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Breast cancer is a disease with high heterogeneity. Cancer is not usually caused by a
single gene, but by multiple genes and their interactions with others and surroundings.
Estimating breast cancer-specific gene-gene interaction networks is critical to elucidate
the mechanisms of breast cancer from a biological network perspective. In this study,
sample-specific gene-gene interaction networks of breast cancer samples were established
by using a sample-specific network analysis method based on gene expression profiles.
Then, gene-gene interaction networks and pathways related to breast cancer and its
subtypes and stages were further identified. The similarity and difference among these
subtype-related (and stage-related) networks and pathways were studied, which showed
highly specific for subtype Basal-like and Stage IV and V. Finally, gene pairwise
interactions associated with breast cancer prognosis were identified by a Cox proportional
hazards regression model, and a risk prediction model based on the gene pairs was
established, which also performed very well on an independent validation data set. This
work will help us to better understand the mechanism underlying the occurrence of breast
cancer from the sample-specific network perspective.
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16 Abstract

17 Breast cancer is a disease with high heterogeneity. Cancer is not usually caused by a single 
18 gene, but by multiple genes and their interactions with others and surroundings. Estimating breast 
19 cancer-specific gene-gene interaction networks is critical to elucidate the mechanisms of breast 
20 cancer from a biological network perspective. In this study, sample-specific gene-gene interaction 
21 networks of breast cancer samples were established by using a sample-specific network analysis 
22 method based on gene expression profiles. Then, gene-gene interaction networks and pathways 
23 related to breast cancer and its subtypes and stages were further identified. The similarity and 
24 difference among these subtype-related (and stage-related) networks and pathways were studied, 
25 which showed highly specific for subtype Basal-like and Stage IV and V. Finally, gene pairwise 
26 interactions associated with breast cancer prognosis were identified by a Cox proportional hazards 
27 regression model, and a risk prediction model based on the gene pairs was established, which also 
28 performed very well on an independent validation data set. This work will help us to better 
29 understand the mechanism underlying the occurrence of breast cancer from the sample-specific 
30 network perspective.
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31

32 Introduction

33 According to the latest data from the survey of the International Agency for Research on 
34 Cancer (IARC) in 2018, the incidence of breast cancer is 24.2% among women worldwide, ranking 
35 first in female cancers [1]. At present, the incidence of breast cancer is the highest, and its mortality 
36 ranks fourth in China. Breast cancer has strong heterogeneity. Based on the TNM staging system, 
37 breast cancer can be divided into Stages I, II, III, IV, and V. There are many clinical types of breast 
38 cancer according to pathological classification and molecular classification. The pathological 
39 classification generally divides breast cancer into invasive and non-invasive breast cancer. And 
40 the gold standard for the molecular typing of breast cancer is PAM50 molecular typing based on 
41 the expression profile of 50 genes, which classifies breast cancer into the Normal-like, LuminalA, 
42 LuminalB, Basal-like, and Her2 subtypes [2]. 

