103 mg g−1 Boutsika, Karapanagioti &
Manariotis (2014)

Malt spent rootlets Pyrolysis at 300–900 ◦C Hg(II) 130 mg g−1 for MSR750 Manariotis, Fotopoulou &
Karapanagioti (2015)

Waste glue residue ZnCl2 modification Cr(VI) 325.5 mg g−1 Shi et al. (2020)

Heavy metals

Lotus stalks Zinc borate as flame retar-
dant, pyrolysis at 300, 350,
and 400 ◦C

Ni(II) 61.7 mg g−1 for 0.5 g ZB/g
LS pyrolysis at 300 ◦C

Liu et al. (2014)

Bamboo cane Phosphoric acid modifica-
tion then pyrolysis at 400,
500, and 600 ◦C

Lanasyn Orange and
Lanasyn Gray

2. 6×103 mg g−1 for both
dyes

Pradhananga et al. (2017)

Dyes
Pecan nutshell Pyrolysis at 800 ◦C for 1 h Reactive Red 141 130 mg g−1 Zazycki et al. (2018)
Sewage sludge Pyrolysis at 500 ◦C for 1

h/microwave-assisted py-
rolysis at 980 W for 12 min

Hydroquinone 1,218.3 mg g−1/1,202.1 mg
g−1

dos Reis et al. (2016)

Malt spent rootlets Pyrolysis at 800 ◦C for 1 h Phenanthrene 23.5 mg g−1 Valili et al. (2013)Phenols and
PAHs

Orange peel Pyrolysis at 150–700 ◦C for
6 h

Naphthalene and 1-
naphthol

80.8 mg g−1 for naphtha-
lene and 186.5 mg g−1 for
1-naphthol

Chen & Chen (2009)

Maize straw and pig ma-
nure

Pyrolysis at 300, 500, and
700 ◦C for 4 h

Thiacloprid About 8.1 mg g−1 Zhang et al. (2018)

Almond shell Pyrolysis at 650 ◦C for 1
h with steam activation at
800 ◦C

Dibromochloropropane 102 mg g−1 Klasson et al. (2013)

Broiler litter Pyrolysis at 350 and 700 ◦C
with and without steam ac-
tivation at 800 ◦C

Deisopropylatrazine About 83.3 mg g−1 for
BL700 with steam activa-
tion

Uchimiya et al. (2010)

Pesticides

Maple, elm and oak wood-
chips and barks

Pyrolysis at 450 ◦C for 1 h Atrazine and
simazine

451–1,158 mg g−1 for
atrazine and 243–1,066 mg
g−1 for simazine

Zheng et al. (2010)

Sawdust ZnCl2 and FeCl3 6H2O
solution doped at 100 ◦C
then calcined at 600 ◦C for
2 h

Tetracycline Above 89% after three cy-
cles

Zhou et al. (2017)

Antibiotics
Potato stems and leaves Magnetization then humic

acid-coated
Fluoroquinolones 8.4 mg g−1 for ENR, 10.0

mg g−1 for NOR, and 11.5
mg g−1 for CIP

Zhao et al. (2019)

(continued on next page)
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Table 1 (continued)

Biomass feedstock Productionmethod Target contaminant Maximum removal ability Reference

Rice husk Pyrolysis Fecal indicator bacte-
ria

3.9 log units of bacteria re-
moved

Kaetzl et al. (2019)

Hardwood Pyrolysis Saccharomyces cere-
visiae

>1 log10 CFU of bacteria
removed

Perez-Mercado et al. (2019)Indicator or-
ganisms and
pathogens Wood chips Pyrolysis with steam activa-

tion
Escherichia coli 3.62± 0.27 log units of

bacteria removed
Mohanty et al. (2014)

Bamboo Pyrolysis at 370 ◦C NH4
+ 6.4 mM g−1 Fan et al. (2019)

Bamboo Pyrolysis at
460 ◦C/immersed in
clay suspension then
pyrolysis at 460 ◦C

NO3
− 5 mg g−1/9 mg g−1 Viglašová et al. (2018)

Walnut shell and sewage
sludge

Pyrolysis at 600 ◦C for 3 h
with different ratios of the
two feedstocks

PO4
3− 303.5 mg g−1 for pure

sewage sludge biochar
Yin, Liu & Ren (2019)

Wood and rice husks Magnetic modification
by co-precipitation of
Fe(II)/Fe(III) ions

PO4
3− 25-28 mg g−1 Ajmal et al. (2020)Inorganic

ions

Spruce wood Impregnated with
AlCl3/FeCl3 solution
then pyrolysis at 650 ◦C for
1 h

F− 13.6 mg g−1 Tchomgui-Kamga et al.
(2010)
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ang
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experiments by Zhou et al. (2013) showed that the biochar modified by chitosan had
favorable removal efficiency for three heavy metals (Cd2+, Pb2+, and Cu2+) from
solutions. Further research of Pb2+ sorption implied that the biochar had a comparatively
high Langmuir sorption capacity of 14.3 mg g−1, despite the slow sorption kinetics.
Boutsika, Karapanagioti & Manariotis (2014) employed biochar produced from malt spent
rootlets (MSR) to remove Hg(II) from pure aqueous solutions. The removal efficiency
was up to 100% after a 24 h contact time at biochar concentrations of 1 g L−1, with the
maximum Hg(II) sorption capacity of 103 mg g−1. Their later study showed that the
Hg sorption capacity by MSR biochars increased by a maximum factor of 6 for high-
temperature (750−900 ◦C) biochars compared to the rawmaterial (Manariotis, Fotopoulou
& Karapanagioti, 2015). Hg(II) sorption onto both materials carried on mainly through
neutral species (Boutsika, Karapanagioti & Manariotis, 2017). Shi et al. (2020) developed a
ZnCl2-modified glue residue biochar for Cr(VI) sorption. The maximum sorption capacity
reached 325.5 mg g−1, higher than the previously reported sorbents. Liu et al. (2014)
used zinc borate (ZB) as a flame retardant to prepare lotus stalks (LS) biochar for Ni(II)
removal. Sorption of Ni(II) on LS biochar was enhanced by 3–10 times compared with
that of biochar without adding ZB.

