Ontogeny of a sexually selected structure in an extant archosaur

Deleted: ¶

Gavialis gangeticus with implications for sexual selection in

3 dinosaurs

4

6

5 David W. E. Hone¹, Jordan C. Mallon^{2,3}, Patrick J. Hennessey^{1,4}, Lawrence M. Witmer⁵

School of Biological and Chemical Sciences, Queen Mary University of London, Mile
 End Road, London, E1 4NS, UK.

- Beaty Centre for Species Discovery and Palaeobiology Section, Canadian Museum of
 Nature, PO Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada.
- Department of Earth Sciences, Carleton University, 2115 Herzberg Laboratories, 1125
 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
- Georgia Southern University, 4324 Old Register Rd, PO Box 8042-1, Statesboro, GA,
 30460, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio
 Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH 45701, USA.
- 18 Corresponding Author:
- 19 David W. E Hone

17

22232425

- 20 School of Biological and Chemical Sciences, Queen Mary University of London, Mile End
- 21 Road, London, E1 4NS, UK Email address: d.hone@qmul.ac.uk

Abstract

27

28

37

38

39

40 41 42

43

44

45

46

48

49

50

51

Detecting sexual dimorphism in extinct reptiles is difficult given their long growth
periods and the uncertain sex of fossil specimens. The extant gharial (*Gavialis gangeticus*) is a
large crocodylian that in males possesses a sexually selected structure – the ghara – that has an
osteological correlate in the presence of a fossa that is associated with the nares. This makes the
species a unique model for potentially assessing dimorphism in lineages such as dinosaurs and
pterosaurs. Here we assess the dimorphism of *G. gangeticus* across 106 specimens and show that
the presence of a narial fossa and pterygoid bullae diagnose adult male gharials. Males are larger

than females; however, the level of size dimorphism and that of other cranial features is low

between the two and is difficult to detect. Dimorphism in fossil reptiles is very difficult to detect

without sex specific characters such as the narial fossa.

Introduction

Sexual selection is a major evolutionary driver of many biological traits in animals and is important for understanding the anatomy, behavior and evolution of species and clades. The problem of assessing possible sexual selection in extinct lineages is especially acute in groups such as the non-avian dinosaurs (hereafter simply 'dinosaurs') and other reptiles (Knell et al., 2013). Lineages may show only sexual size dimorphism, or dimorphism in terms of major - osteological traits (e.g., crests and horns), or may be under mutual sexual selection leading to a lack of dimorphism, and dimorphic traits are not necessarily linked to evolutionary pressures based around reproductive success or socio-sexual dominance (e.g., see Hone, Niash & Cuthill, 2012; Hone & Mallon, 2017 and references therein). As a result, the case for sexual selection in

dinosaurs and other fossil reptile lineages has been controversial. In some taxa, however, there is

Deleted: i

Commented [MS1]: This sentence is a bit complicated. Perhaps breaking it into two would make it clearer.

Deleted: but

Commented [MS2]: I would use 'extinct' here because a fossil is an object.

Deleted: would be

Commented [MS3]: See above comment.

55 evidence for sexual dimorphism (e.g., Sengupta, Ezcurra & Bandyopadhyay, 2017) and for the 56 presence of traits that were likely used as socio-sexual signals (O'Brien et al., 2018). 57 There are also limitations to the available models among extant animals for potential 58 comparisons to animals such as dinosaurs. Large mammals may be comparable in size to some 59 dinosaurs and have some ecological similarities but have a huge evolutionary difference and 60 grow rapidly to adult size. Extant reptiles often show high levels of sexual size dimorphism Commented [MS4]: This statement should be supported with citations. (Fitch, 1981; Cox, Butler & John-Adler, 2007), but most reptiles are small and attain adult size 61 62 rapidly. The extant phylogenetic bracket for dinosaurs consists of birds and crocodylians, making Deleted: i 63 them potentially better candidates (Witmer, 1995a). However, as with mammals, birds mature Commented [MS5]: Slightly unclear; perhaps replace with 'making those two groups potentially' 64 rapidly, and their small size and often limited dimorphism also makes them problematic. 65 Crocodylians, in contrast, may be an excellent model with respect to dimorphism. As with many Deleted: i 66 or even most dinosaurs, they reach large sizes, grow slowly over many years, are sexually mature 67 well before maximum size, lay eggs, have large numbers of offspring, and often show sexual size dimorphism. 68 69 Among extant crocodylians, the gharial (Gavialis gangeticus), now known in the wild only Deleted: i 70 from the Indian subcontinent, is a uniquely appropriate example (Fig. 1). These specialised 71 Deleted: i piscivores may reach 6 m or more in length (Hasan & Alam, 2016). Other crocodylians often 72 show body size dimorphism and some other limited degrees of dimorphism (see Moore et al., 2019), but the gharial shows sexual dimorphism not just in body size (Hasan & Alam, 2016). 73 74 The larger males also bear a ghara – a growth of tissue on the rostrum that is absent in females Deleted: but t 75 (Martin & Bellairs, 1977; Biswas, Acharjyo & Mohapatra, 1977; Whitaker and Whitaker, 1989). The ghara is a soft tissue structure that grows behind and over the external nares but is supported 76 by an osteological change to the rostrum with a depression anterior to the nares (Iordansky, 77

