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Abstract

Despite strong evidence for sexual selection in various display traits and other

exaggerated structures in large extinct reptiles. such as dinosaurs, detecting sexual dimorphism in
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them remains difficult. Their relatively small sample sizes, long growth periods, and the

difficulties distinguishing the sexes of fossil specimens mean, that there are little compelling data

on dimorphism in these animals. The extant gharial (Gavialis gangeticus) is a large and

endangered crocodylian that is sexually dimorphic in size, but males also possesses a sexually
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dimorphism in fossil lineages. such as dinosaurs and pterosaurs. as it is a large. slowly, growing, (D leted: — that

carly maturing, eog-laying archosaur. Here we assess the dimorphism of G. gangeticus across

106 specimens and show that the presence of a narial fossa diagnoses adult male gharials. Males
are larger than females. but the level of size dimorphism. and that of other cranial features. is low

and difficult to detect without a priori knowledge of the sexes, even with this large dataset. By

extension, dimorphism in extinct yeptiles js very difficult to detect in the absence of sex specific

characters, such as the narial fossa.

Introduction

Sexual selection is a major evolutionary driver of many biological traits in animals, and is

important for understanding the anatomy, behavior, and evolution of species and clades. The
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problem of assessing sexual selection in extinct lineages is especially acute in groups such as the

non-avian dinosaurs (hereafter simply ‘dinosaurs’) and other reptiles (Knell et al., 2013).
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Lineages may show only sexual size dimorphism, or dimorphism of major osteological traits

(e.g., crests and horns), or may be under mutual sexual selection leading to a lack of dimorphism,,

dimorphic traits are not necessarily linked to evolutionary pressures based around

reproductive success or socio-sexual dominance (e.g., see Hone, Naish & Cuthill, 2012; Hone &

Deleted: in terms

\[::’Deleted:

1 Formatted: Font: (Default) Times New Roman

Deleted: ,

1 Formatted: Font: (Default) Times New Roman

Deleted: and

Mallon, 2017; and references therein). As a result, the case for sexual selection in dinosaurs and

other gxtinct reptile lineages has been controversial. In some taxa, however, there is evidence for
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sexual dimorphism (e.g., Shringasaurus Sengupta, Ezcurra & Bandyopadhyay.,, 2017) and for the

presence of traits that were likely used as socio-sexual signals (O’Brien et al., 2018).

There are also limitations to the available models among extant animals for comparison, to

| animals such as dinosaurs. Large mammals may be comparable in size and have some

ecological similarities to dinosaurs. but there are, differences in evolutionary histories and
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growth ., Extant reptiles often show high levels of sexual size dimorphism (Fitch,

1981; Cox, Butler & John-Adler, 2007). but most reptiles are small and attain adult size rapidly.

The extant phylogenetic bracket for dinosaurs consists of birds and crocodylians, making these

two groups potentially better candidates (Witmer, 1995a). However, as with mammals, birds
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mature rapidly. and their small size and often limited dimorphism also makes them

problematic. Crocodylians, in contrast, may be an excellent model with respect to dimorphism.
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As with many or even most dinosaurs, they reach large sizes, grow slowly over many years, are
sexually mature well before maximum size, lay eggs, and have large numbers of offspring.

Importantly, at least some, show sexual dimorphism in body size (Caiman — Thorbjarnarson,
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Among extant crocodylians, the gharial (Gavialis gangeticus), is a uniquely appropriate

ig. 1). Gharials are, iali isci avjng an unusually long and slender snou
example (Fig. 1). Gharials are, specialised piscivores ha an unusually long and slender snout
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(Whitaker & Basu, 1983). Now known in the wild only from India, Bangladesh, and Nepal, this

species is critically with the already small wild populations having suffered

significant losses jn recent decades (Hasan & Alam, 2016). They are among the largest of the

extant crocodylians, with the largest recorded animal (a male) reaching 6.25 m in total length and

weighting 977 kg, although more typical adults are 3.5-4.5 m long, with males being larger than
o 2=} S=t] 2=t J o =} o

females (Hasan & Alam, 2016).

