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ABSTRACT

The horticulturally important genus Zantedeschia (Araceae) comprises eight species
of herbaceous perennials. We sequenced, assembled and analyzed the chloroplast (cp)
genomes of four species of Zantedeschia (Z. aethiopica, Z. odorata, Z. elliottiana, and
Z. rehmannii) to investigate the structure of the cp genome in the genus. According
to our results, the cp genome of Zantedeschia ranges in size from 169,065 bp (Z.
aethiopica) to 175,906 bp (Z. elliottiana). We identified a total of 112 unique genes,
including 78 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal
RNA (rRNA) genes. Comparison of our results with cp genomes from other species
in the Araceae suggests that the relatively large sizes of the Zantedeschia cp genomes
may result from inverted repeats (IR) region expansion. The sampled Zantedeschia
species formed a monophylogenetic clade in our phylogenetic analysis. Furthermore,
the long single copy (LSC) and short single copy (SSC) regions in Zantedeschia are
more divergent than the IR regions in the same genus, and non-coding regions showed
generally higher divergence than coding regions. We identified a total of 410 cpSSR
sites from the four Zantedeschia species studied. Genetic diversity analyses based on
four polymorphic SSR markers from 134 cultivars of Zantedeschia suggested that high
genetic diversity (I =0.934; Ne =2.371) is present in the Zantedeschia cultivars. High
genetic polymorphism from the cpSSR region suggests that cpSSR could be an effective
tool for genetic diversity assessment and identification of Zantedeschia varieties.

Subjects Agricultural Science, Evolutionary Studies, Genomics, Plant Science

Keywords Zantedeschia, Chloroplast genome, Genome comparison, IR expansion, Phylogenetic
analysis, SSR

INTRODUCTION

The genus Zantedeschia Spreng. (Trib. Richardieae, Araceae) had originally an entirely
northeastern and southern African distribution. However, following introduction to
Europe as ornamental plants in the seventeenth century, various species became widely
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naturalized across Europe, America, Oceania and Asia (Cruzcastillo, Mendozaramirez
& Torreslima, 2001). Two sections, Zantedeschia and Aestivae, are currently recognized
in the genus Zantedeschia. Species in section Zantedeschia, Z. aethiopica and Z. odorata
(Singh, Wyk ¢ Baijnath, 1996), can be recognized by the rhizomatous tuber and white
flowers. Species in section Aestivae, however, have colorful (not white) flowers and
discoid tubers (Singh, Wyk ¢ Baijnath, 1996; Wright ¢ Burge, 2000). Many attractive and
colorful hybrids between species in section Aestivae have been artificially produced, the
majority between Z. albomaculata, Z. elliotiana, Z. rehmannii and Z. pentlandii (Snijder
et al., 2004a). Zantedeschia hybrids have subsequently become one of the most popular
horticultural crops worldwide, in high demand as cut flowers, potted plants and flower
baskets, as well as for use in flower beds. The genus Zantedeschia is also of horticultural
interest, however, F1 hybrids between sections Zantedeschia and Aestivae are invariably
albino.

Traditional and polyploidization breeding, as well as resistance to soft rot, have been
the main focuses for previous research into the genus Zantedeschia (Snijder et al., 2004a;
Snijder, Lindhout & Van Tuyl, 2004b; Wright & Triggs, 2009; Wright ¢ Burge, 2000; Wright,
Burge ¢ Triggs, 2002). Simple sequence repeats (SSRs), or microsatellites, are short tandem
repeats of two to more nucleotides in DNA sequences. The number of repeats is highly
variable, whereas the regions of DNA flanking SSRs are highly conserved (Davierwala
et al., 20005 Gur-Arie et al., 2000). SSR markers are polymerase chain reaction (PCR)
-based, abundant, codominant, highly reproducible, and are distributed evenly across
eukaryotic genomes (Powell et al., 1996). SSRs are widely used molecular markers to study
genetic diversity, population structure, genetic mapping, phylogenetic studies, cultivar
identification and marker-assisted selection (Potter et al., 2015). A total of 43 novel EST-
derived simple sequence repeat (SSR) markers have been identified in Zantedeschia by Wei
et al. (2012), however, apart from this, the genetics and genomics of the genus Zantedeschia,
which are of great importance in plant breeding, have received little research attention.
We therefore recommend that further genomic resources from Zantedeschia should be
developed as tools to assist molecular breeding research in this genus. Our study focuses on
four species of Zantedeschia, two from section Zantedeschia and two from section Aestivae.
The aim of the study was to sequence, assemble and analyze the cp genome in Zantedeschia,
to investigate any common characteristics or differences between the studied species and
also to develop SSR markers in the Zantedeschia cp genome.