43 The molecular typing of breast cancer has important reference value for clinical treatment of 
44 breast cancer. However, molecular typing requires transcription sequencing which is difficult to 
45 promote clinically. Currently, the diagnosis of breast cancer classification is mainly through 
46 immunohistochemistry (IHC), namely, diagnosis by the expression of four markers, ER (oestrogen 
47 receptor), PR (progestin receptor), HER2 gene (human epidermal growth factor receptor 2) and 
48 Ki-67 protein (proliferating cell nuclear antigen). ER and PR are important indicators for endocrine 
49 therapy and prognosis evaluation in breast cancer. Studies have shown that their expression are 
50 positively correlated with total survival, treatment failure time, endocrine therapy response time, 
51 and recurrence time [3, 4]. In 2009, Cheang used GEP (gene expression analysis) to determine 
52 14% as the threshold of Ki-67, which could be used to divide patients into two groups with good 
53 and bad prognoses [5]. In 2011, the St. Gallen International Expert Consensus agreed to include 
54 Ki-67 as an important standard for molecular typing, which is the key to distinguishing the Luminal 
55 A and Luminal B subtypes [6]. In the growth and metastasis of breast cancer, HER2 is one of the 
56 most important factors, and its status can be used to predict the effect of drug treatment for breast 
57 cancer. Early detection and diagnosis and timely treatment are of great significance to improve the 
58 survival rate of breast cancer patients. 
59 The aetiology of breast cancer is still not clear, and there are many related factors, such as 
60 individual differences and a lack of effective treatments. With the development of biomedicine, 
61 personalized medicine is becoming the direction of breast cancer treatment in the future. At 
62 present, the medical plan can only be formulated through the study of single gene expression and 
63 mutation information. However, this information cannot fully reflect the personalized interaction 
64 and regulation among genes. Because onset and progression of cancer are often caused by the 
65 disruption of important biological networks such as cell cycle and apoptosis, but not a single gene. 
66 Indeed, there is a new and cutting-edge field of medical research, called network medicine, whose 
67 basic idea is that human diseases are rarely caused by single molecular determinant, but more 
68 likely influenced by a network of interacting molecular determinants with the propensity to cluster 
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69 together in the human interactome [7-9]. Gene-gene interaction networks can reveal the interaction 
70 relations and regulatory mechanisms among genes. And they have the irreplaceable function of 
71 the single-gene monitoring of information (such as expression and mutation) in many aspects [10]. 
72 Therefore, the mechanism of the occurrence and development of breast cancer can be explored 
73 through changes in the interactions between genes. In this paper, we constructed sample-specific 
74 networks of breast cancer samples by calculating the correlation coefficient of protein-coding gene 
75 pairs to explore the gene-gene interaction networks related to breast cancer stages and subtypes 
76 (see Fig.1). 
77 The survival time of different patients with breast cancer is significantly different. At present, 
78 the 5-year survival rate of breast cancer patients in China has reached 83.2%. However, the 5-year 
79 survival rate of advanced cancer patients and Basal-like cancer patients are significantly lower, so 
80 it is necessary to study the biomarkers that affect the prognosis of breast cancer. In 2009, Joel S. 
81 Parker et al. established a single-gene level survival analysis model to improve the prognosis of 
82 breast cancer and predict the efficacy of chemotherapy [11]. However, the robustness of the gene-
83 based model is not very high. Thus, this paper aims to establish a more stable prognostic analysis 
84 model of breast cancer patients through gene-gene interactions. We used the differential 
85 correlation coefficients to model the prognosis of breast cancer. Lasso regression is suitable for 
86 data analysis and model construction with many independent variables but a limited sample size 
87 [12]. In this study, we used a Lasso regression model to effectively reduce the dimensionality of 
88 large gene pairs and then identified the gene interactions related to the prognosis of breast cancer. 
89 Finally, a multivariate Cox proportional hazards regression analysis based on the gene interactions 
90 was carried out to predict the survival of patients with breast cancer (see Fig.1B). A prognosis 
91 model was established and it also performed very well on an independent validation data.
92

93 Materials & Methods

94 Datasets

95 In this paper, the RNA sequencing (RNA-seq) data of 290 normal breast tissues was 
96 downloaded from the GTEx database (https://gtexportal.org/home/), and the RNA-seq data of 
97 1093 breast cancer samples was downloaded from the TCGA database 
98 (https://portal.gdc.cancer.gov/). A human protein-protein interaction network was from the 
99 STRING database version 11.0 (https://string-db.org/), and gene sets of all available186 KEGG 

100 pathways were downloaded from the GSEA/MSigDB database (http: 
101 //software.broadinstitute.org/gsea/msigdb). In addition, the clinical information of the breast 
102 cancer patients was downloaded from the TCGA database, including TNM stage, prognosis 
103 survival time and other information. The 290 normal breast tissues were used as reference samples. 
104 The gene expression data sets of normal and cancer samples were both converted to the TPM form 
105 and contain 18006 genes in total. The independent validation data of the prognosis model was 
106 from the GSE3494 set in GEO Datasets, which contains 251 expression profiles of breast tumors 
107 by array.
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108 Construction of sample-specific networks