83 1973) seen in skulls of larger males (Martin & Bellairs, 1977). Some early descriptions of the 84 ghara suggest that it is bony and may even be inflated, but this is not the case (Martin & Bellairs, 85 1977). 86 The exact function of the ghara is uncertain, but as it only appears in larger, and presumably 87 sexually mature, males (Martin & Bellairs, 1977; Biswas, Acharjyo & Mohapatra, 1978; 88 Whitaker & Whitaker, 1989) it would be reasonable to assume it functions in sexual display. Large males are seen to be dominant over smaller males and females (Whitaker & Basu, 1983). 89 90 Suggested functions of the ghara include making alterations to the calls of males (a hissing sound 91 not made by females or young males; Whitaker & Whitaker, 1989), or as a visual display signal to females (Martin & Bellairs, 1977). Large males also possess an additional secondary sexual 92 93 characteristic consisting of a pair of expanded bullae on the dorsal aspect of the pterygoid bones 94 (Fig. 2), not present in small males or apparently in females (though this is uncertain). Being 95 connected to the vocal tract, the pterygoid bullae could function as a resonating chamber and thus may be linked to the possibility of the ghara functioning in sound production or 96 97 modification (Martin & Bellairs, 1977), though vocalisations are rare (Whitaker & Basu, 1983; 98 Dinets, 2013) arguing against this interpretation. 99 Ontogenetic data are limited to a few scattered accounts. For example, Biswas, Achariyo & 100 Mohapatra (1978) described a male of c. 2.5 m total length and aged 11.5 years as showing the 101 first signs of a ghara, with that animal showing 'sex play' (which we assume to mean courtship 102 behaviour) aged 12.5 years suggesting the growth of this feature is linked to maturity (females 103 appear to mature at around 2.6 m in length – Whitaker & Basu, 1983). Similarly, Whitaker and

Whitaker (1989) described one male as having a snout resembling that of a female until it was 11

years old when the ghara started to develop; the ghara folded caudally over the nostrils at age 14

104

105

Deleted: e

Deleted: described as

Commented [MS6]: This sentence is a bit hard to follow- too many thoughts end up making it a bit of a run-on. Please break this up for clarity.

years and reached fully adult form by age 18 years. Martin & Bellairs (1977) suggested that males of around 3 m or so in total length will exhibit a small ghara though they also referred to previous reports suggesting this is normally present only in males in excess of 4.5 m. Clearly, this is a feature that is not present in small / young animals. Moore et al. (2019) observed that onset of puberty in the male Morelet's crocodiles (*Crocodylus moreletii*) as taken by the development of the penile glans was coincident with changing cranial shape suggesting a potentially similar pattern.

Here we look at sexual dimorphism in the skull of *Gavialis* based on a large dataset of specimens as a model for detecting sexual dimorphism and the identity of specimens in extinct reptiles, including dinosaurs. We use the largest known sample of gharial data to assess sexual dimorphism in these animals and to examine the feasibility of detecting dimorphism in extinct reptile lineages.

121 Abbreviations

BSL, basal skull length (premaxilla to occipital condyle); IW, interorbital width; MW, maximum width of skull (across quadratojugals); MWAO, maximum width across orbits; NFML, narial fossa maximum length; NFMW, narial fossa maximum width; NML, naris maximum length; NMW, naris maximum width; OCW, occipital condyle width; PBL, average pterygoid bulla length; PEMW, premaxillary expansion maximum width; SL_RTO, snout length rostral to orbits; SMW, snout minimum width (mid-length).

