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ABSTRACT

The native structure of a protein is important for its function, and therefore methods
for exploring protein structures have attracted much research. However, rather few
methods are sensitive to topologic-geometric features, the examples being knots,
slipknots, lassos, links, and pokes, and with each method aimed only for a specific set of
such configurations. We here propose a general method which transforms a structure
into a ”fingerprint of topological-geometric values” consisting in a series of real-valued
descriptors from mathematical Knot Theory. The extent to which a structure contains
unusual configurations can then be judged from this fingerprint. The method is not
confined to a particular pre-defined topology or geometry (like a knot or a poke), and
so, unlike existing methodes, it is general. To achieve this our new algorithm, GISA, as
a key novelty produces the descriptors, so called Gauss integrals, not only for the full
chains of a protein but for all its sub-chains. This allows fingerprinting on any scale
from local to global. The Gauss integrals are known to be effective descriptors of global
protein folds. Applying GISA to sets of several thousand high resolution structures, we
first show how the most basic Gauss integral, the writhe, enables swift identification of
pre-defined geometries such as pokes and links. We then apply GISA with no restrictions
on geometry, to show how it allows identifying rare conformations by finding rare
invariant values only. In this unrestricted search, pokes and links are still found, but also
knotted conformations, as well as more highly entangled configurations not previously
described. Thus, an application of the basic scan method in GISA’s tool-box revealed
10 known cases of knots as the top positive writhe cases, while placing at the top of the
negative writhe 14 cases in cis-trans isomerases sharing a spatial motif of little secondary
structure content, which possibly has gone unnoticed. Possible general applications of
GISA are fold classification and structural alignment based on local Gauss integrals.
Others include finding errors in protein models and identifying unusual conformations
that might be important for protein folding and function. By its broad potential, we
believe that GISA will be of general benefit to the structural bioinformatics community.
GISA is coded in C and comes as a command line tool. Source and compiled code for
GISA plus read-me and examples are publicly available at GitHub (https://github.com).
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BACKGROUND

Rogen ¢ Bohr (2003) introduced a set of quantitative protein fold descriptors consisting
in 29 knot-theoretic Gauss Integral (GI) based invariants, shown shortly after in Rogen ¢
Fain (2003) to be able to automatically recover the classification of the CATH database.

Automated local scrutiny of folds is desired for various purposes, including identifying
odd shapes in predictions, improving classification and for structure alignments. However,
while the GI invariants work very well as global fold descriptors, an efficient method for
computing them locally has been lacking and local applications have been few. Revealing
though indeed the relevance of applying GIs locally, the structural similarity methods
in Chang, Rinne & Dewey (2006) and Zhi, Shatsky & Brenner (2010) based on local writhe
showed excellent performance (writhe is an order one GI). Due to its recursive nature, our
new algorithm, GISA, computes not only the GI invariants of an entire chain but at the
same time of all sub-chains, allowing therefore structural analyses on any scale from local
to global (we assume chains and sub-chains to be connected).

By the knot-theoretic nature of the GIs, GISA is sensitive to topologic-geometric
differences, while having the fundamental translational-rotational invariance. This
distinguishes GISA from distance based approaches. A general method for structural
analysis having such topologic-geometric sensitivity seems still to be lacking (Jarmoliriska
et al., 2018; Marks et al., 2011). By its versatility, we believe that GISA can fill this gap.

As a tool GISA includes computation of the desired Gls, deriving GI-values for sub-
chains and search/scan methods. The latter allow to rank a set of query structures’ GI-values
against a background, consisting in a set of GI-values, likewise produced by running GISA
on a “data base” of structures.