Photosysnthetic fixation of carbon in plants takes place in the chloroplasts, and
is a primary function of these organelles. Chloroplasts have their own genome, as
do mitochondria and it has been suggested that they were originally free-living
cyanobacterium-like cells engulfed by ancient eukaryotic cells in an endosymbiotic
relationship (Raven & Allen, 2003). The cp genome is usually represented as a circular
molecule, and has a conserved quadripartite structure comprising the small single copy
(SSC) and large single copy (LSC) regions, separated by two copies of an inverted repeat
(IR) region. Chloroplast genomes have a highly conserved gene content, and most land
plants have a nearly collinear gene sequence (Jansen et al., 2005). Due to their lack of
recombination, their compact size and their maternal inheritance (Birky, 2001), cp genomes
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are considered to be useful DNA sequences for plant genetic diversity assessment, plant
identification and phylogenetic studies.

We investigated the cp genomes from four species of Zantedeschia. Genomes were
sequenced, assembled, annotated and mined for the presence of SSR markers using
[llumina sequencing technology. We also made comparative sequence analysis studies of
the cp sequences from our study species. These results are publicly available as a genetic
resource for the study of Zantedeschia species, and it is our hope that they will provide a
valuable resource for future genetic and phylogenetic studies into this important genus.

MATERIALS & METHODS

Plant material, DNA sequencing and cp genome assembly

Plant material of Z. aethiopica was collected from South Africa directly and has been
planted in Kunming more than 30 years. Z.odorata, Z. elliottiana, and Z. rehmannii were
collected from Netherlands. Total genomic DNA of the four species of Zantedeschia was
extracted from the fresh leaves of tissue culture seedlings using a modified CTAB extraction
protocol based on Doyle ¢ Doyle (1987). Sequencing of the genomic DNA was performed
using an Illumina Hiseq2000 (Illumina, CA, USA). Low quality reads were filtered out
before de novo assembly of the cp genomes, and the resulting clean reads were assembled
using the GetOrganelle pipeline (https://github.com/Kinggerm/GetOrganelle). A reference
genome Colocasia esculenta (JN105689) was used to check the contigs, using BLAST
(https://blast.ncbi.nlm.nih.gov/), and the aligned contigs were then oriented according to
the reference genome.

Gene annotation and sequence analysis

The CpGAVAS pipeline (Liu et al., 2012) was used to annotate the genome and start/stop
codons and intron/exon boundaries were adjusted in Geneious 8.1 (Kearse et al.,
2012). The tRNA was identified using tRNAscan-SE v2.0 (Lowe ¢ Chan, 2016), and
sequence data were subsequently deposited in GenBank. The online tool OGDraw v1.2
(http://ogdraw.mpimp-golm.mpg.de/, Lohse, Drechsel ¢» Bock, 2007) was used to generate
a physical map of the genome.

Structure of Genome and Genome comparison

Pairwise sequence alignments of cp genomes were performed in MUMer (Kurtz et al.,
2004).The complete cp genomes of the four species were then compared using mVISTA
(Mayor et al., 2000) with the shuffle-LAGAN model Codon usage bias (RSCU) was
calculated using MEGA v7.0 (Kumar et al., 2008). Chloroplast genome sequences of the
four species were aligned using MAFFT (Katoh ¢ Standley, 2013) in Geneious 8.1 (Kearse
et al., 2012). Insertion/deletion polymorphisms (indels) were then identified using DnaSP
version 5.1 with the cp genome of Z. aethiopica as a reference (Librado ¢ Rozas, 2009).
Single nucleotide polymorphisms (SNPs), defined as variations in a single nucleotide
that occur at specific positions in the genome, were called using a custom Python script
(https://www.biostars.org/p/119214/).
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Phylogenetic analysis

Chloroplast genome sequences of 11 species from Araceae and an outgroup (Zea mays,
Poaceae) were downloaded from GenBank and an alignment with the four Zantedeschia
cp genome sequences from our study was built using MAFFT (Katoh ¢ Standley, 2013) in
Geneious 8.1 (Kearse et al., 2012). In order to investigate the phylogenetic placement of
the genus Zantedeschia within the Araceae, a maximum likelihood tree was reconstructed
in RaxML version 8.2.11 (Stamatakis, 2014). Tree robustness was assessed using 1000
replicates of rapid four bootstrapping with the GTR+GAMMA substitution model.