109 In this study, gene-gene interactions with high confidence (comprehensive score >0.9) were 
110 selected from the STRING database, which includes regulatory, physical and co-expression 
111 protein-protein interaction networks. Furthermore, the above gene-gene interactions with both 
112 genes in one of the 186 KEGG pathways were used as the background network (or template 
113 network), which contained 3257 genes in total. The sample-specific network method aimed to 
114 calculate the difference of the gene co-expression when the single cancer sample was added to a 
115 bunch of normal samples. In short, the sample-specific networks to be constructed are actually 
116 networks with significant perturbation edges of gene co-expression.
117  In the following analysis, sample-specific networks for breast cancer samples were 
118 constructed based on gene expression profiles by using the method introduced in reference [10] 
119 (see Fig.1A). First, using the gene expression data of  reference samples, namely all the normal 𝑛
120 breast tissues data, the reference network can be constructed by calculating the correlation 
121 coefficient  (the Pearson correlation coefficient (PCC)) of the gene pairs connected in the 𝑃𝐶𝐶𝑛
122 background network. The weights of the edges in the reference network are the PCC of the 
123 corresponding gene pairs. Then, the expression data of a single breast cancer sample was added to 
124 the reference samples, and the perturbed network of the single sample was constructed by 
125 calculating the new correlation coefficient  of the gene pairs in the background network. 𝑃𝐶𝐶𝑛 + 1

126 For the single breast cancer sample, the differential correlation coefficients of each edge between 
127 the perturbed network and the reference network were calculated as: , ∆𝑃𝐶𝐶𝑛 = 𝑃𝐶𝐶𝑛 + 1 ‒ 𝑃𝐶𝐶𝑛
128 which called differential network for the sample. In reference [10], Liu et al. have proved that 

129  follows a normal distribution with a mean value of 0 and a variance of  when  is ∆𝑃𝐶𝐶𝑛 1 ‒ 𝑃𝐶𝐶2𝑛𝑛 ‒ 1
𝑛

130 large enough. The significance level of each  was determined by the Z-test. The statistical Z-∆𝑃𝐶𝐶
131 value is calculated as follows with the null hypothesis that  is equal to 0:∆𝑃𝐶𝐶𝑛
132 .𝑍 =

∆𝑃𝐶𝐶𝑛
(1 ‒ 𝑃𝐶𝐶2𝑛) (𝑛 ‒ 1)

133 Then, we can obtain the P-value for each gene pair from the Z-value. Gene pairs (or edges) 
134 were considered statistically significant if their P-values < 0.01. All significant edges constitute 
135 the sample-specific network. Thus, adding the expression data of 1093 breast cancer samples to 
136 the reference samples one at a time, we finally constructed 1093 sample-specific networks.
137 Identification of stage/subtype-related gene-gene interaction networks

138 Only the gene pairs that are perturbed significantly in the most breast cancer samples are 
139 considered to be related to breast cancer. Then, the edges that are perturbed significantly in more 
140 than 90% of the samples by the binomial right-sided test (P-value <0.05) constitute a gene-gene 
141 interaction network related to breast cancer. Specifically, we firstly divided the above breast cancer 
142 samples into different stages or subtypes based on TNM staging and PAM50 subtype system, 
143 secondly selected the perturbed significantly edges in more than 90% samples of different stages 
144 or subtypes, and then the stage/subtype gene-gene interaction networks were constructed. 
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145 A slight change in the expression of high-degree genes in the network may cause disturbances 
146 of the entire network. Thus, these genes with high degree are considered to be the key genes for 
147 the onset and development of breast cancer. We selected genes with degrees >5 in the identified 
148 breast cancer-related network for the subsequent enrichment analysis. Furthermore, we also 
149 identified the key genes related to each TNM stage and PAM50 subtype with the same method. 
150 Here, because of the small number of stage V samples, stage V was combined with stage IV.

151 Pathway enrichment analysis

152 For the pathway enrichment analysis, we used the hypergeometric test as follows:

153 ,𝑝(𝑚,𝑀,𝑁,𝑛) = 1 ‒ ∑𝑚 ‒ 1𝑖 = 0

(𝑀𝑖 )(𝑁 ‒𝑀𝑛 ‒ 𝑖 )

(𝑁𝑛)
154 where  is the total number of genes in the background network,  represents the number of key 𝑁 𝑀
155 genes related to breast cancer (or a stage or subtype of breast cancer),  accounts for the number 𝑛
156 of genes in a pathway, and  represents the number of genes that both in the pathway and in key 𝑚
157 genes related to breast cancer (or a stage or subtype of breast cancer). Then, the pathway with P-
158 value <0.05 was considered as significantly enriched in the breast cancer (or a stage or subtype of 
159 breast cancer) samples. Otherwise, we regarded that the pathway is not enriched in the 
160 corresponding group.
161 Survival analysis by the Cox regression model