The main aims of this paper are to introduce GISA, to explain the method via a
proof-of-concept and describe the contents of the tool. The primary focus is on the
proof-of-concept, which only involves the lowest order GI, viz. the writhe: First we show
in a “restricted search” how GISA can be exploited to provide an algorithm for identifying
particular geometries in folds such as a chain forming an almost closed loop through which
it passes, or two such loops interlinking (these were termed “pokes” and “co-pokes”,
respectively, by Khatib, Rohl & Karplus (2009)). Then, in a similar unrestricted search, we
show how GISA allows identifying the very same configurations as well as more elaborate
ones, by letting the search be based on finding outlying writhe values only (please see
the 3d-figures below; more examples from both searches can be found in Supplemental
Information 1).

Recent work by Dabrowski-Tumanski ¢» Sulkowska (2017) indicates the steady interest
in interlinking loops and closely related topologies. While search algorithms as those in
Dabrowski-Tumanski ¢ Sulkowska (2017), Khatib, Rohl & Karplus (2009), Niemyska et al.
(2016) build on predefined shapes, our algorithm searches for exceptional values of GIs,
and the shapes of the search hits are then final output rather than input; thus GISA allows to
identify both less constrained as well as more elaborate shapes. This we support by running
the unrestricted search and, more generally, by the runs of GISA’s basic scan method, rar0.
This scan tool formalizes the unrestricted search (rar is short for rarity). It allows assessing
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a set of structures on a larger background by means of writhe values only (GISA has two
additional scan tools that allow using higher order GIs).

Our proof-of-concept—the restricted and unrestricted searches—and rar0 make use
only of the writhe for identifying locally entangled configurations. Several authors have
recently made similar use of the writhe, but for defining a global entanglement of one
or more polymers (Baiesi et al., 2016; Baiesi et al., 2017; Baiesi et al., 2019; Panagiotou ¢
Kroger, 2014; Panagiotou, Kriger ¢ Millett, 2013; Panagiotou ¢ Plaxco, 2019; Panagiotou,
Millett & Atzberger, 2019). A general aim there is to relate such an entanglement measure
to physical properties of the molecules. In these works the writhe is applied to open
curves (Baiesi et al., 2016; Panagiotou ¢ Krioger, 2014; Panagiotou, Kriger ¢ Millett,

2013; Panagiotou & Plaxco, 2019; Panagiotou, Millett & Atzberger, 2019). Closest to our
application of the local writhe numbers are Baiesi et al. (2017); Baiesi et al. (2019). These
are however restricted to the particular geometry consisting in pokes (threads) of almost
closed loops with no restriction on the length of the poking segment except a lower bound
of 10 residues (which coincidentally is the largest poke-length we consider). The “maximal
poke writhe-value” is then used as the global measure.

In another direction, well-established knot-invariants (“knot polynomials”) have been
applied to detecting knots in proteins. A particular case is that of slipknots (King, Yeates
& Yeates, 2007), where particular care is taken in closing the sub-chains. A more general
approach is that of knotoids Goundaroulis et al. (2017), which allows similar detection of
knots while working on the (open) chain, i.e., even without performing random closures
of it (see also Dabrowski-Tumanski et al., 2018). The method is though still stochastic in
nature.

The other main tools in GISA are the GI-generating functions and two more advanced
scan methods (rarl and rar2). All three scan tools build on the possibility of pre-computing
the GIs so as to generate a background against which query sets can be swiftly assessed.
Key in the pre-computability of the GIs is their translational and rotational invariance (no
costly superpositions of the structures are needed). Since our focus in this paper is on the
application of the writhe, we dedicate most time to the basic rarity scan, rar0. The strength
of the two more advanced scan flavours, rarl and rar2, is that they allow including higher
order GIs. We include a short description below; more can be found in Supplemental
Information 1.

To validate the output of the restricted and unrestricted searches we visually inspect the
cases having the most conspicuous writhe values and compare their rankings. To assess
the validity of GISA’s scan methods, we check that the top-rankings of the basic scan tool,
rar0, match those of the unrestricted search. As for rar1/2 we show that their outputs are
well-aligned at similar settings (Supplemental Information 1).