Simple Sequence Repeats (SSRs)

SSR markers present in the Zantedeschia cp genome were found using Phobos v3.3.12 (Leese,
Mayer & Held, 2008) and SSRHunter (Li ¢ Wan, 2005). Both these programs search for
repeats using a recursive algorithm. We set the minimum number of repeats of mono-,
di-, tri-, tetra-, penta-, and hexa-nucleutide repeats to 10, 5, 4, 3, 3 and 3 respectively. The
inverted repeat region IRa was not considered in our SSR analysis.

We subsequently selected four SSRs motifs to investigate genetic diversity in
Zantedeschia. A total of 134 cultivars from genus Zantedeschia were sampled. The
experimented 134 cultivars include some local cultivars, but most of them are collected
from Netherlands, the United States, New Zealand, and Taiwan for production and
refreshed by tissue culture every 3 years. Genetic diversity was investigated by calculating
several indices: the number of alleles per locus (Na); the number of fffective alleles (Ne);
Shannon’s information index (I) and polymorphism information content (PIC). Na, Ne, I
were calculated using GenALEx v. 6.4 (Peakall ¢ Smouse, 2006). PIC was calculated using
PowerMarker 3.25 (Liu ¢ Muse, 2006).

RESULTS

Characteristics of Zantedeschia cp genomes
After assembly and annotation, the four Zantedeschia cp genomes obtained in this study
were submitted to the NCBI database (accession numbers MH743153—-MH743155 and
MG432242). The cp genomes of these Zantedeschia species ranged in length from169,065
bp (Z. aethiopica) to 175,906 bp (Z. elliottiana), and, as expected, the cp genomes of all
four species were found to contain both the large and small single-copy regions, separated
by a pair of inverted repeat regions (Fig. 1 & Fig. S1, Table 1). A total of 139 genes, of
which 112 were unique, were identified, including 93 (78 unique) protein-coding genes, 38
(30 unique) transfer RNA (tRNA) genes and eight (four unique) ribosomal RNA (rRNA)
genes (Table 2).

Interestingly, although the four species belong to a single genus, differences in gene
content can nevertheless be seen. Z. elliottiana had the largest number of genes (139).
Z. rehmannii had 138 genes, differing from Z. elliottiana only in a single copy of rps19.
Z. odorata had 134 genes, and differs from Z. elliottiana in having only single copies of
ndhE, ndhG, rps19, trnH-GUG and trnV-UAC. Of all the species we studied, the cp genome
of Z. aethiopica had the fewest of genes (131), and differed from Z. elliottiana in single
copies of ndhA, ndhE, ndhG, ndhH, ndhl, rps19, trnH-GUG and trnV-UAC (Table 2).
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Figure 1 Gene map of chloroplast genome of Z. odorata.
Full-size Gal DOI: 10.7717/peerj.9132/fig-1

The two species from section Aestivae (Z. elliottiana; Z. rehmannii) have larger cp
genomes that those in section Zantedeschia (Z. aethiopica and Z. odorata), and the number
of different protein-coding genes and tRNA genes is also higher in the cp genomes from
plants in section Aestivae. Moreover, the size of the IR regions in species from section
Aestivae was also larger than those in section Zantedeschia. Unlike the other studied
species, which had no pseudogene, Z. odorata had two copies of the pseudogene W ycf68.

The nucleotide composition of the Zantedeschia cp genome was asymmetric, with an
overall GC content ranging from 35.3% to 35.6%, which is similar to other species in the
Araceae (Tian et al., 2018). The largest GC content ratio was observed in the IR region
(37.5%-39.0%), and the smallest in the SSC region (28.2%-29.6%). All four of our study
species showed the same trend (the GC content of the LSC and SSC regions was lower than
that of the IR regions), which may be due to the tRNA genes and rRNA genes generally
having fewer AT nucleotides (Chen et al., 2015; Meng et al., 2018; Zhou et al., 2017).
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Table 1 The basic characteristics of chloroplast genomes of four Zantedeschia species.