With the textile industry expanding rapidly, dye wastewater now accounts for a large
proportion of industrial wastewater. Among the methods of dye wastewater treatment,
biochar sorption is especially favored. For example, Pradhananga et al. (2017) reported that
two dyes used in wool carpet dyeing, Lanasyn Orange and Lanasyn Gray, could be highly
sorbed on nanoporous biochar derived from bamboo cane. The sorption capacity of both
dyes was 2.6 × 103 mg g−1, assuming pore-filling to be the primary sorption mechanism,
and the high sorption capacity was attributed to the high specific surface area (2,130 m2

g−1) and pore volume (2.7 cm3 g−1) of biochar. Researchers produced pecan nutshell
biochar to remove Reactive Red 141 from water. The biochar was claimed to be low-cost
and environmentally friendly, which could be a substitute for other conventional sorbents
(Zazycki et al., 2018).

Emerging organic contaminants in industrial wastewater, such as phenols and PAHs,
have gained great concern. dos Reis et al. (2016) produced biochar from sewage sludge by
pyrolysis at 500 ◦C, followed by HCl treatment. The biochar displayed a very high sorption
capacity for hydroquinone, which was up to 1218.3 mg g−1. π−π EDA interactions play
significant roles in the sorption.Valili et al. (2013) reported that theMSR biochar pyrolyzed
at a higher temperature of 800 ◦C gained a much higher PHE sorption capacity, two orders
of magnitude higher compared to the raw material. Chen & Chen (2009) made orange
peel biochar with a pyrolysis temperature ranging from 150 to 700 ◦C (OP150-OP700)
for sorption of 1-naphthol and NAP. For biochars pyrolyzed at lower temperatures, their
polar surface due to the presence of water molecules has additional polar interactions
(e.g., hydrogen bonds) with 1-naphthol, resulting in higher sorption capacity than NAP.
Meanwhile, the partition is favored as the sorbate concentration increases, but adsorption
rapidly reaches saturation (Chen, Zhou & Zhu, 2008). OP200 had the maximal sorption
capacity for 1-naphthol with high concentration due to polar interactions and high
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partition. However, OP700 exhibited an optimum sorption capacity for NAP because of
its highest surface area and low surface polarity, which facilitated the NAP sorption.

Pesticides
Utilization of pesticides benefits the agricultural production and the economy, but
excessive use of pesticides causes toxicity on non-target organisms and destruction to
ecological balance and human health (Zhong et al., 2018). Biochar is applied as a distinctive
remediation method in pesticide contamination treatment (Dai et al., 2019).

Zhang et al. (2018) produced maize straw biochar at 300, 500, and 700 ◦C to study
thiacloprid sorption. They found that the sorption occurred probably via pore-filling,
hydrophobic interaction, and π −π interaction. Jin et al. (2016) prepared biochar by
pyrolysis of swine manure at 600 ◦C, which was used for imidacloprid sorption. The results
showed that pore-filling is likely one of the dominant sorption mechanisms for this kind of
polar chemical. Klasson et al. (2013) prepared almond shell biochar by pyrolysis with steam
treatment. The biochar had a larger specific surface area of 344 m2 g−1 and a sorption
capacity of 102 mg g−1 for dibromochloropropane, a nematode insecticide, and the field
experiment was carried out successfully.

Zheng et al. (2010) investigated the sorption of two triazine pesticides, atrazine and
simazine on biochar. Based on different sorption conditions, the sorption ability of
atrazine was 451–1158 mg g−1, and 243–1066 mg g−1 for simazine. When the two sorbates
existed synchronously, there was competitive sorption on biochar. The sorption capacity of
atrazine was 435–286 mg g−1, and 514–212 mg g−1 for simazine. The study also reported
that the sorption process of both single and multiple triazine pesticides on biochar could
be well explained by surface sorption mechanism. Uchimiya et al. (2010) produced broiler
litter biochar by pyrolysis at 350 and 700 ◦C to remove deisopropylatrazine, a stable
metabolite of atrazine from water. They found that the biochar prepared at 700 ◦C had
higher surface area, more micropores in non-carbonized fraction, and greater aromaticity.
Thus, the target contaminant can be effectively removed, while the removal efficiency of
biochar prepared below 500 ◦C was relatively low.

Antibiotics
Some antibiotics in pharmaceutical wastewater are difficult to decompose in the natural
environment and regarded as emerging environmental contaminants (Carvalho & Santos,
2016). Reducing the toxicity of antibiotics by biochar becomes a hot spot.