Gharials show, sexual dimorphism not just in body size put also in their,

Larger, males bear a ghara_a growth on the rostrum that is absent in females (Martin & Bellairs,

1977; Biswas, Acharjyo & Mohapatra, 1977: Whitaker and Whitaker, 1989). The ghara is a soft-

Jissue structure that grows behind and over the external nares is supported by a depression

anterior to the nares (lordansky, 1973). in skulls (Martin &
Bellairs, 1977). Some early descriptions of the ghara suggest that it is bony and may even be

inflated, but this is not the case (Martin & Bellairs, 1977).

The exact function of the ghara is uncertain, but as it only appears in larger, and presumably
sexually mature males (Martin & Bellairs, 1977; Biswas, Acharjyo & Mohapatra, 1978;
Whitaker & Whitaker, 1989). it would be reasonable to assume that it functions in sexual
display. Large males are seen to be dominant over smaller males and females (Whitaker & Basu,
1983). Suggested functions of the ghara include the calls of males (a hissing sound not
made by females or young males; Whitaker & Whitaker, 1989), or as a visual display signal to
females (Martin & Bellairs, 1977). Large males also possess an additional secondary sexual

characteristic consisting of a pair of expanded bony bullae on the dorsal aspect of the pterygoid

bones (Fig. 2) as also seen in other crocodylians (e.g., Alligator — Fig. 3). In gharials, the bullae

are not present in small males or apparently in females (though this is uncertain). The egg-shaped
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bullae are dorsal dilations of the bony nasopharyngeal duct (Wegner, 1958; Witmer, 1995b,

1999). Although the resonant properties of the pterygoid bullae have yet to be demonstrated

experimentally, they would function as vocal resonating chambers as an inescapable bioacoustic
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of a female until it was 11 years old, when the ghara started to develop; the ghara folded caudally
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suggesting a potentially similar pattern.

Here we look at sexual dimorphism in the skull of Gavialis,as a model for detecting sexual

dimorphism and the identity of specimens in extinct reptiles, including dinosaurs. We use the

largest known sample of gharial data to assess sexual dimorphism in these animals and to

1 Formatted: Font: (Default) Times New Roman

\ Formatted: Font: (Default) Times New Roman

- CDeIeted: , based on a large dataset of specimens,

Formatted: Font: Not Italic

\ Formatted: Font: (Default) Times New Roman

\ Formatted: Font: (Default) Times New Roman




230

231

232

233

234

235
236
237

238

239

240

241

242

243

244

245
246

247

248

249

250

251

252

253

254

examine the feasibility of detecting dimorphism in extinct reptile lineages. This is done by
examining the relative growth (allometry) of changes in various measurements and features of

the skull. including the fossa and pterygoid bullae, and searching for evidence of

adult individuals,

Abbreviations

BSL, basal skull length (premaxilla to occipital condyle); IW, interorbital width; MW, maximum
width of skull (across quadratojugals); MWAO, maximum width across orbits; NFML, narial
fossa maximum length; NFMW, narial fossa maximum width; NML, naris maximum length;
NMW, naris maximum width; OCW, occipital condyle width; PBL, average pterygoid bulla
length; PEMW, premaxillary expansion maximum width; SL_RTO, snout length rostral to

orbits; SMW, snout minimum width (mid-length).

Materials & Methods

Two binary variables and 13 continuous variables (Fig. 4; Appendix 1) were collected from
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106 gharial skulls accessioned in 36 museum collections around the world. Where possible, these
were measured first-hand with calipers, but it was necessary to measure most of them digitally
based on photographs including scale bars. It was impossible to measure all variables because

some skulls were incomplete or variably covered with skin. Sex data were not given for any
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specimens, We therefore assumed that specimens bearing a narial fossa (the osteological

correlate of the ghara) were male; those lacking a narial fossa were assumed to be immature

and/or female. The narial fossa (Figs. 1, 2, 4) is the depression in the premaxillary bones

adjacent to the bony nasal aperture (i.e., the opening into the nasal passage). A small ghara has

observation of the gonads, or whether it was inferred from
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been reported in a captive animal that, when dissected, was seen to have ovaries, but this was

assumed to have been a pathological individual (Martin & Bellairs, 1977). It is therefore

reasonable to assume that animals with a narial fossa are male.