Materials & Methods

Two binary variables and 13 continuous variables (Fig. 3; Appendix 1) were collected from 106 gharial skulls accessioned in 36 museum collections around the world. Where possible, these

Deleted: however

were measured first-hand with calipers, but it was necessary to measure most of them digitally based on photographs including scale bars. It was impossible to measure all variables because some skulls were incomplete or variably covered with skin. Sex data were not given for most specimens, and when they were, it was unclear whether the sex was confirmed by observation of the gonads, or whether it was inferred from the presence/absence of the ghara. To both avoid uncertainty and increase the sample size of sexed individuals, we assumed that specimens bearing a narial fossa (the osteological correlate of the ghara) were male; those lacking a narial fossa were assumed to be immature and/or female. A small ghara has been reported in a captive animal that, when dissected, was seen to have ovaries, but this was assumed to have been a pathological individual (Martin & Bellairs, 1977). It is therefore reasonable to assume that animals with a narial fossa are male.

Deleted: is

To assess allometry in those continuous variables, it was necessary to first choose a regressor. Visual inspection of the skulls, and prior published work (Piras et al., 2014), suggested that variables associated with the snout vary widely in the adults, so we chose maximum skull width (MW), measured across the outside of the quadratojugals, as our regressor. The data were initially log-transformed then subjected to reduced major axis (RMA) regression, which accounts for measurement error in both the independent and dependent variables. Isometry was rejected if the confidence intervals of the regression slope did not bound a value of 1. Negative allometry was manifest if the confidence intervals were < 1; positive allometry was manifest if the confidence intervals were > 1.

We used the gharial data to attempt to model the detection of sexual dimorphism in the fossil record by disregarding sex information (inferred from narial fossa presence/absence). Following the methodology of Mallon (2017), we tested for dimorphism in the continuous data by first

subjecting the residuals of the RMA regressions to Shapiro-Wilk and Anderson-Darling tests for normality. Residuals deemed significantly non-normal (α = 0.05) were subjected to a supplemental Hartigan's dip test, which yields the likelihood that the data are distributed unimodally (Hartigan & Hartigan 1985).

As a final attempt to quantify sexual dimorphism, we reasoned that dimorphic structures should exhibit higher variance of the RMA residuals than non-dimorphic structures. To test for this, we used Levine's test for homogeneity of variance from means, with follow-up F-test pairwise comparisons. The multiple comparisons were adjusted using Holm–Šidák correction.

Results

169 General observations

Maximum skull width (MW) varies between 13 mm and 365 mm (embryonic and large adult skulls, respectively) in our dataset. The smallest skull having a narial fossa is the Madras

Crocodile Bank Trust male, where MW = 217 mm (Fig. 4) or approximately 60% maximum size. Above MW = 280 mm, all skulls possess a narial fossa; thus, the largest skulls are male.

The smallest skull possessing pterygoid bullae (but lacking a narial fossa) is from the American Museum of Natural History (AMNH) 110145, where MW = 179 mm.

Thirty-one of the 106 skulls possess narial fossae. Where determinable (some lack palates or are otherwise obscured), all of these possess pterygoid bullae. The bullae thus appear to be universally present in males. There are, however, 11 skulls lacking a narial fossa but having bullae (Fig. 4). Of these, six are smaller than the Madras Crocodile Bank Trust male, and all are smaller than MW = 280 mm, which is the lower threshold at which the narial fossa is consistently expressed (Fig. 4). If the bullae are indicative of the male sex, which seems likely, they show up earlier in ontogeny, at approximately 50% maximum size.

Commented [MS7]: Can a specimen number be given

Commented [MS8]: Is there a reason that institutional abbreviations are not in a section following the Intro?

Allometry

The results for the all-inclusive allometric analyses are summarized in Figure 5 and Table S1. MW is a good predictor of all continuous cranial variables ($R^2 > 0.92$, p < 0.0001). Positively allometric variables include PEMW and IW. Negatively allometric variables include BSL, OCW, NML, and MWAO. The three remaining variables (SL_RTO, SMW, and NMW) grow isometrically.

The largest males consistently plot above the regression line for SMW, PEMW, and NMW (Fig. 5), suggesting that these variables increase very rapidly at large body sizes. Follow-up allometric analyses of just the male data (having pterygoid bullae/narial fossa) reveal positive allometry in all three variables (Table S2), with slopes greater than those reported for the entire dataset, albeit with slightly reduced goodness of fit ($R^2 > 0.75$, p < 0.0001).

NFML and NFMW scale with positive allometry, but the relationship with MW is insignificant (Table S2). PBL is weakly but positively correlated with skull size in males. We were unable to reject the null hypothesis of isometry (Table S2).

Sexual dimorphism

Males categorically differ from females in the presence of a narial fossa (\sim ghara) and, ostensibly, the presence of pterygoid bullae. Males are further distinguished by their absolutely larger skulls at maturity (MW > 287 mm), relatively shorter and wider rostra, and wider terminal rosettes that support larger nares.