Tetracyclines (TCs) and SAs are two of the most commonly used antibiotics and are also
used in intensive agriculture as feed additives, bringing potential hazards to the environment
and human health when extensively used (Yu et al., 2016; Shao et al., 2005). The removal
of TCs by ZnCl2/FeCl3 solution doped sawdust biochar was studied systematically. Results
showed that this kind of biochar had the potential ability for TCs removal in water, with
the removal rate above 89% after three cycles (Zhou et al., 2017). Peiris et al. (2017)made a
further study on the sorption mechanisms of SAs on biochar. Generally, high-temperature
produced biochar showed high sorption quantity under the condition of weak acidity,
attributed to strong π −π EDA interactions between the abundant arene rings on the
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biochar surface and SAs molecules. Micropore-filling is also a common mechanism
because of the smaller size of SAs. Zhao et al. (2019) prepared humic acid-coated magnetic
biochar derived from potato stems and leaves to sorb three typical fluoroquinolones
(FQs)—enrofloxacin (ENR), norfloxacin (NOR), and ciprofloxacin (CIP). The maximum
adsorption capacities were 8.4 mg g−1 for ENR, 10.0 mg g−1 for NOR, and 11.5 mg g−1 for
CIP. High FQs removal efficiency could be owing to hydrophobic, electrostatic and π−π

EDA interactions and formation of hydrogen bonds.

Indicator organisms and pathogens
Biochar application in the removal of indicator organisms and pathogensmainly aims at the
treatment of urban stormwater runoff, which contains a wide range of contaminants and
eventually runs into surface water (e.g., streams, lakes). Irrigation with these contaminated
waters can lead to microbial contamination of vegetables. Biochar filters for microbe
removal from water have received considerable attention.

Kaetzl et al. (2019) studied the filtration of rice husk biochar and non-pyrolyzed rice
husk as low-cost filter materials for wastewater and evaluated their potential and limitation.
In general, the performance of the biochar filter was superior or equal to the rice husk
and standard sand filters. The treated wastewater was then used in a pot test for lettuce
irrigation. Results showed that the contamination with fecal indicator bacteria was >2.5
log units lower than the control group irrigated with untreated wastewater. Mechanisms
responsible for the removal include the filtration of larger pathogens and the sorption
of negatively charged bacterial and cells (Gwenzi et al., 2017). Similarly, Perez-Mercado et
al. (2019) showed that by using biochar as a filter medium, >1 log10 CFU Saccharomyces
cerevisiae was successfully removed fromdilutedwastewater under the condition of on-farm
irrigation. The particle size of biochar is the main influencing factor accounting for the
microbial removal efficiency. The minimum particle size (d10 = 1.4 mm) could consistently
remove at least 1 log10 CFU of most target microbes. More micropores and smaller pore
size of biochar could increase straining effect and contact time between bacteria and
sorption sites.Mohanty et al. (2014) improved sand biofilters with 5 wt% biochar amended
to increase the bacteria removal capacity. The biochar-amended sand filter retained up
to three orders of magnitude more Escherichia coli and prevented their mobility during
continuous, intermittent flows. The improved removal capacity of pathogens was attributed
to higher retention on the biochar filter, which increased the attachment of E. coli.

Inorganic ions
In virtue of the convenience and little generation of secondary contamination (Yang et al.,
2018; Yin et al., 2017), biochar are popular in inorganic ions removal, which targets at the
removal of nutrient elements N and P that exist in the form of inorganic ions in wastewater,
and F− in drinking water.

Fan et al. (2019) conducted a study on NH4
+ sorption by hydrous bamboo biochar.

Results found that the biochar had a sufficient sorption capacity for NH4
+, with a

maximum of 6.4 mM g−1. The sorption was enhanced at higher ionic strength conditions,
indicating that physical reactions possibly made contributions to the sorption process
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such as electrostatic interactions. Potential mechanisms for NH4
+ sorption was further

studied by Hu et al. (2020). They reported that pH influenced the NH4
+ sorption capacity

by changing the surface charge of biochar. Negatively charged biochar in higher pH
(pH > pHPZC) solutions easily sorbed NH4

+ due to electrostatic attraction. FT-IR patterns
showed that the -OH and -C=O groups weakened after the sorption, indicating that the
NH4

+ acted with these functional groups through surface complexation. In addition,
ion exchange between NH4

+ and the negatively charged functional groups such as -OH
and -COOH also led to the NH4

+ sorption. For NO3
−, the sorption mechanisms are

governed by multiple interactions, primarily electrostatic attraction, and ionic bonds with
exchangeable cations from the biochar, based on the sorption study of NO3

− by bamboo
biochar (Viglašová et al., 2018).

Walnut shell and sewage sludge were co-pyrolyzed to prepare biochar for PO4
3− sorption

from eutrophic water (Yin, Liu & Ren, 2019). The biochars exhibited ideal sorption ability,
among which the pure sewage sludge biochar had the maximum sorption capacity of
303.5 mg g−1 in a wide pH range and was the best option for PO4

3− sorption among the
biochars. Ajmal et al. (2020) compared the removal efficiency of PO4

3− from wastewater
by biochars before and after magnetic modification. Results showed that the sorption
ability of magnetic biochar was twice (25–28 mg g−1) than that of the unmodified biochar
(12–15 mg g−1). The PO4

3− sorption on magnetic biochar is dominated by simultaneous
mechanisms including electrostatic attraction, surface precipitation, and complexation,
while for the original biochar, the sorption mainly depends on electrostatic attraction.

F− is characterized by high electronegativity and small ionic size, resulting in a strong
affinity towards metal ions such as Al(III), La(III), and Fe(III) (Wu et al., 2007). Thus, a
strong F− sorption could be achieved by composites made of such metal ions dispersing
in a porous matrix such as biochar. Such a study was made by Tchomgui-Kamga et al.
(2010), which found that the Al-modified spruce wood biochar had a maximum removal
capacity of 13.6 mg g−1 for F−. The dispersion of Al into the porous structure of biochar
significantly increased the sorption. The Langmuir isotherm model served as the most
suitable model for F− sorption (Ahmed et al., 2016).