To assess allometry in those continuous variables, it was necessary to first choose a
regressor. Visual inspection of the skulls, and prior published work (Piras et al., 2014), suggested
that variables associated with the snout vary widely in the adults, so we chose maximum skull
width (MW), measured across the outside of the quadratojugals, as our regressor, which is

consistent with the recommendations of O’Brien et al. (2019), The data were initially log-
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transformed then subjected to reduced major axis (RMA) regression, which accounts for
measurement error in both the independent and dependent variables. Isometry was rejected if the
confidence intervals of the regression slope did not bound a value of 1. Negative allometry was
manifest if the confidence intervals were < 1; positive allometry was manifest if the confidence

intervals were > 1.

We used the gharial data to attempt to model the detection of sexual dimorphism in the fossil
record by disregarding sex information (inferred from narial fossa presence/absence).
Mallon (2017), we tested for dimorphism in the continuous data by first subjecting
the residuals of the RMA regressions to Shapiro-Wilk and Anderson-Darling tests for normality,
Residuals were subjected to a supplemental Hartigan’s dip test, which yields the

likelihood that the data are distributed unimodally (Hartigan & Hartigan 1985).
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As a final attempt to quantify sexual dimorphism, we reasoned that dimorphic structures
should exhibit higher variance of the RMA residuals than non-dimorphic structures. To test for
this, we used Levine’s test for homogeneity of variance from means, with follow-up F-test

pairwise comparisons. The multiple comparisons were adjusted using Holm—Sidak correction.

Results
General observations

Maximum skull width (MW) ranges between 13 mm and 356 mm (embryonic and large adult

skulls, respectively) in our dataset. with basal skull lengths (BSL) being from 33 mm to 864 mm.
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and total lengths of the animals 17 cm 5.9 m (see Appendix 1). More than
30 of our specimens represent animals of estimated total length in excess of 5 m, showing that

this dataset is biased towards larger animals, presumably at least in part,as a result of selective
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acquisition of large specimens for museums. The smallest skull having a narial fossa is the
unnumbered Madras Crocodile Bank Trust male, where MW = 217 mm and BSL = 581 mm

(Fig. 5) or approximately 60% maximum size. Above MW = 280 mm (BSL c¢. 715 mm), all

skulls possess a narial fossa; thus, the largest skulls are male. The smallest skull possessing

pterygoid bullae (but lacking a narial fossa) is from American Museum of Natural History
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(AMNH) 110145, where MW = 179 mm (BSL = 459 mm).

Thirty-one of the 106 skulls possess narial fossae. Where determinable (some lack palates or

are otherwise obscured), all of these possess pterygoid bullae. indicating that they are

predominantly, if not universally, present in males. There are, however, 11 skulls lacking a narial

fossa but having bullae (Fig. 5). Of these, six are smaller than the unnumbered Madras Crocodile

Bank Trust male, and all are smaller than MW = 280 mm (BSL = 743 mm), which is the lower
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threshold at which the narial fossa is consistently expressed (Fig. 5). If having a pterygoid bulla

isjndicative of the male sex, which seems likely,

approximately 50% maximum size, than does the narial fossa.

Allometry
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The results for the all-inclusive allometric analyses are summarized in Figure 6 and Table \ Deleted: 5
S1. MW is a good predictor of all continuous cranial variables (R? > 0.92, p < 0.0001). Positively
allometric variables include PEMW (premaxillary expansion maximum width) and IW
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NFML and NFMW (narial fossa maximum length and width, respectively) scale with positive

allometry, but the relationship with MW is insignificant (Table S2). PBL (average pterygoid

bulla length) is weakly but positively correlated with skull size in males. We were unable to
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Sexual dimorphism

Males categorically differ from females in the presence of a narial fossa (~ ghara) and,
ostensibly, the presence of pterygoid bullae. Males are further distinguished by their absolutely
larger skulls at maturity (MW > 287 mm ), relatively shorter and wider rostra,

and wider terminal rosettes that support larger nares.

Without knowing the sexes a priori (as in fossil taxa), it is otherwise difficult to detect
dimorphism in those continuous variables. With the exception of NML, the residuals for all
cranial variables are significantly non-normal, but in no case are they significantly non-unimodal

(Table S3).