162 Different from the usual survival analysis based on gene expression, the perturbation of gene 
163 co-expression  (i.e. gene pairs or edges) was used to survival analysis. According to the ∆𝑃𝐶𝐶
164 clinical data of patients with breast cancer, we utilized the “survival” package and “survminer” 
165 package in R/Bioconductor to establish a univariate Cox proportional hazards regression model by 
166 setting patients’ survival conditions (survival time and survival status) as the dependent variables 
167 and the  of gene pairs in the differential network for each breast cancer samples as the ∆𝑃𝐶𝐶
168 covariates. Gene pairs with P-values < 0.05 were considered to be related to the prognosis of breast 
169 cancer [13].
170 A large number of covariates may cause overfitting in establishing a multivariate Cox 
171 proportional hazards regression model; thus, using the least absolute shrinkage and selection 
172 operator (LASSO), we further selected the key gene pairs from these significant ones obtained by 
173 the univariate Cox proportional hazards analysis. LASSO is a common method used in high-
174 dimensional data regression, which can select prognosis-related gene pairs of breast cancer by 
175 shrinking regression coefficients. The tuning parameter ( ) with the smallest mean-square error 𝜆
176 was selected by four-fold cross-validation to establish an optimal LASSO regression model. Then, 
177 the coefficients of most gene pairs reduced to zero, and a smaller number of gene pairs with 
178 nonzero coefficients were considered to be closely correlated with the prognosis of breast cancer.
179 LASSO Cox analysis was performed by using the “glmnet” package in R. Then, the risk score 
180 for each sample was calculated by the LASSO Cox regression model. According to the median 
181 risk score, breast cancer patients were divided into two groups (a high-risk group and a low-risk 
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182 group). In addition, 234 breast tumors with relapse free survival information in the validation data 
183 set were analyzed by using the above sample-specific network method, and risk scores were 
184 calculated by the Cox regression model based on 1093 samples in TCGA. Then the validation 
185 samples were also divided into two groups in the same way. Finally, the corresponding Kaplan-
186 Meier survival curves were plotted by using the packages “survminer” and “survival” in R.
187

188 Results

189 Breast cancer-related gene-gene interaction networks

190 The background network consisted of 46916 edges and 3237 genes. In addition, 2190 gene 
191 pairs were identified as significantly related to breast cancer, which constituted the gene-gene 
192 interaction network related to breast cancer (including 915 genes in total). We use the Cytoscape 
193 software to visualize the breast cancer-related network (see Fig.2).

194 Genes with degrees > 5 in the breast cancer-related gene-gene interaction network (198 in 
195 total which are shown in Table S1). Among them, some genes with higher degrees (> 20) have 
196 been shown to be related to breast cancer. For example, CCNB1 has strong power to predict the 
197 survival of breast cancer patients with the phenotype of ER positive [1414]. The overexpression 
198 of GRB2 has been demonstrated to be significantly associated with the occurrence and poor 
199 prognosis of breast cancer [15]. PCNA has been proven to be a marker of proliferation in the 
200 diagnosis of breast cancer [16], SF3B4 has been shown to be a tumour suppressor, and somatic 
201 inactivating mutations occasionally occur in breast cancer [1717]. UBE2C may promote the 
202 development of breast cancer [18]. High Cdc20 and securin immune expression are associated 
203 with extremely poor outcomes in breast cancer patients [19], and overexpression of RPL17 affects 
204 breast cancer-associated brain metastases [20]. MAD2L1 may have great effect on breast cancer 
205 progression, and its expression might help to predicting breast cancer prognosis [2121]. The high 
206 expression of TRA2B is closely related to the cancer cell survival and therapeutic sensitivity of 
207 breast cancer [22]. GTF2H4 has been identified to be related to the survival risk of breast cancer 
208 [23].

209 Stage-related gene-gene interaction networks

210 The results of the four stage-related gene-gene interaction networks are shown in Fig.S1A-D. 
211 And the top 10 genes with the highest degrees in these four networks are displayed in Fig.S1E-H. 
212 There are obvious similarities and differences among the four stage-related gene interaction 
213 networks. There are 81 key genes shared by all stages (see Table S3), among which RPL17, 
214 CCNB1, and SF3B4 are genes that are highly (with degrees > 25) related to breast cancer. Stage I 
215 has 5 specific genes: PSMC5, SDHB, RPL11, SDHA, and RPL13. Stage II has 3 specific genes: 
216 STX6, CCNA2, and CDC25C. Stage III has 4 specific genes: NDUFA6, EPN1, SF3A3, and 
217 LSM7. Stage IV has the largest number of specific genes, with a total of 38, among which CDC42, 
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218 LSM2, NDUFS6, and CDC25A are strongly associated with it. And these stage-specific key genes 
219 are shown in Table S4.
220 Subtype-related gene-gene interaction networks