Indirect water and wastewater treatment
In recent years, CWs have been widely used in wastewater treatment, including removal of
N, P (Li et al., 2019), and someorganic contaminants. Nevertheless, due to restricted oxygen
supply and transport capacity, limited sorption capacity of the substrate, and inhibition
of microbes and plants metabolism at low temperatures, the removal efficiency for N and
P is severely hindered (Ying et al., 2010). Researchers have attempted to explore particular
substrates to intensify the functions of CWs with high contaminants concentration, among
which biochar has been favorably considered (Gupta, Prakash & Srivastava, 2015).

Zhou et al. (2018) used biochar as a substrate in vertical flow constructed wetlands
(VFCWs) to enhance the removal efficiency with a series of lowC/N ratio influent strengths.
They assessed the removal of N and organic contaminants in both VFCWs with/without
biochar added. Results showed that the average removal rates of NH4-N (39%), TN
(39%), and organic contaminants (85%) were better than those of conventional VFCWs,
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especially for the high-strength wastewater. A seven-month study by Bolton et al. (2019)
clearly showed that enriched biochar was a suitable substrate for PO4-P removal. The
waste biochar has the potential for regeneration, which can be applied as soil fertilizer
to improve soil quality, while this application still needs more investigations. Deng et al.
(2019) set up four subsurface flow constructed wetlands (SFCWs) with biochar amended
in standard gravel at different volume ratios (0–30%). Results indicated that the removal
rates of NH4-N and TN by SFCWs with biochar were higher than those by pure gravel-
filled SFCWs. The additive of biochar promotes N removal by changing the structure
of microbial communities and increasing the abundance of dominant species. Besides,
biochar improves the metabolism of high molecular compounds and convert them into
low molecular compounds. These results provide new insights into strengthening N
removal through microbial metabolism with the effect of biochar.

Surface runoff and soil erosion in the river basin, especially in some degraded fields
with high precipitation, could cause certain contamination to the water environment.
Several studies have proved that biochar has the potential to reduce surface runoff and
soil erosion (Razzaghi, Obour & Arthur, 2020; Gb et al., 2020; Bayabil et al., 2015; Tanure et
al., 2019; Gholami, Karimi & Kavian, 2019). Biochar particles can bond with soil mineral
surface through phenolic and carboxylic functional groups, thus improve the stability
of soil aggregation and structure (Soinne et al., 2014). Besides, the exchangeable divalent
cations with high charge density (e.g., Ca2+, Mg2+) on biochar surface can replace the
monovalent cations (e.g., Na+, K+) on exchange sites of clay particles, which enhances
clay flocculation and thereby improves macropores size and network in the soil (Rao &
Mathew, 1995), eventually increases the infiltration capacity. Therefore, it is concluded that
the biochar amendment can improve soil physical properties, which in turn reduces runoff,
erosion, and waterlogging (Bayabil et al., 2015). Moreover, biochar with large water-storing
property spreading on soil surface could absorb the force of raindrops, thus increases the
runoff time (Gholami, Karimi & Kavian, 2019).

Current application of biochar in wastewater treatment facilities
Although biochar exhibits some similar properties as the activated carbon, it is a more
heterogeneous material with many uncertainties when applied in engineered facilities
(Gwenzi et al., 2017). Situations involving ion strength, pH, or presence of organic matters
make the sorption more complex. Compared with current wastewater treatment facilities
with mature technologies, which usually use activated sludge, activated carbon, and a series
of water treatment agents such as flocculants and disinfectants, there are limited attempts
to develop biochar-based wastewater treatment facilities. Despite the published efforts on
the removal of various contaminants by biochar, the studies are based on laboratory batch
experiments. Operation parameters and conditions for real facilities remain lacking.

To date, biochar-based filters have been an attempt to advance the engineered
application of biochar. Sand filters and biofilters amended with biochar (Kaetzl
et al., 2019; Perez-Mercado et al., 2019), and filters made of biochar-clay composite
(Chaukura et al., 2020), all have shown the improvements in wastewater treatment
performance. Notably, a pilot-scale biochar-based wastewater treatment system called
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N-E-W TechTM was built and patented by Greg Möller from the University of Idaho
in 2015 (https://www.lib.uidaho.edu/digital/uinews/item/n-e-w-tech-project-proposes-
better-water-treatment-system.html). This system promises highly efficient removal of
phosphorus and mineral contaminants from wastewater; meanwhile, it makes use of the
minerals stripped from water to produce fertilizer, which is also cost-effective. The system
was then licensed and promoted in real wastewater treatment systems in the USA, England,
and South Korea. This case demonstrates the scalability of biochar engineered application
and provides guidance as well.

BIOCHAR MODIFICATION
Although biochar has been extensively applied in the removal of diversiform contaminants
in water solutions, its applicability is limited because of the lower removal efficiency
for some selected contaminants or in some specific water conditions. The unmodified
biochars have much lower removal ability than the modified ones, especially in high-
strength wastewater (Rangabhashiyam & Balasubramanian, 2019). Researchers have
found relationships between the surface area and functionality of biochar with the
sorption capacity (Tan et al., 2015; Goswami et al., 2016). More micropores and mesopores
correspond to larger surface area and more sorption sites where contaminants can be
sorbed (Sizmur et al., 2017). Accordingly, the modification of biochar generally concerns
(i) increasing the surface area and porosity; (ii) enhancing the surface properties; (iii)
embedding other materials into the biochar matrix to obtain beneficial composites (Sizmur
et al., 2017). According to different modification emphases, modification methods of
biochar are summarized in Fig. 2.

Increasing surface area and porosity
In general, biochar with larger surface area has more sorption sites, facilitating the sorption
capacity. Plenty of modification methods of biochar have been proposed to achieve this
favorable property.