Without knowing the sexes a priori (as in fossil taxa), it is otherwise difficult to detect dimorphism in those continuous variables. With the exception of NML, the residuals for all

cranial variables are significantly non-normal, but in no case are they significantly non-unimodal (Table S3). The ability to detect dimorphism in the three most obviously dimorphic continuous variables (SMW, PEMW, and NMW) does not increase by considering only adults (MW \geq 179 mm, the smallest male having pterygoid bullae). The adult NMW residuals are not significantly non-normal, and the adult SMW and PEMW residuals are not significantly non-unimodal (Table S3).

On average, the SMW, PEMW, and NMW residuals exhibit higher variances (\geq 0.004) than the non-dimorphic residuals (Fig. 6). Levene's test for homogeneity of variance from means is highly significant (p < 0.0001). Follow-up pairwise comparisons (Table S4) reveal that variance for the SMW, PEMW, and NMW residuals is usually significantly higher compared to the other residuals. Variance does not differ significantly between any of the three dimorphic variables.

Discussion

Sexual dimorphism and sexual selection in Gavialis

The results here broadly align with previous assessments of dimorphism and the ghara in *G. gangeticus*. Males are larger than females, and the former show both a fossa associated with the nares and bullae on the palate. These latter features appear only in larger animals and thus with the onset of sexual maturity. The smallest specimen with a narial fossa in our sample is slightly smaller, at 58 cm in skull length, than the smallest reported by Martin and Bellairs (1977; 69 cm), but the samples are broadly comparable.

Martin and Bellairs (1977) stated that a ghara appears in males of around 3 m in total length, which following their head to body ratio of 1:6 would equate to a skull length of approximately 42 cm. This is considerably smaller than the smallest skull recorded here with a narial fossa and suggests that the ghara may be growing before a fossa is developed. This would

Commented [MS9]: Is there any actual evidence of this or just the interpretation?

230 match with the apparent development of the bullae prior to the presence of the fossa and would 231 indicate that the ghara and bulla develop nearly simultaneously. 232 The narial fossa shows strong positive allometry compared to other traits in the skull (Fig 5) 233 which would suggest that the ghara attaching to the fossa functions as a display feature (cf. 234 O'Brien et al., 2018). The ghara would also be a major handicap to males when foraging and Commented [MS10]: This needs a bit more explanation. 235 thus would form an honest signal of the fitness of the owner. The large size of the ghara (Fig. 1) 236 might also increase visibility to prey, but would certainly offer considerable drag on the 237 otherwise thin snout of an animal hunting in water (Martin & Bellairs, 1977), presumably 238 incurring a cost to feeding effectiveness. This is especially true since an extra drag generated 239 near the tip of the jaws would be much greater than closer to the rear of the skull, as drag is a 240 function of distance from the joint squared. The extreme variation of the morphology of the 241 ghara (Fig. 1) also points to it being a socio-sexual signal (see Hone & Naish, 2013 and 242 references therein). 243 Initially the pterygoid bullae must grow rapidly as the smallest record of them in our sample 244 are still sizeable structures (37 mm long on the Field Museum of Natural History (FMNH) specimen 22025, a skull 61 cm long), although it is possible that at smaller sizes they are hidden 245 246 in photographs of the palate. However, bullae growth is isometric which suggests that although 247 they are important structures, their size is not critical. We hypothesise therefore that these 248 features function as a signal to females that the male is mature but that there is no additional Commented [MS11]: How so? Would this feature be visible to a female? Or do you mean through the sound production you infer? 249 information about the size and quality of the male possessing them or otherwise their growth 250 would be expected to be positively allometric.

Deleted: i

The pterygoid bullae likely function in sound production. Although it has been noted that

gharials rarely produce calls (Whitaker & Basu, 1983; Dinets, 2013), many crocodylians