221 The results of the four subtype-related gene interaction networks are shown in Fig.S2A-D. 
222 And the top 10 genes with the highest degrees in these four networks are displayed in Fig.S2E-H. 
223 The four subtype-related networks share similar and different characteristics. There are 34 key 
224 genes shared by the four subtypes (see Table S7). Among them, RPL17 and CCNB1 have higher 
225 degrees. The Luminal A subtype has 11 specific genes, including RPL23A, RPL10, and PRPF6, 
226 which are greatly related to it with higher degrees. The Luminal B subtype has 17 specific genes, 
227 including COX6C, EGFR, and CLTC, which are related to it with higher degrees. The Her2 
228 subtype has 3 specific genes, NDUFA6, CCR8, and CASP3. The Basal-like subtype has the largest 
229 number of specific genes, 17 in total, including LSM2, DDX5, SF3A3, and MAGOH, with higher 
230 degrees. And these subtype-specific key genes are shown in Table S8.
231 Pathways enriched in breast cancer patients

232 There were 41 pathways (see Table S2) enriched in the breast cancer samples according to 
233 the pathway enrichment analysis, including some immune-related pathways, such as the Toll-like 
234 receptor signaling pathway, antigen processing and presentation, complement and coagulation 
235 cascades, the RIG-I-like receptor signaling pathway, and the cytosolic DNA-sensing pathway. 
236 Some important signal transduction and signal molecular interaction pathways were also included, 
237 such as the MAPK signaling pathway, Wnt signaling pathway, cytokine-cytokine receptor 
238 interaction, and ECM-receptor interaction pathways. Breast cancer is closely related to endocrine 
239 disorders [24], two endocrine-related pathways, adipocytokine signaling pathway, and PPAR 
240 signaling pathway, have also been identified as being related to breast cancer. In addition, some 
241 metabolic pathways, especially lipid metabolism pathways, have also been identified as being 
242 associated with breast cancer [25], such as the steroid hormone biosynthesis, arachidonic acid 
243 metabolism, arginine and proline metabolism pathway, and glycerolipid metabolism. Additionally, 
244 pathways in cancer was also enriched. The enrichment results are shown in Fig.3A.
245 Most of these pathways have been documented to be related to breast cancer. For example, 
246 the dysregulation of the steroid hormone biosynthesis pathway may affect steroid hormone levels 
247 and may thus be related to the susceptibility to breast cancer [24]. The PPAR signaling pathway 
248 may play an important role in the neoadjuvant chemotherapy response of breast cancer [26]. 
249 Mounting preclinical evidence supports targeting the MAPK signaling pathway in the triple 
250 negative breast cancer (TNBC) [27]. AMPK activators inhibit breast cancer cell proliferation by 
251 inhibiting DVL3-promoted Wnt/β-catenin signaling pathway activity [28]. Toll-like receptors may 
252 play dual roles in human cancers [29]. The co-activation of the Hedgehog and Wnt signaling 
253 pathways is a poor prognostic marker in TNBC [30]. Prl-3 is closely related to cell migration and 
254 invasion in TNBC [31]. The YHD inhibition of 4T1 breast tumour growth may be related to the 
255 negative regulation of the JAK/STAT3 pathway by repressing the expression of IL-6 and TGF-β 

256 [32].
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257 Stage-related pathways

258 The overlapping of pathways enriched in the four TNM stages are shown in Fig.3B. The 
259 proportion of enriched pathways shared by the four stages (see Table S5) is relatively high, 
260 including the Wnt signaling pathway, MAPK signaling pathway27, regulation of actin 
261 cytoskeleton, calcium signaling pathway34, pathways in cancer, and cell adhesion molecules, 
262 which have been shown to have a high correlation with breast cancer [27, 28, 33-35]. The pathways 
263 enriched in different stages are slightly different, especially Stage IV of breast cancer, which has 
264 18 specific enriched pathways, among which the PPAR signaling pathway26, ECM-receptor 
265 interaction, tight junction, TGF-beta signaling pathway, NOD-like receptor signaling pathway, and 
266 other signaling pathways are mostly related to the metastases of breast cancer [26, 36-39]. 
267 As we expected, stage IV was specifically enriched the most pathways (18 in total, see Table 
268 S6) different from other stages. This result is probably because Stage IV breast cancer patients are 
269 the most serious, and their cancer cells are likely to have deteriorated and metastasized. Therefore, 
270 the disruption of the biological system balance of breast cancer patients at this stage is larger than 
271 that of other stages. Thus, the specific enriched pathways of Stage IV are correspondingly more.
272 Subtype-related pathways