Characteristics Z. elliottiana Z. rehmannii Z. aethiopica Z. odorata
GenBank numbers MH743153 MH743154 MH743155 MG432242
Total cp genome size/bp 175,906 175,067 169,065 173,783
LSC size/bp 88,584 90,020 89,695 90,322

IR size /bp 39,445 38,354 32,331 36,549
SSC size /bp 8,432 8,338 14,715 10,363
Total number of genes 139 138 131 134
Number of different 93 92 87 90
protein-coding genes

Number of different tRNA genes 38 38 37 36
Number of different rRNA genes 8 8 8 8

Number of gene in IR region 54 52 40 46
Number of pseudogene 0 0 0 2

GC content (%) 35.4 35.6 35.6 35.3

GC content of LSC (%) 34.2 34.4 34.1 33.7

GC content of IR (%) 37.5 37.7 39.0 38.2

GC content of SSC (%) 28.7 29.1 29.6 28.2

Introns are non-coding sequences within genes, and they play a very important role in the
regulation of gene expression (Jiang et al., 2017). Introns are known to accumulate more
mutations than functional genes, and because of this are used extensively in phylogenetic
and population genetics studies (Xu, 2003). We investigated 13 intron-containing genes
in the species Z. aethiopica: 11 genes (atpF, ndhA, ndhB, petB, petD, rpll6, rpl2, rpoCl,
rpsl16, rps18, ycf68) contained only one intron, while two genes (clpP, ycf3) contained two
introns. Z. elliottiana and Z. rehmannii each had 12 intron-containing genes (similar to Z.
aethiopica but lacking cIpP), and 11 intron-containing genes were found in Z. odorata (as
Z. aethiopica but lacking rps18 and ycf68) (Table S1).

Genome comparison

An extremely important topic in genomics is the comparative analysis of cp genomes (Chen
et al., 20125 Zhihai et al., 2016). We performed multiple alignments between the four cp
genomes generated in this study to characterize their divergence. The alignments were
conducted in mVISTA, using Z. odorata as a reference (Fig. 2).

Unsurprisingly, we found that in our study species, the coding regions are more
conserved than the non-coding regions. Furthermore, the LSC and SSC regions are more
divergent from each other than the IR regions. Intergenetic spacers (including trnH-psbA,
trnK-rps16, rps16-psbK, trnT-trnL, rbcL-psaL, clpP-psbB, ycfl-trnL, trnL-ndhB in the LSC
regions and psaC-ndhE, rps15-ycf1, trnL-ycf2 in the IR regions) were found to be the most
divergent regions of the four cp genomes. Of the coding regions, the greatest divergence
was found in clpP, rpll6, rps19, ycfl and ycf2. This is in agreement with the results from
previous studies (Park et al., 2017; Shen et al., 2017; Wu et al., 2017), and suggests that these
regions might evolve rapidly in the genus Zantedeschia.
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Table2 Genes present in the Zantedeschia chloroplast genome.

Category Gene groups Name of genes
Large subunit of ribosomal proteins rpl2°, rpli4, rpl16,rpl20, rpl22, rpl23 2, rpl32, rpl33, rpl36
Small subunit of ribosomal proteins rps2, rps3, rpsd, rps7> , 1ps8, rpsll, rps12” , rpsi4, rpsl5
Self 2,1ps16, 1ps18, rps19 >0
replication DNA dependent RNA polymerase rpoA, rpoB, rpoCl, rpoC2

Ribosomal RNA genes rrnd.5” , rrn5” , rrmlé6 2, rrn23’

Transfer RNA genes trnA(UGC)?, trnC(GCA), trnD(GUC), trnE(UUC),
trnF(GAA), trnfM(CAU), trnG(GCC), trnG(UCC),
trnH(GUG)>><, trul(CAU)?, trnl(GAU)?, trnK(UUU),
trnL(CAA)?, trnL(UAA), trnL(UAG), truM(CAU),
truN(GUU)?, trnP(UGG), trnQ(UUG), trnR(ACG)?,
truR(UCU), trnS(GCU), trnS(GGA), trnS(UGA),
trnT(GGU), trnT(UGU), truV(GAC)?, trnV(UAC)* ¢
tranW(CCA), trnY(GUA)