251

252

254 communicate using very low-frequency vocalizations (Garrick, Lang & Herzog, 1978), some of 255 which extend into the infrasonic range (i.e., below the range of normal human hearing; Todd, 256 2007) and so gharial calls may not have been detected by previous researchers. The bullae are 257 dorsal dilations of the nasopharyngeal duct (Wegner, 1958; Witmer, 1995b, 1999) and thus are 258 connected to the vocal/respiratory tract and would act as acoustic resonators, potentially 259 lowering the frequencies of sounds produced. Whether the pterygoid bullae are important for 260 Deleted: 1 acoustic signaling remains unconfirmed, but they are large structures that presumably have some 261 positive function in that they occupy space in the orbit and palatal regions and would presumably 262 adversely affect other functions (e.g., restricting the attachments of jaw adductor muscles such as 263 M. pterygoideus dorsalis). The vocal capabilities of alligators are well known (Garrick, Lang & 264 Herzog, 1978; Vliet, 1989; Todd, 2007), and alligators have similar (but presumably 265 nonhomologous) inflations of the nasopharyngeal ducts known as the pterygopalatine bullae 266 (Wegner, 1958; Witmer, 1995b, 1999), perhaps lending some credence to an acoustic resonance 267 function in gharials, as well. Dinets (2013) reported specifically that gharials do not use 268 infrasound, but the basis for this assertion is not clear, and we regard acoustic signaling 269 (potentially including an emphasis on low-frequency sounds, perhaps even infrasound) as the 270 current best-supported hypothesis for the function of the pterygoid bullae. 271 When analysed in the males alone, some of the traits in the skull also show positive 272 allometry. The premaxillary expansion maximum width, the snout minimum width, and the naris 273 maximum width are all disproportionately larger in the largest males. All are potentially 274 associated with the ghara and the increase of the fossa to accommodate it. The expansion of the Deleted: e premaxillary rosette and relative increase of the snout minimum width could help strengthen the 275

Commented [MS12]: Run-on sentence.

Commented [MS13]: This explanation needs to be placed much earlier so the reader is clear on what this

Commented [MS14]: Have these structures in alligators actually been connected to their ability to vocalize?

Commented [MS15]: Include the abbreviations here as

skull given the drag of a large ghara but could also potentially have an ecological function permitting engaging of larger prey.

Commented [MS16]: Do you have citations to support this statement?

Given that the pterygoid bullae ontogenetically appear in males of breeding age, we suggest that they provide a general infrasonic acoustic signal that would function to advertise their maturity to females (and also perhaps to other males). This signal would serve to attract attention to the male (even while out of line of sight such as underwater), and the primary visual signal of status and quality would be the ghara. The visual signal is enhanced by a spray of water emerging from the ghara itself upon exhalation, accompanied by an audible hiss and hum (Whitaker & Whitaker, 1989).

Detecting sexual dimorphism in the fossil record

analysis (Mallon, 2017). Tests for dimorphism in fossil taxa may be confounded by a combination of small sample sizes and protracted growth coupled with uncertainty of the age or sex of most specimens so that small males may be similar in size to large females (Hone & Mallon, 2017). Dinosaurs matured sexually before they reached growth asymptotes, and as a result may expect to have initiated the growth of a sexually selected structure earlier in ontogeny than in animals that reach maximum size at a similar time to sexual maturity. This also fits with the high juvenile mortality of dinosaurs, and thus may have promoted early reproduction (Hone & Mallon, 2017). Thus although we may expect to, and do, see strong positive allometry for features such as crests and horns under sexual selection (Hone, Wood & Knell, 2016; Brown, 2017), these features may start earlier and grow more slowly than seen in traditional models such as large mammals.

Commented [MS17]: There is the possibility that females were larger than males.

Deleted: will

Deleted: maturity

Deleted: where they

The results here support these general contentions that dimorphism is very difficult to detect in taxa showing growth over considerable periods of time. Were these animals recovered from the fossil record, the presence of the fossa and bullae give clear osteological characters that are not obviously functional and appear only in larger specimens, and these would likely be identified as a separate sex to the smaller specimens that lacked these features. *Gavialis gangeticus* is identified by numerous osteological traits (Iordansky, 1973) present in all specimens, which would mark out both sexes as being one species. However, in the absence of these discrete traits, determining dimorphism would be very difficult. Hone and Mallon (2017) assessed detection of sexual dimorphism in alligators based on body size and suggested a minimum of 60 animals might be needed to statistically support dimorphism. Here there is no clear statistical signal for any continuous traits producing two clusters across all specimens despite a much larger dataset. Even when restricted to those we have identified as adult males and females, the signal is weak and present only in some features which are also associated with the ghara. Were these fossil animals there would be little to separate out the sexes.

Future work and conservation implications

Further work is needed to confirm the hypotheses laid out here. An exact relationship between the timing of sexual maturity and the physical expression of the ghara, narial fossa, and pterygoid bullae is key to understanding gharial reproductive biology. A formal assessment of any social or mating displays and the differing acoustic and visual components of this are also important and may provide information critical to breeding efforts given the severe extinction risk of this species.