273 The overlap and difference of the enriched pathways in the four PAM50 subtypes are shown 
274 in Fig.3C. There are slight differences in the subtype-related pathways. There are 4 enriched 
275 pathways shared by the four subtypes (see Table S9) including the cytokine-cytokine receptor 
276 interaction. As a special subtype of breast cancer, the Basal-like subtype (or TNBC) is 
277 characterized by high histological differentiation, a high risk of metastasis, a high recurrence rate, 
278 and a low survival rate. Probably due to the higher risk of Basal-like subtype, there are 9 specific 
279 pathways enriched in it, including the leukocyte transendothelial migration and chemokine 
280 signaling pathway. The subtype-specific enriched pathways are shown in Table S10.
281 Prognosis-related gene pairs 

282 A total of 5652 gene pairs significantly related to the survival and prognosis of breast cancer 
283 were found by the univariate Cox proportional hazards model. In addition, 272 gene pairs were 
284 further identified by Lasso regression (see Fig.S3). A multivariate Cox proportional hazards 
285 regression model with these gene pairs as independent variables was constructed as follows.
286 Score = 206.3 ∗ (ENO, PGK2) + 35.9 ∗ (EN0, PKLR) + 4.1 ∗ (EBP, HSD17B7) + 5.5 ∗ (
287  CYP1B, HSD17B1) ‒ 3.4 ∗ (NDUFB2, NDUFB4) ‒ 0.6 ∗ (ATP6V1A, ATP6V1B1) + …

288 The risk scores of the 1093 breast cancer patients in TCGA were calculated by this model. 
289 The median of the risk scores divided all patients into two groups. The corresponding Kaplan-
290 Meier survival curve is shown in Fig.4A. Of note, survival analysis indicates that overall survival 
291 probability of patients with high risk scores is significantly lower than that with low risk scores 
292 (P-value < 0.0001).
293 In addition, the risk scores of the 234 breast tumors in the validation data set were also 
294 calculated by the above model with 264 gene pairs (8 gene pairs were omitted since these genes 
295 were not included in the expression profile of the validation data). In the same way, there are two 
296 groups with different scores. The relapse free survival probabilities of the two groups are 
297 significantly different (P-value < 0.0001), and the relapse free survival status of tumors in the low 
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298 score group are all “alive” (see Fig. 4B). This result indicates that the prognosis model based on 
299 gene pairs can well predict the survival time of breast tumors in the independent validation data 
300 set.
301

302 Discussion

303 At present, research on cancer pathology is limited to gene expression and mutation 
304 information. However, the model of one gene to one disease is no longer suitable for the study of 
305 complex diseases. In fact, genes do not exist in isolation but participate in some complex biological 
306 networks, such as gene-gene interaction networks. Gene mutations or surroundings changes often 
307 affect the balance of gene interaction networks and the perturbation of the networks then affect the 
308 onset and development of complex diseases. Studies have shown that some genetic elements of 
309 breast cancer are related to nearby gene expression, such as some repetitive DNA in ER+/HER2- 
310 breast cancer and transposable elements [40, 41]. Therefore, network analysis can provide a more 
311 comprehensive and systematic point of view, to better understand the human disease onset and 
312 development mechanism. 

313  Based on personalized medicine, Precision Medicine is a new medical concept and medical 
314 model, which needs to grasp the specific characteristic of different cancer samples accurately. The 
315 analysis of the biological network disturbance for each cancer patient conforms to the concept of 
316 precision medicine. In addition, the personalized medical treatment of breast cancer is in a 
317 relatively slow development stage. 