Physical modification usually uses gases such as CO2 (Guo et al., 2009) and steam (Shim
et al., 2015) to treat biochar at the temperature over 700 ◦C. With steam treatment, the
incomplete combustion components are removed, and the porosity is improved, both of
which increase the sorption sites. Lima & Marshall (2005) pyrolyzed poultry manure at
700 ◦C to produce biochar, followed by a series of steam with different water flow rates and
durations at 800 ◦C. Results showed that longer action times and higher flow rates increased
the sorption of Zn, Cu, and Cd on the biochar surface. Zhang et al. (2004) investigated the
effect of CO2 treatment duration on biochars derived from corn stover, corn hulls, and oak
wood waste. All biochars exhibited higher sorption capacity with longer treating duration
owing to the larger surface area and micropore volume. Kangyi Lou (2016) claimed that
the steam treatment had no significant effect on surface functional groups on biochar.
Therefore, the steam treatment appears to be more efficient if it is used before a second
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Magnetization
Impregnation-pyrolysis

Co-precipitation
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Figure 2 Modification methods of biochar according to different emphases.
Full-size DOI: 10.7717/peerj.9164/fig-2

modification step, which can increase the number of surface functional groups (Sizmur et
al., 2017).

Acidic or alkaline treatment also increases the surface area. Zhao et al. (2017) treated
pine tree sawdust with diluted H3PO4 before pyrolysis. Both the total surface area and pore
volume increased after the treatment, and the sorption capacity for Pb increased by more
than 20% because of surface sorption and phosphate precipitation. Goswami et al. (2016)
proved that pyrolyzing the biochar-KOH mixture at 350−550 ◦C reopened some of the
blocked pores, and expanded the pore size of smaller pores, increasing the surface area and
Cd sorption from the water via surface complexation. Hamid, Chowdhury & Zain (2014)
reported that the increase of surface area resulting from KOH modification also increased
the sorption of oxyanions. For that, Jin et al. (2014) proposed that the maximum As(V)
sorption on biochar modified by KOH increased from 24 mg g−1 to 31 mg g−1, as a result
of increased surface area. Similarly, researchers found a larger surface area and iodine
sorption capacity of both the feedstock and biochar when the modification was conducted
by mixing with solid NaOH (Pietrzak et al., 2014).

Except for the physical, acidic, and alkaline modification mentioned above, some of the
biochar-based composites also possess a larger surface area by impregnating biochar with
specific materials. In this case, the biochar primarily plays a role as a scaffold with high
surface area on which other materials are deposited (Sizmur et al., 2017). Chen et al. (2017)
pointed out that the additive of montmorillonite during the pyrolysis of bamboo powder
led to an increase in surface area and porosity, partially as a result of the existence of layered
montmorillonite, which contributed to better sorption capacities for NH4

+ and PO4
3−.

Yao et al. (2014) observed the layered surface of clay modified biochar through scanning
electron microscope (SEM), similar to a typical clay structure morphology.
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Increasing positive surface charge
Generally, the surface charge of biochar is negative and has a higher pH value, making
biochar an excellent sorbent of metal cations, while a poor sorbent for oxyanions such
as NO3

−, PO4
3−, and AsO4

3− (Sizmur et al., 2017). Thus, modifications usually use the
porous surface of biochar as a scaffold for embedding positively charged metal oxides. The
obtained composites can remove oxyanions with negative charge from water (Sizmur et
al., 2017).

Most methods to prepare biochar-metal oxide composites aim to assure the
homogeneous distribution of metals on biochar surface. Biochar here plays a role as
porous carbon support where the metal oxides precipitate to gain more positive surface
charge and surface area simultaneously. In general, biochar or raw materials soaked into
metal chloride or nitrate solutions (MgCl2, FeCl3, and Fe(NO3)3) are most frequently
used to realize the attachment of metals. After heating under atmospheric conditions at
50−300 ◦C, the chlorides or nitrates were driven off as Cl2 and NO2 gases, and the metal
ions were converted into metal oxides (Sizmur et al., 2017). Zhang et al. (2012) used several
common biomass wastes to create biochar-MgO composites by mixing the feedstocks with
MgCl2-6H2O solution and then pyrolyzing. SEM images showed that MgO particles were
uniformly spread on the biochar surface. The maximum sorption capacity for nitrogen and
phosphorus from sewage reached 95 and 835mg g−1, respectively, due to positively charged
MgO that precipitated onto the biochar. They also produced biochar/MgAl-layered double
hydroxides bymingling cotton stalkwith amixed solution of AlCl3-6H2OandMgCl2-6H2O
(Zhang et al., 2013). The maximum sorption capacity for phosphorus increased by 5–50
times.

Embedding Mg, Al, or Mn oxides onto the biochar surface also produces biochar-based
composites, which can improve the sorption of both metal cations and oxyanions in water
solutions. Jellali et al. (2016) explored the effects of Mg modification on sorption ability for
metal cations. In this study, Pb sorption by a cypress sawdust-derived and MgCl2-treated
biochar was investigated. Results showed that the modified biochar obtained an enhanced
sorption capacity, about 7.4 times more compared to the raw material.

In general, the sorption of oxyanions by biochar-metal oxide composites arises from
electrostatic attraction or chemical sorption with positively charged metal oxides in the
biochar matrix (Zhou et al., 2014; Ren et al., 2015), while the sorption of metal cations
is caused by co-precipitation occurring in the metal oxides lattice, or chemical sorption
on oxygen-containing functional groups on the biochar’s unmodified part (Tan et al.,
2015). Rajapaksha et al. (2016) suggested that even though most modifications by metal
oxides decreased the surface area because of pore-clogging with metal oxide precipitates,
the modifications eventually increased the sorption capacity owing to the formation of
pH-dependent bonds with positively charged functional groups on the biochar surface.