This study also raises additional questions about the functional morphology of gharials which may also be important for understanding their ecology and behaviour. The ghara will induce severe drag on the jaws on an animal catching prey underwater, while the bullae will affect the palatal muscles which will influence the function of the jaws.

Finally, we note that the largest narial fossae are associated with an increase in the size of the terminal rosette and a broadening of the snout (increased minimum width) and this may increase the ability of males to catch larger prey. Although we did not measure tooth size across all specimens, we note that some of the largest males (e.g., Grant Museum - LDUCZ X215) apparently have disproportionately large teeth compared to smaller animals and this would likely allow them to tackle larger prey than may be expected. Given the great differences in size between mature gharials and young juveniles, there would be niche partitioning between various different growth stages, as seen in other crocodylians (Dodson, 1975). However, there may also be ecological separation between larger (and presumably fitter) gharial males and other adult animals and if so, this is also a very important possible consideration for sustaining populations.

Removal of high-quality males has the potential for profoundly negative effects in small populations (Knell & Martínez-Ruiz, 2017) so if our hypothesis about prey choice is correct, suitable prey for larger males must be a consideration in establishing suitable habitats for sustainable gharial populations.

Moore et al. (2019) noted an increase in size in the anterior teeth of male Morelet's crocodiles (*Crocodylus moreletii*) at sexual maturity and suggested this was lined to male-male interactions over females and this could be the case here. However, developmentally this is much earlier in the crocodile than the shift suggested here, and it was only the anterior teeth not the entire tooth row, implying that these two developments are not synonymous. In any case, as

Commented [MS18]: No questions are clearly laid out here.

Commented [MS19]: Sexually mature or skeletally

Commented [MS20]: What is a 'young juvenile'? Can you be more specific?

Deleted: i

Commented [MS21]: This thought needs more development- who are the 'other adult animals'? Do you mean other adult gharials? By ecological separation do you mean in where the animals live or do you mean where they fit in the trophic structure?

Commented [MS22]: What do you mean by 'removal'? Predation on?

Commented [MS23]: What do you mean here?

Commented [MS24]: Run-on sentence

Commented [MS25]: Unclear- do you mean this increase in tooth size?

Commented [MS26]: Ontogenetically?

noted by Moore et al. (2019), increased head size is correlated with increased bite power and opportunities to tackle larger prey (Erickson et al., 2012), so regardless of the selective pressures that might produce more robust crania and teeth in large males, the hypothesised dietary shift may still be present.

Conclusions

We agree with previous studies in that the ghara and associated narial fossa and the pterygoid bullae are male traits of extant gharials and most likely have a socio-sexual function in displays. Limited dimorphism in size and various cranial traits are exhibited with males being larger than females.

In the absence of key traits, determining moderate sexual dimorphism (body size or other measurements) is going to be extremely difficult, even with good sample sizes and complete sets of data. Doing so for the fossil record for taxa such as dinosaurs (but also many other extinct reptiles and amphibians) is extraordinarily difficult unless the degrees of dimorphism are extreme. Prolonged growth and the overlap of males and females in terms of body size and even features linked to sexually selected structures (such as here, the width of the terminal rosette) make the identity with regards to sex of individual specimens highly cryptic.

Acknowledgements

We thank the following colleagues and curators for access to specimens, photographs, and computed tomographic data: Victoria Arbour, Salvator Bailon, Jordan Bestwick, Dave Blackburn, Ashley Burns-Meerschaert, Mark Carnall, Jim Clark, Tannis Davidson, Emily Durkin, Michael Franzen, Jennifer Gallichan, Dan Gordon, Ashely Hall, Natalie von Hoose,