The command line tools (compiled code) as well as the source C code for computing
the invariants up to and including order 3, for supporting the scans and for the
particular searches are available at GitHub under GNU General Public License v3
(https://github.com/ceegeeCode/GISA).
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METHODS

We represent a protein chain by the piece-wise linear curve given by its o-Carbon trace.
A poke consists of an almost closed loop (of moderate length) through which a shorter
segment of the chain sticks—or pokes. A co-poke can be understood as a “1-link”: two
almost closed loops (of moderate length) poking through each other, i.e., interlinking once.
For an example of a poke see Fig. 515; examples of 1-links can be seen in the 3d-figures
right below.

In a 1-link the two smooth closed loops have a linking number, or writhe, of & 1. The
writhe is therefore a key notion in this paper why we give a short introduction now.

A primer on Writhe

Writhe is a geometric measure of how coiled a space curve is. Consider the carbon alpha
curve of a protein chain, or a fragment thereof, traversed in the N-to-C direction. Look at
the curve from one direction in space, or mathematically project the curve onto a plane,
and keep track of over and under crossings. A crossing is called positive if the directions of
traversal at the crossing follow the right hand rule of electro-magnetic induction; otherwise,
it is called negative. The directional writhe is simply the sum of the signs of the crossings
seen from a given direction. This sum is a natural notion of how coiled the planar curve
with over and under crossings is. The number of crossings and their signs may change if
you observe the curve from another direction. Hence, the directional writhe in general
depends on the chosen direction. By averaging the directional writhe over all directions,
we get the average signed number of crossings or writhe of the curve. The writhe is by
the averaging independent of the curve’s position in space—the writhe is invariant under
rotations and translations of the curve.

For two closed non-intersecting curves that both have a chosen direction of traversal the
directional writhe can be shown to be constant, i.e., independent of the chosen projection.
This constant is called the linking number and counts how many times the two curves are
linked together. If however the curves are only almost closed, the chosen direction matters.
In this case we can though still apply the writhe and, loosely speaking, the writhe increases
(in absolute value) the more the two curves interlink. In case the two curves are closed the
writhe and the directional writhe will be equal. We can then still consider the writhe as a
measure of the winding. Writhe or linking number is most effectively calculated using a
so-called Gauss Integral (for more see Rogen ¢ Bohr, 2003).

Supplemental Information 1 contains a detailed walk-through of our application of the
writhe and what GISA computes in the case of the protein 1bpi, which contains a 1-link
(see the 3d-figure right below).

Approach in restricted and unrestricted searches

As we have now seen, if one can compute the writhe values of all pairs of (almost) closed
loops in a chain, instances of (almost) 1-links can possibly be identified (cases of higher
linking numbers—i.e., one loop winding around the other several times—are less expected
due to their lower entropy). A major benefit of our GISA algorithm is that it allows exactly
that: it computes not only Gauss Integrals of the whole chain, but of all sub-chains. This
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allows computing swiftly the desired linking number—or mutual writhe value—of any
given pair of sub-chains (Supplemental Information 1, Eq. 3).

Pokes can be searched for similarly by considering the mutual writhe values of
short sub-chains (length 10, say) vs. (almost) closed loops. The intuition here is from
electromagnetism: For a line segment placed in the magnetic field induced by an electric
current in a wire-loop, the change in magnetic potential along the segment is larger the
“purer” it pokes the loop.

The base of GISA consists in an algorithm computing the GIs, which includes also
support for the two modes: 1) for the restricted search, all (almost) closed loops are
identified, where after the relevant mutual writhe values for link/poke searching are
derived and written to file; 2) for the unrestricted search, the algorithm simply derives
the mutual writhe of all pairs of sub-chains of some fixed length. To limit the size of the
output, we keep only the pairs of sub-chains with the lowest and with the highest mutual
writhe values (a similar limitation of the output is made for the pokes of the restricted
search). The derivation of the mutual writhe amounts to adding four look-ups in the stored
writhe-table. In both versions GISA returns the identified sub-chain pairs along with their
mutual writhe. Conspicuous cases are then found in the tails of the resulting distribution
of mutual writhe values. In the restricted search we expect to find 1-links/pokes and, when
using the unrestricted search, possibly other geometries as well.