NADH oxidoreductase ndhA>" , ndhB* , ndhC, ndhD, ndhE>"° , ndhF, ndhG>"*
ndhH ", ndhl >° |, ndhJ, ndhK

Photosystem I psaA, psaB, psaC, psal, psa],ycf3, ycf4

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbl, psb], psbK,

Photosynthesis psbL, psbM, psbN, psbT, psbZ

Cytochrome b/f complex petA, petB, petD, petG, petL, petN

ATP synthase atpA, atpB, atpE, atpF, atpH, atpl

RubisCo large subunit rbcL

Maturase K matK,cemA

Other C-type cytochrome synthesis gene ccsA
genes Protease clpP

Proteins of unknown function yefl?, yef2?, ycf68

pseudogene 'ycf68 (in Z. odorata )
Notes.

2Two gene copies in IRs.

2shows only one copy in Z. rehmannii.
bshows only one copy in Z. aethiopica.

“shows only one copy in Z. odorata.

dshows gene not exist in Z. aethiopica.

¢shows gene not exist in Z. odorata.
fshows pseudogenes.

The level of sequence divergence in the aligned cp genome sequences from our four

study species was explored using nucleotide variability (), calculated using DnaSP version
5.1. The nucleotide variability () of these sequences was 0.0487, suggesting that the
divergence between the cp genomes of these closely related species was relatively large. A
total of 12,958 SNPs (including indels) were found. We infer from these results that the
Zantedeschia cp genome could be suitable for species-level phylogenetic analyses.

IR contraction and expansion in the Zantedeschia cp genome
A detailed comparison of the IRs of Zantedeschia cp genome was conducted and is
presented in Fig. 3. The cp genome sequences of 11 other species of Araceae downloaded
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ereifeefrinfenci
Zantedeschia elliottiana  |ndhE ndhG ndhl ndhA ndhH rps15 ycfl + + + + + + + + + + + + + + + + + tmH-GUG rpsl9
Zantedeschia rehmannii  [ndhE ndhG ndhl ndhA ndhH rpsl5 ycfl + + + + + + + + + + + + + + + + + tnH-GUG
Zantedeschia odorata ndhl ndhA ndhH rpsl5 ycfl + + + + + + + + + + + + + + + + +
Zantedeschia aethiopica mpsl5 yefl + + + + 4+ + 4+ 4+ + + o+ + o+ + o+ + o+
Lemna minor psl5 yefl + + + + + + + + + + + + + + + o+ o+
Spirodela polyrhiza psls yefl + + + + + + + 4+ + + + + o+ o+ o+ o+ o+
Wolffia australiana psl5 yefl + + + + + + + + 4+ + + + + + o+ o+ o+
Wolffiella lingulata mpsl5 yefl + + + + 4+ + 4+ + 4+ + o+ + o+ + o+ o+ o+
Acorus americanus yefl + + + + + + + + + + + + + + + + + tnH-GUG
Acorus calamus yefl + + + + + + + + + + + + + + + + + tnH-GUG
Acorus gramineus yefl + + + + + + + + + + + + + + + + + tnH-GUG
Symplocarpus renifolius + o+ o+ o+ o+ o+ o+ o+ o+ 4+ o+ o+ o+ o+
Pinellia ternata L A A
Colocasia esculenta + o+ + 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 4+
Dieffenbachia seguine + o+ o+ o+ o+ o+ + o+ 4+ 4+ + 4+ 4+ 4+ 4+ 4+

Figure 3 Genes of IR region in Araceae (genes which are only partially duplicated in the IR are not

shown).
Full-size Gal DOI: 10.7717/peerj.9132/fig-3
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from NCBI were included in our analysis in order to investigate changes in the IR sequence
in Zantedeschia.