318 In this paper, sample-specific networks of breast cancer samples were established to explore 
319 the gene-gene interaction networks related to the TNM stages and PAM50 subtypes of breast 
320 cancer. Then, the pathways related to breast cancer were identified by hypergeometric test. 
321 Through the same method, we also obtained the stage-related pathways and subtype-related 
322 pathways. Finally, the edge biomarkers (gene pairs) that are closely related to the prognosis of 
323 breast cancer were determined by using the LASSO regression model, and then a more stable 
324 prognostic analysis model was established by using these biomarkers. Our results indicate that the 
325 prognosis model has the robust and strong generalization capability, and it can be used in different 
326 gene expression data sets.
327 Many studies have shown that network-based methods are more robust and effective than 
328 single-gene-based methods, such as SWIM and WGCNA [42, 43]. SWIM is a tool able to extract 
329 from complex correlation networks the so-called “switch genes” that could be associated to the 
330 transition from physiological to a pathological condition. The WGCNA method plans to exploit 
331 the correlation patterns among genes. The advantages of network-based methods have been well 
332 documented and accepted in the analysis of noisy high-throughput data. Different from the usual 
333 network-based method, we made better use of a prior background network to explore the sample-
334 specific networks. And the sample-specific networks are actually networks with significant 
335 perturbations edges of gene co-expression in our study, which is really very different from 
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336 WGCNA. This study helps us to better understand the heterogeneity and mechanism of breast 
337 cancer from an individual-level perspective. Precision medicine advocates the development of 
338 individualized treatment according to the unique features of patients. Therefore, identifying the 
339 unique pathogeny embedded in each patient is important to develop a treatment strategy for each 
340 patient. Our sample-specific network analysis of breast cancer will promote the development of 
341 precision medicine. 

342

343 Conclusions

344 In this paper, the sample-specific network of each breast cancer sample was constructed based 
345 on network analysis, and further breast cancer (subtype/stage)-related gene-gene interaction 
346 networks were identified. The edge biomarkers (gene pairs) related to the prognosis of breast 
347 cancer were also identified and a risk prediction model was established based on these edge 
348 biomarkers finally.

349 This study develops an individualized network analysis for each patient which would 
350 promote a new train of thought and method for the precision medicine. This whole process of 
351 sample-specific network analysis using co-expression can also be used to analyze other 
352 cancers. However, the co-expression perturbation which used to construct sample-specific 
353 network, does not roundly measure the changes of gene interactions. So, we will consider further 
354 designing a method which can characterize the perturbation of gene interactions comprehensively. 
355 In addition, how to obtain subtype-specific networks (or stage-specific networks) from sample-
356 specific networks based on network structure is still a problem worth considering.
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Figure Legends

Figure 1
An integrative framework identifying breast cancer-related gene-gene interaction 

networks. 

(A) Construction of sample-specific networks based on gene expression data. A 

reference network can be established based on the expression profiles of  reference n

samples by calculating the correlation coefficients  of gene pairs. Then, adding a 𝑃𝐶𝐶𝑛
new sample  into the reference samples, a perturbed network is established by 𝑠𝑑𝑥
calculating the new correlation  of the  samples. Because of sample , the 𝑃𝐶𝐶𝑛 + 1 𝑛 + 1 𝑠𝑑𝑥
perturbed network is different from the reference network, and the difference ∆ (𝑃𝐶𝐶𝑛

) of each edge in the background network constitutes the differential 𝑃𝐶𝐶𝑛 + 1 ‒ 𝑃𝐶𝐶𝑛
network. Then, the significance of each edge can be quantified by a statistical Z-test. The 

sample-specific network for sample  is composed by those edges with significant ∆𝑠𝑑𝑥
. 𝑃𝐶𝐶𝑛

(B) The framework to identify the breast cancer-related gene-gene interaction network 

based on gene expression. Using the sample-specific network analysis method,  cancer 𝑚
sample-specific networks were constructed. Then, these constructed sample-specific 

networks were analysed to identify breast cancer-related networks, stage-related 

networks and subtype-related networks, as well as gene-interaction biomarkers 

associated with the prognosis of breast cancer. Moreover, pathway enrichment analysis 

based on KEGG pathways and survival analysis based on the LASSO regression model 

were performed. 

Figure 2 
Gene-gene interaction networks related to breast cancer. Nodes in these networks stand 

for genes, and the size of the nodes corresponds to the degree of the genes in the 

network. The purple nodes represent the genes with degrees ≥ 15, and the blue ones are 

the genes with degrees < 15.
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Figure 3
Pathways enriched in breast cancer, as well as different stages and subtypes of it.

(A) KEGG pathways enriched in breast cancer samples, ranked by -log10(p).

(B) Overlap and difference of the enriched pathways in the four breast cancer stages. 

There are 11 commonly enriched pathways in the four stages. The number of Stage IV-

specific pathways was 18.