While a small post-processing task is here needed to identify tail events, GISA’s scan
methods that we now turn to directly rank structures in terms of their “GI content”. Of
these the basic method (rar0) is the offspring of our proof-of-concept.

GISA’s scan methods

As explained GISA includes tools for querying possible rarity in a set of structures against
a preferably larger and representative set of structures. The output is a score and a
probability/rank for each queried structure, with all queried structures listed by decreasing
score (and increasing probability/rank). GISA has three types of scans to support this, rar0,
rarl and rar2 (in the command line tool these are referred to as flavours). In all three,
sub-chains (windows) of a user-defined length are considered , covering each structure by
moving the window along the structure at a likewise user-defined step size.

The basic scan method (rar0) assesses each structure by its content of mutual writhe
above a set threshold (there are two versions of rar0, see Supplemental Information 1;
results below are found using version A).

While rar0 is based only the single value of the mutual writhe, the two other types
of scans, rarl and rar2, can use higher order GIs. Both are therefore based on arrays of
GIs. The scan approach builds on discretizing the GI-arrays and looking up the resulting
GI-words in the likewise “dictionaried” background of GI-arrays. This can be seen as local
structural alignment in the space of GI-arrays (rather than in 3d-space) and could serve as
the foundation of a similar global structural alignment. More details on each scan method
can be found in Supplemental Information 1.
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Data and implementation

For the bulk of our analyses we use the top100 and top8000 sets available on the Kinemage
homepage (Kinemage, 2016), consisting of respectively 100 and about 8,000 high resolution
protein structures in PDB format (PDB, 2016). For a more recent data set we consider
the Pisces lists “cullpdb _pc20 _res3.0 _R1.0 _d200123” and its high resolution subset
“cullpdb _pc20 _res1.8 _R0.25 _d200115” (Dunbrack Lab, 2020). We refer to these sets as
PiscesLoRes and PiscesHiRes, respectively.

All results are made by compiling and running the C code on a unix server, except for
the computational performance (Supplemental Information 1) which was made with a
Windows-compiled version of the code run on a common laptop (Intel Core i7-4510, 2.00
GHz/2.60 GHz, 8GB RAM, hard disc of SSD type; OS Microsoft Windows 10).

The C source code along with implementation notes can be found in the Github
repository, which also contains outlines of the code for the key functions for GISA’s tools
and examples on how to run the code. The Python code and Pymol scripts for plotting and
selecting examples for the restricted and unrestricted searches in this paper are also placed
in the repository. We have also placed html-code for the shown structures/examples in the
Github repository. This is based on the NGL viewer (Rose ¢ Hildebrand, 2015; Rose et al.,
2018). Opening one of these files in a standard internet browser yields an interactive plot
of the given structure (NGL viewer).

RESULTS

Restricted and unrestricted searches

For the restricted search we follow Khatib, Rohl & Karplus (2009) and let a closed loop
mean a sub-chain consisting of no less than 6 and no more than 30 line-segments and such
that the ¢-Carbon atoms at the sub-chain terminals are at most 7 Angstrém apart.

For the unrestricted search we consider sub-chains of length 30 (results for length 15 are
given in Supplemental Information 1). For both types of search we consider only pairs of
non-overlapping sub-chains. More examples can be found in Supplemental Information 1.