The IR regions of Z. aethiopica, Z. odorata, Z. elliottiana and Z. rehmannii had lengths
of 32,331 bp, 36,549 bp, 39,445 bp, and 38,354 bp, respectively. The even the shortest
IR region of the four study species, that of Z. aethiopica, was longer than any of those
from other species in the Araceae included in our study: Colocasia esculenta (25,273 bp),
Pinellia ternata (25,625 bp), and Dieffenbachia seguine (25,235 bp) (Tian et al., 2018).This
expansion of the IR in the Z. aethiopica cp genome is because in this species, the rps15
gene has shifted from the SSC region to IRb at the SSC/IRDb border, as well as to IRa at the
SSC/Ira border. Other unusual, large expansions at the borders of IR regions have also been
observed in our other three study species of Zantedeschia. In the two species Z. elliottiana
and Z. rehmannii, the SSC/IRb border of occurs beside the ndhE gene, meaning that six
genes (ndhE, ndhG, ndhl, ndhA, ndhH, rps15) have shifted from the SSC region to the IR
region in these species. In the case of Z. odorata, the SSC/IRb border occurs beside the ndhl
gene, and four genes (ndhl, ndhA, ndhH, and rps15) have therefore shifted from the SSC
to the IR region. In all cases these shifts have resulted in a large expansion of the IR region.

Phylogenetic analysis

The cp genome sequences of 12 species (11 from the Araceae and the outgroup, Zea mays)
were downloaded from NCBI, and the sequences were aligned together with the four
Zantedeschia cp sequences from this study using Geneious 8.1 (Kearse et al., 2012). This
alignment of the concatenated nucleotide sequences of a total of 16 cp genome sequences
(an ingroup of 15 species from Araceae and the ougroup, Zea mays) was subjected to
phylogenetic analyses. The phylogeny was reconstructed using maximum likelihood (ML),
and the resulting phylogenetic tree was found to be in agreement with the traditional
genus-level morphological taxonomy of the Araceae (Fig. 4). Furthermore, the topology
is consistent with the classical taxonomy of Zantedeschia at the genus level (Singh, Wyk ¢
Baijnath, 1996). Our four study species from the genus Zantedeschia formed a monophyletic
clade with 100% bootstrap support. The morphologically defined sections Zantedeschia
and Aestivae are also supported, with the two species from section Zantedeschia (Z. odorata
and Z. aethiopica) sharing a more recent ancestor, and this clade forming a sister to the
two species (Z. elliottiana, Z. rehmannii) from section Aestivae. This is the first time the cp
genomes of these four Zantedeschia species have been sequenced, and the sequences have
enriched the phylogenetic research in Araceae and we believe that they will provide a useful
resource for the further study of the genetic diversity in this family.

Simple Sequence Repeats (SSRs)

The SSR survey of the four Zantedeschia species in this study identified 73, 107, 110,
and 120 potential SSRs motifs in the cp genome sequences of Z. odorata (175,906 bp),
Z. elliottiana (175,067 bp); Z. aethiopica (169,065 bp), and Z. rehmannii (173,783 bp),
respectively. The observed frequency of SSRs motifs was therefore approximately one SSR
motif per 1,400-2,500 bp of cp genome (Table 52). The majority of identified SSRs were
mononucleotide repeats (Z. elliottiana: 52; Z. rehmannii: 55; Z. aethiopica: 61; Z. odorata:
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Figure 4 The maximum likelihood (ML) phylogenetic tree based on 14 complete chloroplast genome
sequence. Numbers at the right of nodes are bootstrap support values.
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54), followed by dinucleotide repeats (Z. elliottiana: 32; Z. rehmannii: 31; Z. aethiopica: 20;
Z. odorata: 14). Most SSR repeats were AT-rich, and only 38 SSR repeats in Zantedeschia
contained cytosine. These results are consistent with previous findings that chloroplast
SSRs usually consist of short polyA/T repeats (Nguyen, Kim ¢ Kim, 2015). Most SSRs
motifs were located in non-coding regions, in particular in the LSC region (70.0%), or

in the IR regions (22.2%). Very few SSRs were located in the SSC region, and the ratio

was less than 0.08%. A similar result has been observed in other studies, suggesting that

the cp genome LSC region always contains high ratio of SSR motifs (Chi et al., 2018;

Jian et al., 2018). Four tri-SSRs motifs (Table 3) were used to investigate genetic diversity

in Zantedeschia. We sampled a total of 134 cultivars. All four cp SSR loci studied were

polymorphic in the genus Zantedeschia. The number of alleles (Na) of the genus was 3.000,

the number of effective alleles (Ne) was 2.371, the Shannon’s information index (I) was

0.934 and the polymorphism information content (PIC) was 0.388 (Table 4). These results

suggest that chloroplast SSR markers could be useful tools to study genetic diversity in

Zantedeschia, and furthermore that this could be an effective method to select germplasm

for the improvement of ornamental cultivars in Zantedeschia.
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Table 3 Characteristics of the four SSR motifs for Z. odorata. Forward and reverse primer sequences, Annealing temperature (Tm), repeat mo-
tifs.