Increasing surface oxygen-containing functional groups
The biochar surface contains several functional groups such as carboxyl, hydroxyl, and
phenolic groups, which are capable of chemically binding with contaminants and remove
them from aqueous solutions.
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The acidic treatment provides additional oxygen-containing functional groups on the
biochar surface and increases the potential of chemically binding with positively charged
contaminants via specific sorption. The biochar forms carboxylic groups on its surface when
exposed to acidic solutions (Qian et al., 2013; Hadjittofi, Prodromou & Pashalidis, 2014).
Hadjittofi, Prodromou & Pashalidis (2014) used HNO3 to modify biochar produced from
cactus fibers to obtain more surface carboxylic groups as sorption sites for metal cations
(Cu2+ and Pb2+). The sorption capacity at pH 6.5 was an order of magnitude larger than
that at pH 3, indicating the pH-dependent and chemical sorption on oxygen-containing
functional groups. Qian et al. (2013) suggested that after the treatment in a mixture of
H2SO4 and HNO3, the O/C ratio of rice straw biochar was higher in the final product,
implying that oxygen-containing functional groups were enriched in the structure of
biochar.

Since biochar modification by strong acids is costly in a large-scale application and
causes environmental concerns when disposing of the modification agents, researchers
have made efforts to come up with cheaper and cleaner oxidants as alternatives to modify
biochar. Song et al. (2014) pyrolyzed corn straw at 600 ◦C and then mixed it with KMnO4

solution. A MnOx-biochar was prepared after another pyrolysis. Compared with the
original biochar, the O/C ratio increased from about 0 to 0.5. XPS analyses showed that
the increased oxygen existed mainly in the Mn-OH and Mn-O structure, which primarily
accounted for the enhanced sorption ability for Cu2+ (from 19.6 to 160.3 mg g−1). Huff
& Lee (2016) showed an increased number of oxygen-containing functional groups on the
biochar surface after treatment using H2O2. The cation exchangeability of the biochar was
almost doubled than that of the untreated one, as a result of cation exchange on the more
abundant oxygen-containing functional groups on the modified biochar surface.

Alkaline solutions play a similar role to acids and oxides in increasing the number of
oxygen-containing functional groups on the biochar surface. Jin et al. (2014) reported that
KOHmodification of biochar made of municipal solid wastes enhanced the As(V) sorption
performance, not only because of the increased surface area but also the growing number of
surface oxygen-containing functional groups, which provided proton-donating exchange
sites where metal cations can be chemically sorbed (Petrović et al., 2016).

Among various biochar-based composites, the biochar-graphene oxide composite
material, which is obtained by impregnating the raw material in a graphene oxide
suspension and then pyrolyzing, also displays more oxygen-containing functional groups
after incorporating the graphene structure (Tang et al., 2015; Shang et al., 2016). The
removal rate of Hg2+ raised with the increase of the proportion of graphene oxide in the
composite. When the maximum percentage of graphene oxide is 1%, the removal rate of
the composite was 8.7% more than that of the unmodified biochar. FT-IR showed that the
abundant oxygen-containing functional groups dominate the sorption behavior of Hg2+

on the biochar-graphene oxide composite.

Incorporating surface amino functional groups
Incorporating amino functional groups onto the biochar surface improves the sorption
ability through inducing strong complexation between contaminants and the amino
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sites. The modification is obtained either by chemical reactions or blending biochar with
amino-rich polymers such as polyethyleneimine (PEI) and chitosan (Zhou et al., 2013;
Zhou et al., 2014; Yang & Jiang, 2014).

Yang & Jiang (2014) used HNO3, H2SO4, and Na2S2O4 to modify biochar via nitration
and reduction reactions as a selective and efficient sorbent for Cu2+. Although there
was little significant difference in the physical structure before and after the modification,
attenuated total reflectance FT-IR andXPS results showed that the amino groups chemically
bound with the functional groups on the biochar surface. The amino modification made
the sorption capacity for Cu2+ increased by five times.Ma et al. (2014) used PEI to prepare
amino-rich biochar to remove Cr(VI) from aqueous solutions, which obtained a much
higher maximum sorption capacity (435.7 mg g−1) than that of the unmodified biochar
(23.1 mg g−1).

Zhou et al. (2013) synthesized chitosan-modified biochars derived from peanut hull,
hickory wood, sugarcane bagasse, and bamboo, aiming to provide a commercial sorbent
for heavy metals remediation in the water environment. Characterization of the biochars
showed that the chitosan coating on the biochar surface improved the surface properties.
Batch sorption experiments stated that the removal abilities for Cd2+, Cu2+, and Pb2+ in
aqueous solutions by almost all chitosan-modified biochars were enhanced, compared with
the unmodified biochars. Further studies of Pb sorption on chitosan-modified bamboo
biochar found that, even though the sorption kinetics were slow, the modified biochar had
a relatively high Langmuir Pb sorption capacity of 14.3 mg g−1, significantly reducing the
toxicity of Pb. Characterization of the Pb-loaded biochar after sorption exhibited that the
sorption of Pb is primarily caused by the interaction with amino functional groups on the
biochar surface.

Magnetization
Themagnetization of biochar is a newmodification frontier. It develops in situations where
the separation of biochar from aqueous solutions face great difficulties. The application of
a magnet for magnetic biochar enables such difficulty to be solved.