In the restricted search we see from Fig. 1A, that the writhe values (almost) fit within
the expected interval [—1, 1], and are distributed with rather heavy tails (for top100 and
the Pisces sets, see Supplemental Information 1). In the unrestricted search (Fig. 1B), the
range of writhe values becomes larger, but values rarely exceed + 1.5 (less with a preset
sub-chain length of 15, see Supplemental Information 1). Notably, in the top100 set, the
1-links found in the restricted search were re-found in the unrestricted search; the two
conspicuous cases surfacing from the restricted search through the top100 set were both
found among the top 10 absolute writhe value cases in the unrestricted search. However,
the restricted search missed a 1-link in the 1dif protein’s B chain, while catching the similar
1-link in the A chain. The reason is that one of the loops in the B chain is not recognized
as (almost) closed. While this can depend on the definition of an almost closed loop, the
unrestricted search does not have this vulnerability and catches the 1-link in the B chain
too. The additional cases of high writhe values (unrestricted search) are in general of more
elaborate geometry; an example of particularly high negative writhe in the top100 set is
shown in Fig. 2B.
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Figure 1 Distributions of mutual writhe values for potential links (A, restricted search) and for pairs
of sub-chains of length 30 (B, unrestricted search) throughout the top8000 set, obtained as described
in the text. For the unrestricted search the light-grey (dark-grey) bars show the distribution of the lowest
(highest) writhe value per chain (see text).

Full-size G DOI: 10.7717/peer;j.9159/fig-1

Figure2 Two examples of particularly high mutual writhe value between the blue and the red sub-
chains (the blue is closest to the N-terminus and the spheres indicate lowest residue number in the sub-
chain). (A) a 1-link in the rather small 1bpi structure. (B) an example of more elaborate geometry in the
2cpl protein found using the unrestricted search method. The plots were made with Pymol (Pymol, 2016).
Full-size Gl DOI: 10.7717/peerj.9159/fig-2

The same happens for the top8000 set where the 1-link cases are retained, albeit
sometimes with lower rank (Supplemental Information 1). In particular on the negative
writhe side, the more complex geometries occupy the top ranks and push the 1-links down
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Figure 3 Two cases of particularly high mutual writhe value between the blue and the red sub-chains.
These two knots in 1ns5 (A) and 307b (B) were found using the unrestricted search method. The plots
were made with Pymol (Pymol, 2016).

Full-size G4l DOI: 10.7717/peerj.9159/fig-3

the list (Supplemental Information 1). As we shall see below, applying GISA’s basic scan
tool to the top8000 set, a series of 14 top-negative writhe cases were found, all highly
similar to the “pseudo-knot” in Fig. 2B. As for the highest positive writhe, cases appearing
to be true knots surfaced (Fig. 3). That is, upon closing a small gap between the sub-chain
pairs, if any, the resulting sub-chain becomes a knot (to be rigorous the ends should be
“connected at infinity” or similarly).

As for the pokes one may notice that the distributions of writhe values (see Supplemental
Information 1) are not heavy tailed as those for the 1-links; indeed “pokedness” is not a
binary property as is linking (cf. the electromagnetic analogy above; see also Supplemental
Information 1 for a short discussion). Also importantly, less pronounced writhe values
reveal uninteresting examples, e.g., two loops well separated; a loop not pierced by the
sub-chain (see Supplemental Information 1).

In the PiscesLoRes set the findings are very similar to those in top8000 (Supplemental
Information 1). First, the writhe distributions closely resemble each other despite the
two sets having a rather small intersection (Figs. 519, 520). It should though be borne in
mind that the intersection does not take sequence similarity into account. However, the
writhe distributions for the PisceHiRes have the same shapes, a sign that these are really
“canonical” of large representative sets of protein chains. The number of structures covered
in PiscesLoRes are ~ 8200 and ~ 4500 in PiscesHiRes.

In the restriced search in PiscesLoRes we noticed that a single ensemble model, 2q46,
dominate at the top of the negative writhe cases (Supplemental Information 1); this can
seem peculiar, but the resolution of the model is high.