Primer repeat Start(bp) End(bp) Forword Primer (5'-3") Tm(°C) Reverse Primer (5'-3") Tm(°C)
1 (A)10 4957 4966 CATAGCCGCACTTAAAAGCC 59.875 TGGGATCGTGCAATCAATTT 61.239
2 (A)10 12561 12570 CCATAAAGGAGCCGAATGAA 60.031 AGACAATGGACGCTGCTTTT 59.882
3 (A)10 40167 40176 ATCCCCTTCTCCATCGAAAT 59.728 AGCAAGATTGGTTGGATTGG 59.933
4 (T)10 76955 76964 GGGCAAATTATGTCAGTGCC 60.339 AGGCTATCTCAAACTGCCGA 59.978

Table 4 Genetic diversity parameters estimated on 134 Zantedeschia accessions.

Parameter Section Zantedeschia Section Aestivae total

Na 3.000 14.000 14.000

Na Freq. > 5% 3.000 6.500 7.000

No. Private Alleles 0.000 11.000 14.000

Ne 2.295 6.084 6.307

I 0.844 2.116 2.130
Notes.

Na, No. of Alleles; Na (Freq > 5%), No. of Different Alleles with a Frequency > 5%; Ne, No. of Effective Alleles; I, Shan-
non’s Information Index.

DISCUSSION

IR contraction and expansion in the cp genome of the genus
Zantedeschia

With the exception of certain plants in the Fabaceae, and all conifers, the cp genomes
of most plants display large inverted repeats (Aii et al., 1997). It has been suggested that
these IRs have important roles in conserving essential genes and stabilizing the structure
of chloroplast DNA (Palmer ¢» Thompson, 1982).Most plant species have an IR of about
25 kbp in size (Aii et al., 1997), and while the sequences of IRs are generally conserved,
contraction and expansion events at the borders of these regions are common. During land
plant evolution, there have been multiple instances of IR expansion or contraction that
have involved the shifting of complete genes from the SSC regions into the IR or vice versa,
resulting in the IR in land plants varying in size from 10 to 76 kbp. These events change
the boundaries of the IR regions with the LSC or SSC regions, explaining the variation in
size of the cp genome (Raubeson et al., 2007; Xia, Wang ¢ Smith, 2009; Yao et al., 2015).
The terminal IR gene, which is adjacent to the SSC region, is highly conserved across most
land plants, and in most species,including those in the genera Rosa, Lancea and Paeonia
(Meng et al., 2018),trnN-GUU is the last full-length IR gene at the IR/SSC boundary. This
is strong evidence that this was an ancestral IR/SSC endpoint that has been retained in
most lineages (Zhu et al., 2016).

When we compared the cp genome IR boundary in various genera in the Araceae (Lemna,
Symplocarpus, Wolffia, Acorus, Symplocarpus, Pinellia, Colocasia and Dieffenbachia), we
found in this family, the IR generally terminates at the truN-GUU gene at the IR/SSC
boundary (Fig. 3) like most land plants. Howerver, we did find several minor IR extensions
into the SSC in the Araceae genera Acorus, Wolffiella, Spirodela, Lemna as well as in
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Z. aethiopica. Minor IR extensions into the LSC region have occasionally occurred, as

in Acorus americanus. Surprisingly, large expansions have occurred in three species of
Zantedeschia, and in particular in Z. elliottiana, in which six genes of the SSC region
and two genes of the LSC region have shifted into the IR region. The variation in the
size of the IR region may not only explain the differences in length between different
Zantedeschia cp genomes, but may also affect the rates of substitution and of plastome
sequence evolution. Indeed, there is evidence that the IR has significant influence on the
rates of evolution of plastid genomes, and the IR has been demonstrated to have lower
rates of substitution (non-coding as well as synonymous and nonsynonymous) than do
single-copy genes in several groups of angiosperms including carnivorous plants (Ki,
Park & Kim, 2009; Susann et al., 2013; Wolfe, Li & Sharp, 1987; Yi et al., 2012) as well as in
some gymnosperms, such as Cycas (Wu ¢ Chaw, 2015). However, in plants totally lacking
the IR, such as the legume clade, those genes which in other groups are IR genes have a
synonymous substitution rate similar to that of single-copy genes (Perry & Wolfe, 2002).
Wolfe, Li ¢ Sharp (1987) and Perry & Wolfe (2002) suggest that a copy-dependent repair
mechanism, such as gene conversion, would explain the lower rate of substitutions seen in
the IR. Gene conversion has been demonstrated in plastids (Khakhlova ¢ Bock, 2006), and
is suggested to have been responsible for small increases and decreases in the size of the IR
region (Goulding et al., 1996).