The ability to detect dimorphism in the three most obviously
dimorphic continuous variables (SMW, PEMW, and NMW) does not increase by considering
only adults (MW > 179 mm, the smallest male having pterygoid bullae). The
adult NMW residuals are not significantly non-normal, and residuals are

significantly non-unimodal

On average, the SMW, PEMW, and NMW residuals exhibit higher variances (> 0.004) than
the non-dimorphic residuals (Fig. 7). Levene’s test for homogeneity of variance from means is
highly significant (p < 0.0001). Follow-up pairwise comparisons (Table S4) reveal that variance
for the SMW, PEMW, and NMW residuals is usually significantly higher compared to the other

residuals. Variance does not differ significantly between any of the three dimorphic variables.
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Discussion

Sexual dimorphism and sexual selection in Gavialis

The results here broadly align with previous assessments of dimorphism and the ghara in
G. gangeticus. Males are larger than females, and the former show both a fossa associated with
the nares and bullae on the palate. These latter features appear only in larger animals, and thus

with the onset of sexual maturity. The smallest specimen with a narial fossa in our sample is

slightly smaller, at 581 mm in basal skull length (MW = 217 mm). than the smallest reported by (Deleted: cm

Martin and Bellairs (1977; 69 cm), but the samples are broadly comparable. There are several

large animals (with BSL > 700 mm, MW > 270 mm) that lack a fossa. and these would be

considered females, though they would be unusually large with body sizes over 4.5 m. [ Deleted: considerd
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approximately 42 cm. This is considerably smaller than the smallest skull with a narial fossa
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clearly a strong majority do fall into this category. We therefore provisionally consider the bullae

to be a feature of adult male animals, but recognise that this may not be exclusive.

The narial fossa shows strong positive allometry compared to other traits in the skull (Fig.

6). which would suggest that the ghara functions as a sexually selected display feature

(cf. O’Brien et al., 2018). This also fits with the observation of Dinets (2013) that males have a

sex-specific head-up posture on land, which elevates the ghara. The ghara would also be a major

handicap to males when hunting. and thus would form an honest signal of the fitness of the
owner. The large size of the ghara (Fig. 1) might also increase visibility to prey, would
certainly offer considerable drag on the otherwise thin snout of an animal hunting in water
(Martin & Bellairs, 1977), presumably incurring a cost to feeding effectiveness. This is
especially true since any extra drag generated near the tip of the jaws would be much greater
than closer to the rear of the skull, as drag is a function of distance from the joint squared. The
extreme variation of the morphology of the ghara (Fig. 1) also points to it being a socio-sexual

signal (see Hone & Naish, 2013 and references therein) that would be under selection.

Initially the pterygoid bullae must grow rapidly as the smallest record of them in our sample

still sizeable (37 mm long on Field Museum of Natural History (FMNH) 22025, BSL = 611

mm, MW = 218 mm), although it is possible that at smaller sizes they are hidden in photographs

(\Deleted: 5

Deleted: attaching to the fossa

Deleted: a

Deleted: but

Deleted: are
Deleted: structures

of the palate. However, bullae growth is isometric, which suggests that although they are
important structures, their size is not critical. We hypothesise. therefore, that these features

function as an acoustic signal to females (or perhaps other males) that the male is mature. but

that there is no additional information about the size and quality of the male possessing them or

otherwise their growth would be expected to be positively allometric.
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Although it has been noted that gharials rarely produce calls, theyv are known to vocalise

(Whitaker & Basu, 1983). including ‘buzzing’ during courtship (Dinets, 2013). Many

crocodylians communicate using very low-frequency vocalizations (Garrick, Lang & Herzog,
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1978), some of which extend into the infrasonic range (i.e., below the range of normal human
hearing; Todd, 2007). are unusual among the larger crocodylians, in that they

are not known to produce infrasonic calls (Dinets, 2013), it is possible that these or other

vocalisations may not have been detected by previous researchers. The bullae, are connected to

the vocal/respiratory tract and would act as acoustic resonators, potentially lowering the
frequencies of sounds produced. Whether the pterygoid bullae are important for acoustic

signalljng remains unconfirmed, but they are large structures that we presume have some

positive function, in that they occupy space in the orbit and palatal regions, and would

presumably adversely affect other functions (e.g., the bullae expand into the, adductor chamber

and hence decrease the available space for jaw adductor muscles such as M. pterygoideus
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dorsalis). They appear in larger, mature males, and infrasonic calls of other crocodylians are

produced only by males (Dinets, 2013). The vocal capabilities of alligators are well known