As for the top-hits in the unrestricted search in PiscesLoRes the cases of positive writhe
are all knots (in the same sense as above), while the negative writhe cases are double-pokes
in which one sub-chain winds around the other more than 1.5 times (Supplemental
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Figure 4 The case of highest negative writhe from the unrestricted search in the PisceLoRes set, 3n40.
The plot was made with Pymol (Pymol, 2016).
Full-size Gl DOI: 10.7717/peer;j.9159/fig-4

Information 1). The most conspicuous case is that of 3n40 where the two sub-chains form
a (distorted, long) double-helix of more than two windings (Fig. 4).

Finally, as in the top8000 case, almost all the links of positive writhe are found among
the top-hits of the unrestricted search. With the negative cases there is again a tendency of
loss-of-rank, i.e., cases of more extreme writhe values are dominating.

GISA scans

We here consider only the basic scan tool (rar0); validation of the two other tools can
be found in Supplemental Information 1. Below we show results from applying rar0 to
scans of the top100 set against top8000 as background, and of top8000 against itself. The
probability stated in the tables refers to the frequency of structures in the top8000 set
having a mutual writhe (or score) of the stated level or exceeding it. For these results a
sub-chain (window) length of 30 and a step size of 2 were used. The tables contain excerpts
of longer lists found in the Tables S9-S11).

The structures found in the unrestricted search again emerge (as they should, Tables 1
and 2; Tables S3, S11). We also see the clear sign of the skewness of the mutual writhe
distributions; in the top100 set the highest negative writhe values appear to be less rare than
the similar high positive values. In the ranking from scanning the top8000 set against itself
(Tables 3 and 4; Tables S9, S10) this skewness is also clear (cf. also Fig. 1B). Furthermore, the
top 10 positive writhe cases (Tables 3; S9) are recorded as true knots in the KnotProt data
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Table 1 Top 3 structures in rar0 ranking of the top100 set vs top8000 as background, based on the
highest positive mutual writhe pair per structure. Pair refers to the indices of the segments in the chain
bordering the two sub-chains.

Structure/chain Pair Mutual Probability
writhe

dif1/B (12,42); (64,94) 1.25 2.3%x107°

dif1/A (12,42); (64,94) 1.25 2.5%107°

1kap/P (50,80);(102,132) 1.07 8.4x107°

Table2 Top 3 structures in rar0 ranking of the top100 set vs top8000 as background, based on the
highest negative mutual writhe pair per structure. Pair refers to the indices of the segments in the chain
bordering the two sub-chains.

Structure/chain Pair Mutual Probability
writhe

2cpl (70,100)3(102,132) —1.75 1.0x107°

Inif (230,260);(260,290) —1.18 1.8 x 1072

1php (240,270)3(270,300) —1.04 4.2x 1072

Table 3 Top 5 structures in rar0 ranking of the top8000 set vs top8000 as background, based on the
highest positive mutual writhe pair per structure. Pair refers to the indices of the segments in the chain
bordering the two sub-chains.

Structure/chain Pair Mutual Rank
writhe

3onp/A (60,90);(106,136) 1.50 1

2i6d/A (164,194);(196,226) 1.47 2

lual/A (74,104);(104,134) 1.46 3

1ns5/B (62,92);(92,122) 1.45 4

307b/A (124,154);(162,192) 1.44 5

base (Dabrowski-Tumanski et al., 2018; Jamroz et al., 2015; KnotProt, 2019; Sulkowska et al.,
2012) (ct. Figure 3). At the top of the negative writhe list (rank 2—16) are 15 structures of
which all except one (2v25) share a very similar structural motif of little secondary structure
content (visual inspection; similar to that found in 2cpl, cf. Fig. 2B). Probably as should
be expected, these cases are not captured in the KnotProt server (Dabrowski-Tumanski et
al., 2018; Jamroz et al., 2015; KnotProt, 2019; Sulkowska et al., 2012) . Since the subchains
are very similarly situated in these 14 cases, we ran a multiple sequence alignment using
Clustal Omega (Sievers et al., 2011) so as to grasp the sequence similarity and amount of
conservation. In the resulting multiple alignment, 20 residues of the about 60 were perfectly
conserved, and an additional 10 showed high similarity, an overall similarity of about 50
pct. This though does not appear as high considering the high spatial similarity even of low
secondary structural content.