Impregnation-pyrolysis and co-precipitation are the most commonly used preparation
method for magnetic biochar, accounting for about 69.6% of all preparation methods
(Yi et al., 2020). Impregnation-pyrolysis is to impregnate the suspension of biochar with
a solution of transition metal salts, followed by pyrolysis of the residue. In this way,
Mohan et al. (2014) produced magnetic biochar using Fe3+/Fe2+ solution. It was found
that the iron content increased from 1.4% to 80.6%, indicating that the biochar was
effectively magnetized. In the application of Pb2+ and Cd2+ removal from solutions, the
biochar showed significantly higher sorption capacity. Except for conventional pyrolysis,
microwave heating is extensively applied in the synthesis of magnetic biochar. dos Reis et
al. (2016) produced biochars in different methods—pyrolysis at 500 ◦C and microwave
heating under an inert atmosphere—both were followed by HCl treatment. The biochars
had approximately equal and very high sorption capacity for hydroquinone, showing that
microwave heating could be an alternative to conventional pyrolysis. The co-precipitation
synthetic pathway includes the dispersion of biochar in a solution of transition metal salts,
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adjusting the pH to 9–11 with NaOH or ammonia solution with constant stirring. Magnetic
biochar is obtained by drying the residue (Yi et al., 2020).Yu et al. (2013) obtainedmagnetic
biochar by mixing Fe2+/Fe3+ solution into an ammonia solution with biochar particles
dispersed, followed by ultrasound irradiation at 60 ◦C. The magnetic biochar exhibited
an increased number of carboxyl functional groups on the surface, resulting in a more
negatively charged property, which improved the sorption rate and capacity for heavy
metal ions.

In addition to surface functional groups that take effects in the sorption process, the
magnetic components which exist in the main forms of Fe2O3, Fe3O4, FeO, and Fe0, also
play an important role in improving the sorption ability (Yi et al., 2020). For example,
Fe0 makes vital contributions to Pb(II) removal by directly reduction (Chen et al., 2018),
while Fe3O4 plays a crucial role in remediation of Cr(VI), attributed to the Fe(II) and
Fe(III) in octahedral coordination in Fe3O4, which act as active chemical sorption or
reduction sites (Zhong et al., 2018). Synthetic conditions such as pyrolysis temperature
influence the morphology of magnetic components, for instance, the Fe3O4 in magnetic
biochar transformed into FeO when the pyrolysis temperature increased (Chen et al.,
2019). Moreover, innovative synthetic methods that introduce other metals such as Cu,
Zn, and Mn lead to the formation of magnetic substances containing these metals, playing
a particular role in enhancing the removal effect (Zhang et al., 2019; Heo et al., 2019).

Biofilm formation
Taking advantage of the high surface area, porosity, and inert property, biochar can be used
as a scaffold for colonization and growth of biofilms. The microbes adhere to the biochar
surface and develop an extracellular biofilm by secreting multiple polymers as an adhesive,
and therefore have stronger viability owing to the protection from the biofilm, excelling
the traditionally separate microbial treatment (Hall-Stoodley, Costerton & Stoodley, 2004).
In such biotic systems, biochar plays its role in the sorption of contaminants by the porous
structure and surface functional groups, while the microbes promote the degradation of
resistant compounds owing to their metabolism (Singh, Paul & Jain, 2006). The synergistic
removal effect makes such biotic biochar be increasingly used in water and wastewater
treatment.

The primary purpose of biochar with biofilm is to promote the biodegradation of
organic contaminants (Sizmur et al., 2017). Dalahmeh et al. (2018) studied the potential of
biochar filters with biofilm as a substitution or progress of conventional sand filters for
contaminants removal from pharmaceutical wastewater. For carbamazepine, the biotic
biochar possessed more effective and stable removal efficiency than sand filters, more
than 98% over the 22 weeks of operation. The combination of sorption and simultaneous
biodegradation are conducive to the removal. Frankel et al. (2016) proved the synergistic
behavior by biofilm and biochar in naphthenic acid (NA) removal from water solutions.
The biotic biochar had a higher NA removal rate (72%) than either the sterile biochar
(22–28%) or the microbes alone (31–43%). Interestingly, in the presence of metals (Al
and As), although there was a reduction in the microbial proliferation, the removal of NA
by the biochar-biofilm coalition increased to 87%. An enhancement in metal sorption
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was also observed, indicating a synergistic removal in the co-existence of organic and
inorganic contaminants. The results suggest a biochar-biofilm combined approach to
treating co-contaminated industrial wastewater, though the removal mechanisms need to
be further studied.

All in all, the selection of modification methods should base on the property and
removal mechanism of the target contaminant. Generally, gas, steam, acid, and alkaline
modifications increase the porosity of biochar, suitable for the contaminant whose sorption
is dominant by pore-filling. Both acids and oxidants agents enrich the surface oxygen-
containing groups of biochar with high cation exchangeability, which facilitates the sorption
governed by ion exchange, such as heavy metal ions and NH4

+. The alkaline modification
provides high aromaticity of the biochar, promoting the π −π EDA interaction and
sorption for some organic contaminants such as dyes and antibiotics. Notably, it also leads
to a lower O/C ratio, which strengthens the hydrophobic nature of biochar (Wang &Wang,
2019), conducive to the sorption of hydrophobic organic contaminants.

For negatively charged oxyanions such as NO3
−, PO4

3−, and AsO4
3−, positively charged

metal oxides embedding into the biochar facilitates this type of sorption. Moreover, metal
oxides increase the active sites in biochar, which is related to the catalytic action of the
composite material. Incorporated nitrogen by amino-rich agents also acts as active sites and
is linked with such catalytic ability (Duan, Sun & Wang, 2018). Especially, transition metal
salts increase the magnetism of biochar to meet the separation needs; biochar combining
with biofilm is applicable for degradation of some toxic organic contaminants to reduce
the toxicity.