Deleted: fossil

Deleted: will likely be

3/0	David Kizirian, Gunter Koemer, Jeff Lang, Josh Mata, Conn Michenly, Zachary Morris, Emina-
379	Louise Nicholls, Olivier Pauwels, Stephanie Pierce, Rhian Rowson, Scott Sampson, Mark
380	Scherz, Coleman Sheehy III, Ed Stanley, Jeff Streicher, Frank Tillack, Zena Timmons, Paolo
381	Viscardi, Kent Vliet, Lauren Vonnahme, Aki Watanabe, Gregory Watkins-Colwell, May
382	Webber, Nikhil Whitaker.
383 384 385	References
386	Biswas S, Acharjyo, LN, Mohapatra S. 1978. A note on the protuberance or knob on the snout of
387	the male gharial (Gavialis gangeticus (Gmelin)). Journal of the Bombay Natural History
388	Society 74:536-537.
389	Brown CM. 2017. An exceptionally preserved armored dinosaur reveals the morphology and
390	allometry of osteoderms and their horny epidermal coverings. PeerJ 5:p.e4066.
391	Cox RM, Butler MA, John-Alder HB. 2007. The evolution of sexual size dimorphism in reptiles.
392	In: Fairbarin DJ, Blanckenhorn WU, Székely, eds. Sex, size and gender roles: evolutionary
393	studies of sexual size dimorphism Oxford, Oxford University Press, 38-49.
394	Dinets V. 2013. Long-distance signaling in Crocodylia. Copeia 2013:517-526.
395	Dodson P. 1975. Functional and ecological significance of relative growth in <i>Alligator</i> . <i>Journal</i>
396	of Zoology 175:315–355.
397	Erickson GM, Gignac PM, Steppan SJ, Lappin AK, Vliet KA, Brueggen JD, Inouye BD, Kledzik
398	D, Webb GJW. 2012. Insights into the ecology and evolutionary success of crocodilians
399	revealed through bite-force and_tooth-pressure experimentation. PLOS One 7:e31781
1 400	Fitch HS. 1981. Sexual size differences in reptiles. Miscellaneous Publications of the Museum of
401	Natural History University of Kansas 70:1–72.

402	Garrick LD, Lang JW, Herzog HA. 1978. Social signals of adult American alligators. Bulletin of
403	the AMNH 160:3.
404	Hartigan JA, Hartigan PM. 1985. The dip test of unimodality. <i>Annals of Statistics</i> 13:70–84.
405	Hasan K, Alam S. 2016. Gharials of Bangladesh. IUCN, International Union for Conservation of
406	Nature, Bangladesh Country Office, Dhaka, Bangladesh, 92 pp.
407	Hone DWE, Naish D, Cuthill IC. 2012. Does mutual sexual selection explain the evolution of
408	head crests in pterosaurs and dinosaurs? Lethaia 45:139-156.
409	Hone DWE, Naish D. 2013. The 'species recognition hypothesis' does not explain the presence
410	and evolution of exaggerated structures in non-avialan dinosaurs. Journal of Zoology
411	290:172-180.
412	Hone DWE, Wood D, Knell RJ. 2016. Positive allometry for exaggerated structures in the
413	ceratopsian dinosaur Protoceratops andrewsi supports socio-sexual signaling.
414	Palaeontologia Electronica 19:5A.
415	Hone DWE, Mallon JC. 2017. Protracted growth impedes the detection of sexual dimorphism in
416	non-avian dinosaurs. Palaeontology 60:535-545.
417	Iordansky NN. 1973. The skull of the Crocodilia. In: Gans C, Parsons T, eds. Biology of the
418	Reptilia. London, Academic Press 201–262.
419	Knell RJ, Naish D, Tomkins JL, Hone DW. 2013. Sexual selection in prehistoric animals:
420	detection and implications. Trends in ecology and evolution 28:38-47.
421	Knell RJ, Martínez-Ruiz C. 2017. Selective harvest focused on sexual signal traits can lead to
422	extinction under directional environmental change. Proceedings of the Royal Society B

423

284:20171788.

424	Mallon JC. 2017. Recognizing sexual dimorphism in the fossil record: lessons from nonavian	
425	dinosaurs. Paleobiology 43:495-507.	
426	Martin BGH, Bellairs AA. 1977. The narial excrescence and pterygoid bulla of the gharial,	
427	Gavialis gangeticus (Crocodilia). Journal of Zoology 182:541-558.	(
1 428	Moore BC, Holliday CM, McMurry ST, Platt SG, Rainwater TR. 2019. Correlation between	
429	increased postpubertal phallic growth and the initiation of cranial sexual dimorphisms in	
430	male Morelet's crocodile. Journal of Experimental Zoology Part A: Ecological and	
431	Integrative Physiology.	
432	O'Brien DM, Allen CE, Van Kleeck MJ, Hone DWE, Knell RJ, Knapp A, Christiansen S, Emlen	
433	DJ. 2018. On the evolution of extreme structures: static scaling and the function of	
434	sexually selected signals. Animal Behaviour 144:95-108.	
435	Piras P, Buscalioni AD, Teresi L, Raia P, Sansalone G, Kotsakis T, Cubo J. 2014. Morphological	
436	integration and functional modularity in the crocodilian skull. Integrative zoology 9:498-	
437	516.	
438	Sengupta S, Ezcurra MD, Bandyopadhyay S. 2017. A new horned and long-necked herbivorous	
439	stem-archosaur from the Middle Triassic of India. Scientific reports 7:8366.	
440	Todd NPM. 2007. Estimated source intensity and active space of the American alligator	
441	(Alligator mississippiensis) vocal display. Journal of the Acoustical Society of America	
442	122:2906–2915.	
443	Vliet KA. 1989. Social displays of the American alligator (Alligator mississippiensis). American	
444	Zoologist 29:1019–1031.	
445	Wegner RN. 1958. Die Nebenhöhlen der Nase bei den Krokodilen. Wissenschaftliche Zeitschrift	
446	der Ernst Moritz Arndt-Universität Greifswald 7:1-39.	