(Garrick, Lang & Herzog, 1978; Vliet, 1989; Todd, 2007), and alligators also possess, inflations
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of the nasopharyngeal ducts known as the pterygopalatine bullaec (Wegner, 1958; Witmer, 1995b,

1999, though these are presumably non-homologous), perhaps lending some credence to an

acoustic resonance function in gharials, as well (Fig. 3). Dinets (2013) reported specifically that
gharials do not use infrasound, but the basis for this assertion is not clear, and we regard acoustic
signalling (potentially including an emphasis on low-frequency sounds, perhaps even infrasound)

as the current best-supported hypothesis for the function of the pterygoid bullae.
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When analysed in the presumed males alone, some of the traits in the skull also show

positive allometry. The premaxillary expansion maximum width (PEMW), the snout minimum ( Deleted: ,
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Given that the pterygoid bullae ontogenetically appear in males of breeding age, we suggest
that they provide a general infrasonic acoustic signal that would function to advertise their
maturity to females (and also perhaps to other males). This signal would serve to attract attention
to the male (even while out of line of sight such as underwater), and the primary visual signal of
status and quality would be the ghara. The visual signal is enhanced by a spray of water
emerging from the ghara itself upon exhalation, accompanied by an audible hiss and hum

(Whitaker & Whitaker, 1989).

Detecting sexual dimorphism in the fossil record

To date, no dinosaur has been determined to exhibit sexual dimorphism under rigorous
analysis (Mallon, 2017). Tests for dimorphism in fossil taxa may be confounded by a
combination of small sample sizes and protracted growth. coupled with uncertainty of the age or
sex of most specimens that Deleted: so

(Hone & Mallon, 2017). Dinosaurs matured Deleted: (assuming males were larger) small males
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sexually before they reached growth asymptotes, and as a result may be expected to have

initiated, the growth of a sexually selected structure earlier in ontogeny, than in animals where

they reach maximum size at a similar time to sexual maturity. This also fits with the high

juvenile mortality of dinosaurs, and thus may have promoted early reproduction (Hone &

Mallon, 2017). Thus. although we may expect to, and do, see strong positive allometry for
features such as crests and horns under sexual selection (Hone, Wood & Knell, 2016; Brown,
2017), these features may start earlier and grow more slowly than in traditional models. such as

large mammals.

results support these general contentions that dimorphism is very difficult to detect in
taxa showing growth over considerable periods of time. Were these animals recovered from the
fossil record, the presence of the fossa and bullae give clear osteological characters that are not

obviously functional (sensu Hone, Naish & Cuthill, 2012) and appear only in larger specimens,

and these would likely be as . Gavialis gangeticus is identified by

numerous osteological traits (Iordansky, 1973) present in all specimens would all

specimens as belonging to a single species. However, in the absence of these discrete traits,

determining dimorphism would be very difficult. Hone and Mallon (2017) assessed detection of
sexual dimorphism in alligators based on body size. and suggested a minimum of 60 animals

might be needed to statistically support dimorphism, even when the difference between sexes

was strong and could be measured effectively. Here in the gharials. there is no clear statistical
signal for any continuous traits producing two clusters across all specimens. despite a dataset of

over 100 specimens. Even when 1s restricted to

signal is weak and present only in some features are also associated with the ghara.

Were these gharial specimens, and no g priori knowledge of their dimorphism,
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there would be little to separate out the sexes. As there is no dataset in the fossil record for

dinosaurs in excess of even 50 specimens, where traits such as size and potentially dimorphic

display features could be reliably measured, current sample sizes and the incompleteness of most

specimens means that dimorphism will be hard to detect unless it is a clear presence / absence

trait or one with very different morphology between sexes. to

Future work and conservation implications

Further work is needed to confirm the hypotheses laid out here. An exact relationship
between the timing of sexual maturity and the physical expression of the ghara, narial fossa, and
pterygoid bullae is key to understanding gharial reproductive biology. A formal assessment of
any social or mating displays. and the differing acoustic and visual components of this. are also
important and may provide information critical to breeding efforts given the severe extinction

risk of this species.