ENVIRONMENTAL CONCERNS AND FUTURE DIRECTIONS
Critically speaking, biochar is not yet widely applied and still in the test stage of researching.
At present, the production and application of biochar are not all-pervading, especially in
some developing countries where the complete industrial chains are lacking, because of
the several environmental concerns that cannot be ignored in the practical application of
biochar. In this case, arduous research work needs to be carried out to solve the potential
environmental problems and provide the developing countries with exercisable research
directions to expand the application of biochar. The potential environmental concerns and
propositional future research directions on proposed issues are briefly displayed in Fig. 3.
Although feedstocks for biochar production are extensive and easy to get, these raw

materials need to be prepared (grinding, cleaning, and drying) and then pyrolyzed
for the available biochar. Modification steps are also required for an ideal sorption
effect. Compared with conventional activated carbon, these treatments for biochar will
inevitably increase the production cost. Therefore, future researches should attempt to
find a compromise between optimizing the production process and maximizing the
applicability of biochar to minimize the cost (Sizmur et al., 2017). Meanwhile, careful
selections of feedstocks, production conditions, and modification methods are critical
to acquiring biochars with better performance. The accumulation of a vast quantity of
existing research results can help seek the best solutions. For example, the micropore area
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of cellulose biochar (280 m2 g−1) was larger than that of the lignin biochar (200 m2 g−1)
when carbonized at the same temperature because of the resistance of lignin, showing
the cellulose biomass to be preferable than lignin biomass for biochar production; the
surface area and total pore volume of pinewood biochar pyrolyzed at higher temperature
were much higher due of the more complete carbonization of lignin, implying that higher
temperatures induce well-developed pore structure (Li et al., 2014).

The stability of biochar and biochar-based composites should be considered in the
practical application of biochar. Huang et al. (2019) found the possible dissolution of
organic matters from biochar during the complexation with heavy metals, which may
increase the carbon content in the water due to the high aromaticity and stability of organic
matters.Moreover, the biochars, especially those derived from sewage sludge, could contain
high heavy metals that could leach out during the application, causing additional heavy
metals contamination (Wang &Wang, 2019). For the biochar-based composites, there
is a possibility that some of the embedded materials would leach out from the biochar
matrix if they are not well-fixed. Considering that the biochar stability generally refers
to the stability of its carbon structure (Wang &Wang, 2019), studies on the impacts of
carbonization conditions on the carbon content and structure need to be conducted. For
example, biochar produced via hydrothermal carbonization exhibits higher carbon content
than that via gasification and pyrolysis (Funke & Ziegler, 2010). Besides, constant water
quality monitoring is strongly suggested during the life-cycle application process of the
sorbents. Leaching or toxicity tests are proposed using water fleas, alga, fish, or luminous
bacteria (Wang &Wang, 2019) to determine whether toxic components are dissolving
from the biochar.

So far, most researches have focused on the sorption of single contamination in
aqueous solutions. However, the prevailing situation in real water application is the
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coexistence of a variety of contaminants, where synergistic and antagonistic sorption
effects can be observed. The presence of multiple contaminants potentially results in
ionic interference and competition of sorption sites, eventually reducing the removal
efficiency. At present, empirical data based on sorption of co-contaminant is limited,
appealing for the establishment of simultaneous sorption models, which could reveal the
involved synergistic or antagonistic sorptionmechanisms. To facilitate such studies, reports
on biochar sorption should contain sufficient information about the sorbent properties
and sorption conditions as detailed as possible in case of providing future directions.
Several efforts have been reported, such as the simulated molecular equations for studying
competitive sorption of co-contaminant (Bahamon et al., 2017); new analysis methods of
meta-analysis (Wang et al., 2019) and in-depth analysis (Tran et al., 2019; Feng et al., 2016)
have been carried out to develop possible new sorption models.

Although it is consensus that biochar is low-cost, renewable, and sustainable compared
with activated carbon (Mohan et al., 2011), to achieve the sustainability it is necessary to
seek solutions to recovery and desorption of the waste biochar, such as magnetization of
biochar, which makes it accessible to separate the contaminant-loaded biochar from water
by applying an external magnetic field. However, the desorption of waste biochar may cost
a lot. On the other hand, if contaminants sorbed on biochar cannot be effectively desorbed
and recovered, it is also feasible to use the waste biochar as a resource, which realizes the
recycling of waste biochar in another way. For example, biochar laden with N and P can
be of potential use as a slow-release fertilizer in agriculture or ecological remediation (Roy,
2017). Accordingly, biochar laden with Cu or Zn can be used as a micro-nutrient fertilizer
as well. Nevertheless, attention should be paid whether any harmful components could
release from the biochar, which could be sorbed by crops and consequently enter the food
chain. Therefore, the safety of applying waste biochar into soil requires further evaluation.

CONCLUSIONS
This review gives a systematical overview of the broad application of biochar in water
and wastewater treatment to remove common and emerging organic and inorganic
contaminants. The involved sorption mechanisms are demonstrated as a foundation of
studies on biochar sorption behavior. Based on the mechanisms, attention has been paid on
biochar modification to improve its performance, which aims to increase the surface area,
porosity, or surface sorption sites of the biochar. Exciting frontiers of magnetic biochar
and biochar-biofilm combination are also presented. Meanwhile, existing environmental
concerns of biochar application are discussed in the aspects of cost, performance, stability,
co-contaminant, and sustainability. Finally, future research directions are put forward to
facilitate the practical application of biochar.
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