Formatted: Font: Italic

447 Whitaker R, Basu D. 1983. The gharial (Gavialis gangeticus): A review. Journal of the Bombay 448 Natural History Society, 79:531-548. Deleted: Whitaker R, Whitaker Z. 1989. The ghara of the gharial. Hamadryad 14:2-3. 449 450 Witmer LM. 1995a. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ ed. Functional morphology in vertebrate paleontology. 451 452 Cambridge, Cambridge University Press, 19-33 Witmer LM. 1995b. Homology of facial structures in extant archosaurs (birds and crocodilians), 453 454 with special reference to paranasal pneumaticity and nasal conchae, Journal of 455 Morphology 225:269-327. Witmer LM. 1999. The phylogenetic history of paranasal air sinuses. In: Koppe T, Nagai H, Alt 456 KW eds. The Paranasal Sinuses of Higher Primates: Development, Function and 457 458 Evolution. Chicago, Quintessence, 21-34. 459 460 461 Figure captions 462 Figure 1. A) bony snout of two male Gavialis gangeticus. The black arrows point to the fossae to Commented [MS27]: There is an image F, though no reference to it in the caption. 463 which the ghara attaches. B-E) various male G. gangeticus in the wild showing the range of size 464 and morphology of the ghara. Image B provided by Nikhil Whitaker and C-D provided by 465 Jeffrey Lang, all used with permission. 466 467 Figure 2. Pterygoid bullae of Gavialis gangeticus (UF 118998) based on volume renders of 468 computed tomographic data. A, Dorsolateral oblique view of the full skull showing the immature 469 narial fossa and the pterygoid bulla, the latter being seen through the orbit. B-E, Dorsolateral

471	oblique views of (B) the pterygoid bulla enlarged, (C) with the skull roof digitally removed to
472	reveal both bullae, and (D) with the dorsal portions of the bullae removed to show the thin walls
473	and the connection with the nasopharyngeal duct. E, Close-up ventral view of the pterygoid
474	bullae projecting into the adductor muscle chamber. F, Ventral view of the full skull. All scale
475	bars equal 5 cm. A and F are at the same scale, as are B-F.
476	
477	Figure 3. Measurements used in the present study. Left inset details measurements from the
478	rostrum; right inset details measurement from the palate. See main text for the key to the
479	abbreviations.
480	
481	Figure 4. Distribution of narial fossa and pterygoid bullae presence/absence across gharial skulls
481 482	Figure 4. Distribution of narial fossa and pterygoid bullae presence/absence across gharial skulls of different sizes (measured as MW). Insets at right illustrate the variable in question.
482	
482 483	of different sizes (measured as MW). Insets at right illustrate the variable in question.
482 483 484	of different sizes (measured as MW). Insets at right illustrate the variable in question. Figure 5. Reduced major axis regressions for nine of the continuous variables examined here. A,
482 483 484 485	of different sizes (measured as MW). Insets at right illustrate the variable in question. Figure 5. Reduced major axis regressions for nine of the continuous variables examined here. A, log BSL vs. log MW; B, log OCW vs. log MW; C, log SL_RTO vs. log MW; D, log SMW vs.
482 483 484 485 486	of different sizes (measured as MW). Insets at right illustrate the variable in question. Figure 5. Reduced major axis regressions for nine of the continuous variables examined here. A, log BSL vs. log MW; B, log OCW vs. log MW; C, log SL_RTO vs. log MW; D, log SMW vs. log MW; E, log PEMW vs. log MW; F, log NMW vs. log MW; G, log NML vs. log MW; H, log
482 483 484 485 486 487	of different sizes (measured as MW). Insets at right illustrate the variable in question. Figure 5. Reduced major axis regressions for nine of the continuous variables examined here. A, log BSL vs. log MW; B, log OCW vs. log MW; C, log SL_RTO vs. log MW; D, log SMW vs. log MW; E, log PEMW vs. log MW; F, log NMW vs. log MW; G, log NML vs. log MW; H, log