While of relevance in itself, this case also points to using the Gauss Integrals for locally
based fold classification or structural alignment. To find such structural similarities by
means of superimposing the structures, if at all a viable approach, would be computationally
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Table 4 Excerpt of 5 cases in the top15 structures in rar0 ranking of the top8000 set vs top8000 as
background, based on the highest negative mutual writhe pair per structure. Pair refers to the indices of
the segments in the chain bordering the two sub-chains.

Structure/chain Pair Mutual Rank
writhe

3hms/A (0,30);(56,86) —1.84 1

2r99/A (70,100)3;(102,132) —1.76

2wij/A (78,108);(110,140) —1.76

1x07/B (72,102);(104,134) —1.72 10

3ich/A (76,106);(108,138) —1.68 15

unsurmountable (with about 100 windows in an average structure and 8000 structures it
would take ~ 10'° superpositions). We also noticed other cases where the mere value of
the (high) writhe seems roughly to determine the spatial configuration: in the unrestricted
search through top8000 at sub-chain length 15 all the top 10 ranking cases (either sign)
were of the same “pseudo 1-link” nature (Supplemental Informationl).

Finally, regarding the rar0 scan of the PiscesLoRes set against top8000 as background
(Tables S12-S13), the results were similar to those for the top8000 set against itself: the
top-hits were as in the unrestricted search (Table S8) with some changes in the exact
ordering (as for top100, see Supplemental Information 1). Also the same skewness in
extreme positive and negative writhe appears as does the skewness in the configurations
found: the top positive writhe cases were knots while the extreme negative were rather
multiple-wind cases.

Computational performance

The computational complexity of GISA’s base algorithm for computing the GIs of order
less than three is O(L?), while O(L?) in order three (L being the length of the chain). When
run in order one (and beyond) GISA produces the order one GIs on all sub-chains, where
in our implementation we find a run time of &~ 2 10~’s L. The additional time spend
on computations done for the proof-of-concept searches amounts to a small overhead of
less than 5 % (see section Computational performance in Supplemental Information 1 for
these matters).

DISCUSSION

While there are obvious advantages of using a method not restricted to a sought-after
geometry, such as the ability to find new configurations in real proteins and identifying
non-protein like ones in models, there is a price to the generality: the unavoidable loss
of specificity. In our method this shows up in the loss-of-rank for the 1-links in the
unrestricted search through the top8000 set and the PiscesLoRes set, though this essentially
only hits the negative writhe cases. However, with a restricted method there is, in addition
to its specificity, a likewise unavoidable weakness given by the fact that a definition of the
sought-after shapes must be implemented; we saw how one of two highly similar 1-links
in the top100 set was missed in the restricted search because a sub-chain was not qualified
as a loop.
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Regarding the rareness of the shapes (within the considered data sets), the distribution of
the writhe for potential links in the top8000 set (Fig. 1A) and the Pisces sets (Supplemental
Information 1) are clearly heavy tailed. Among around 1.27 million potential links
(top8000), only about 1 out of 100,000 has a writhe below —0.944 or above 0.938,
respectively, i.e., there are about 25 such cases in these ~ 8000 structures. Among the
potential pokes in these structures, about 1 out of 10,000 has a writhe below —0.890 or
above 0.898, amounting to about 43 of such cases. For the Pisces sets these percentiles
have very similar (writhe) values (the PiscesHiRes having slightly fatter tails though). Thus,
if we set a threshold for links on absolute writhe of 0.9 (0.95), we find in the top8000
set 31 and 21 (12 and 9) cases having a writhe above the threshold and below minus the
threshold, respectively. For the PiscesLoRes these numbers are 26 and 18 (13 and 10)
and for PiscesHiRes 25 and 15 (12 and 8). It should be noticed that these numbers relate
only to rareness within the top8000 set and the Pisces sets and not to whether these are
representative sets of all proteins or not.