(C) Overlap and difference of the enriched pathways in the four PAM50 subtypes. There 

are 4 commonly enriched pathways in the four PAM50 subtypes. The number of Basal-

like specific pathways is 9.

Figure 4
Kaplan-Meier survival analysis. 

(A) Kaplan-Meier survival plots for two different groups of breast cancer patients in 

TCGA.The X axis is survival days. The Y axis is overall survival rate. 

(B) Kaplan-Meier survival plots for two different groups of breast tumors in the 

independent validation data set. The X axis is relapse free survival time (days). The Y 

axis is relapse free survival rate.

Figure S1. Gene-gene interaction networks related to breast cancer TNM stages. 

Nodes in these networks stand for genes, and the size of the nodes corresponds to the 

degree of the genes in the network. The purple nodes represent the genes with degrees 

≥ 15, and the blue ones are the genes with degrees < 15. 

(A-D) Gene-gene interaction networks associated with Stage I, II, III, and IV respectively. 

(E-H) The bar charts of top 10 genes with the highest degrees in gene-gene interaction 

networks related to Stage I, II, III, and IV.  The Y axis is gene, and the X axis is the gene 

degree.

Figure S2. Gene-gene interaction networks related to breast cancer PAM50 

subtypes. Nodes in these networks stand for genes, and the size of the nodes 
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corresponds to the degree of the genes in the network. The purple nodes represent the 

genes with degrees ≥ 15, and the blue ones are the genes with degrees < 15. 

(B-D) Gene-gene interaction networks associated with LumA, LumB, Her2, and Basal-

like subtypes respectively. 

(E-H) The bar charts of top 10 genes with the highest degrees in gene-gene interaction 

networks related to LumA, LumB, Her2, and Basal-like subtypes. The Y axis is gene, and 

the X axis is the gene degree.

Figure S3. Establishment of the LASSO regression model. 

(A) Four-fold cross-validation for tuning parameter ( ) selection in the LASSO model. 𝜆
(B) LASSO coefficient profiles of 272 gene interactions.
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Figure 1
An integrative framework identifying breast cancer-related gene-gene interaction
networks.

(A) Construction of sample-specific networks based on gene expression data. A reference
network can be established based on the expression profiles of n reference samples by
calculating the correlation coefficients PCCn of gene pairs. Then, adding a new sample sdx

into the reference samples, a perturbed network is established by calculating the new
correlation PCCn+1 of the n+1 samples. Because of sample sdx, the perturbed network is

different from the reference network, and the difference ∆PCCn ( PCCn+1 - PCCn) of each edge

in the background network constitutes the differential network. Then, the significance of each
edge can be quantified by a statistical Z-test. The sample-specific network for sample sdx is
composed by those edges with significant ∆PCCn. (B) The framework to identify the breast

cancer-related gene-gene interaction network based on gene expression. Using the sample-
specific network analysis method, m cancer sample-specific networks were constructed.
Then, these constructed sample-specific networks were analysed to identify breast cancer-
related networks, stage-related networks and subtype-related networks, as well as gene-
interaction biomarkers associated with the prognosis of breast cancer. Moreover, pathway
enrichment analysis based on KEGG pathways and survival analysis based on the LASSO
regression model were performed.
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Figure 2
Gene-gene interaction networks related to breast cancer.

Nodes in these networks stand for genes, and the size of the nodes corresponds to the
degree of the genes in the network. The purple nodes represent the genes with degrees ≥
15, and the blue ones are the genes with degrees < 15.
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Figure 3
Pathways enriched in breast cancer, as well as different stages and subtypes of it.

(A) KEGG pathways enriched in breast cancer samples, ranked by -log10(p).(B) Overlap and
difference of the enriched pathways in the four breast cancer stages. There are 11 commonly
enriched pathways in the four stages. The number of Stage IV-specific pathways was 18.(C)

Overlap and difference of the enriched pathways in the four PAM50 subtypes. There are 4
commonly enriched pathways in the four PAM50 subtypes. The number of Basal-like specific
pathways is 9.
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Figure 4
Kaplan-Meier survival analysis.

(A) Kaplan-Meier survival plots for two different groups of breast cancer patients in TCGA.The
X axis is survival days. The Y axis is overall survival rate. (B) Kaplan-Meier survival plots for
two different groups of breast tumors in the independent validation data set. The X axis is
relapse free survival time (days). The Y axis is relapse free survival rate.
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