This study also raises additional issues regarding, the functional morphology of gharials

which may also be important for understanding their ecology and behaviour. The ghara will

induce severe drag on the jaws prey underwater, whereas the bullae will

affect the palatal muscles. which will influence the functioning of the jaws.

Finally, we note that the largest narial fossae are associated with an increase in the size of
the terminal rosette and a broadening of the snout (increased minimum width). and this may
increase the ability of males to catch larger prey. Although we did not measure tooth size across

all specimens, we note that some of the largest males (e.g., Grant Museum - LDUCZ X215)
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apparently have disproportionately large teeth compared to smaller animals, and this would
likely allow them to tackle larger prey than may be expected. Given the great differences in size

between osteologically mature gharials and young juveniles, there would be niche partitioning

between various different growth stages, as seen in other crocodylians (Dodson, 1975). However, [Deleted: i
there may also be separation between larger (and presumably fitter) gharial males and other adult
animals. and if so, this also be a very important consideration for sustaining populations. If, Deleted: is
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high-quality males are removed from a population, this has the potential for profoundly negative ( Deleted: Removal of
effects in small populations (Knell & Martinez-Ruiz, 2017). Sq, if our hypothesis about prey ( Deleted: ) so
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are not synonymous. In any case, as noted by Moore et al. (2019), increased head size is
correlated with increased bite power and opportunities to tackle larger prey (Erickson et al.,
2012) regardless of the selective pressures that might produce more robust crania and teeth in

large males, the hypothesised dietary shift may still be present.
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We agree with previous studies that the ghara and associated narial fossa. and probably
the pterygoid bullae, are male traits of gharials, and most likely have a socio-sexual function in
displays. Limited dimorphism in size and various cranial traits are exhibited with males being

larger than females.

In the absence of key traits, determining moderate sexual dimorphism (body size or other
measurements) is going to be extremely difficult, even with good sample sizes and complete sets
of data. Doing so for extinct taxa as dinosaurs (but also many other extinct reptiles and

amphibians) is extraordinarily difficult unless the degrees of dimorphism are extreme. Prolonged
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growth. and the overlap of males and females in terms of body size and even features linked to
sexually selected structures (such as the width of the terminal rosette ). make the

identity of individual specimens highly cryptic.
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Figure 1. (A) bony snout of two male Gavialis gangeticus. The black arrows point to the fossae ( Formatted: Font: (Default) Times New Roman
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size and morphology of the ghara. Image B provided by Nikhil Whitaker and images C-F,

provided by Jeffrey Lang, all used with permission.

Figure 2. Pterygoid bullae of Gavialis gangeticus (UF 118998) based on volume renders of

computed tomographic data of a dried skull. (A), Dorsolateral oblique view of the full skull

showing the immature narial fossa and the pterygoid bulla, the latter being seen through the

orbit. (B—E) Dorsolateral oblique views of (B) the pterygoid bulla enlarged, (C) with the skull

roof digitally removed to reveal both bullae, and (D) with the dorsal portions of the bullae

removed to show the thin walls and the connection with the nasopharyngeal duct. (E) Close-up

ventral view of the pterygoid bullae projecting into the adductor muscle chamber. (F) Ventral

view of the full skull. All scale bars equal 5 cm. A and F are at the same scale, as are B-F.

Figure 3. Pterygopalatine bullae of Alligator mississippiensis (OUVC 10615) based on volume

renders of computed tomographic data of a fleshy head. (A), Dorsolateral oblique view of the full

skull showing the pterygopalatine bulla as seen through the orbit. (B), Dorsolateral oblique view

of the pterygopalatine bulla enlarged with the skull roof digitally removed to reveal both bullae.

(C), Same presentation as in (B) but in dorsal view and enlarged. (D), Medial (internal) view of

the right side of a parasagittaly sectioned head, showing the pterygopalatine bulla emerging as a

dorsal dilation of the nasopharyngeal duct. (E), Ventral view of the full skull showing that the

pterygopalatine bulla is not visible in ventral view. All scale bars equal 5 cm. A and E are at the

same scale, as are B and D, whereas C has its own scale.
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Figure 4. Measurements used in the present study. Left inset details measurements from the [Deleted: 3
rostrum; right inset details measurement from the palate. See main text for the key to the
Figure 5. Distribution of narial fossa and pterygoid bullae presence/absence across gharial skulls \(Deleted: 4
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