For the links these levels compare well to that reported in Khatib, Rohl ¢ Karplus (2009),
where 37 links (“‘co-pokes”) were found in about 10,000 real proteins. Regarding the pokes,
the numbers cannot be compared; first poking may be more or less—it is not a binary
topological property but rather geometric, and therefore continuously graded; second
the method in Khatib, Rohl & Karplus (2009) involves a filter which sifts out most but
not all pokes in real proteins. Regarding the results in Dabrowski-Tumanski ¢ Sulkowska
(2017), Niemyska et al. (2016) these all pertain to configurations involving loops closed
by covalent bonds (e.g., a cysteine bridge), and so are incommensurable to the results
reported here. Identifying such configurations rather suggests a separate application of
GISA in conjunction with the amino acid sequence.

Our results on rareness are very different from those of Baiesi et al. (2019), where about
1/3 of all proteins were found to be highly entangled. The differences are though not
surprising as our results regard local configurations while those of Baiesi et al. (2019) relate
to the chains’ global characteristics. We have noticed that the approximation used in Baiesi
et al. (2019) for the computation of writhe may have an impact on the decision boundary
(threshold) for entanglement (Section 52.2).

The full output of GISA includes besides the writhe of all sub-chains also the remaining 13
generalized Gauss integrals of order at most 2 for each sub-chain. In Rogen ¢ Fain (2003) it
was shown that CATH2.4-domains can automatically be assigned to their CATH-fold class
based on Gauss Integrals of order at most three of the full domains. The order three GIs are
in Rogen (2005) found to be the less descriptive of these structural descriptors. It lies outside
the scope of this work to check if the up to order two Gauss Integrals provided by GISA e.g.,
are sufficient for domain identification and structural classification of all sub-chains, but
it is our original motivation for deriving and implementing GISA. KnotProt 2.0 include
several methods for topological fingerprinting and can tell either deterministically or
statistically if each sub-chain contains a knot or knotoid type (Dabrowski-Tumanski et al.,
2018; Goundaroulis et al., 2017). The fingerprints provide data on if and where the searched
non-trivial topological features are situated in a given protein structure. Most protein
structures are topological trivial (Baiesi et al., 2019) and can therefore not be discriminated
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based on knot or knotoid content. The GISA output is as a contrast aimed at being a
descriptor-vector that can tell members of distinct protein fold classes apart.

As for the computational performance, GISA appears to be efficient and competitive. The
free availability of our code makes it feasible to make comparisons of timely performance
of other methods to that of GISA.

CONCLUSIONS

We have shown that with the help of GISA it is possible to find cases of rare geometries
in proteins, such as those studied in Khatib, Rohl ¢ Karplus (2009) and knots as identified
with KnotProt (Dabrowski-Tumanski et al., 2018; Jamroz et al., 2015; Sulkowska et al.,
2012). GISA’s command line tool scans formalize this, and more generally scores all the
involved structures. The basic rar0 scan corresponds to the approach in the unrestricted
search.

The method allows unprejudiced searching, in which other more elaborate shapes are
found, while still catching the interesting cases found in the restricted search. Unavoidably,
some specificity is lost. As such, the method shows the advantage of quantitative topological
fold descriptors. Here the focus has been on applying the lowest order GI (the writhe) and
a local search; GISA covers higher order GIs and supports the full range from local to global
analysis, which we intend to exploit in upcoming work. In another direction, the two more
advanced scan methods can be seen as a foundation for making structural alignments in
the space of Gauss Integrals.
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