SSR genetic diversity in Zantedeschia

Genetic diversity assessment is used to characterize germplasm and also has a role in
conservation, allowing the identification of potential parents for breeding programs (Friedt
et al., 2007). Genetic diversity in germplasm collections is commonly assessed through
the use of molecular markers. Inter-sample sequence repeats (ISSRs), amplified fragment
length polymorphisms (AFLPs), and random amplified polymorphic DNA (RAPD)
markers have allowed the development of DNA fingerprinting for the identification of
cultivars of Zantedeschia (Bo et al., 2012; Hamada & Hagimori, 1996), revealing levels

of genetic variation (Zhang, 2009; Zhen ¢ XU, 2013). However, as well as being labor-
intensive and having only unstable reproducibility, a major weakness of these molecular
markers is that they are dominant markers, and cannot therefore distinguish heterozygous
and homozygous genotypes (Tan et al., 2012). Simple sequence repeat (SSR) markers
possess several advantages over the other molecular markers, including co-dominance,
high polymorphism, and good reproducibility (Morgante, Hanafey ¢» Powell, 2002).
Furthermore, SSRs from chloroplast DNA are powerful tools in evolutionary and
population genetics (Dong et al., 2013; Dong et al., 2016; Flannery et al., 2006; Suo et al.,
2016) for the construction of linkage maps and to inform the breeding of crop plants
(Powell et al., 1995; Xue, Wang ¢ Zhou, 2012), because they are uniparentally inherited
and can be highly variable even intraspecifically.

Wei et al. (2012) developed 43 polymorphic SSRs loci from expressed sequence tags
(ESTs) from white calla lily (section Zantedeschia). Moderately high levels of genetic
diversity were reported from analyses of 24 wild or cultivated accessions of white calla
lily. The observed/expected heterozygosity (Hp /Hg) was 0.501/0.662, respectively, and the
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mean number of alleles per locus (Na) was 5.23. The PIC was found to be 0.446 (Wei ef al.,
2012). In a subsequent study into the genetic diversity of the colored calla lily(section
Aestivae)using 31 EST-SSRs, Wei et al. (2017) showed that Na = 3.58; Hp = 0.453;

Hg =0.478, PIC = 0.26 and Ne = 2.18. Although the two studies both used EST-SSRs,
evaluation of the genetic diversity revealed slight differences.

Our present study is the first to develop and employ SSR markers from the cp genome of
genus Zantedeschia. In order to utilize these markers for the identification of cultivars, we
choose four representative polymorphic tri-SSR markers and used these to assess genetic
diversity in 134 cultivars of Zantedeschia. Compared with EST-SSRs diversity analyses from
previous studies, our results show a low level of genetic diversity in Zantedeschia, with Na
= 3.00, Ne = 2.371, and PIC = 0.388. Furthermore, cpSSRs showed lower diversity than
the nSSRs. Similar results have been reported from other species using both types of SSR
markers (Pakkad, Ueno ¢ Yoshimaru, 2008; Robledo-Arnuncio ¢ Gil, 2005; Setsuko et al.,
2007), and reflects the low substitution rate in plant cpDNA sequences compared with that
in nDNA (Wolfe, Li ¢ Sharp, 1987). SSRs from mitochondrial or cp genomes have been
developed in many species and have been used for the analysis of genetic diversity(Song et
al., 2014; Wheeler et al., 2014), however this study represents the first time to develop the
chloroplast SSR markers in Araceae. SSRs developed from the Zantedeschia uniparentally
inherited and non-recombinant cp genome also have the advantages of nuclear SSRs, and
we believe that they will be useful for genetic analysis in this horticulturally important
genus.

CONCLUSIONS

This study presents the sequenced cp genome sequences from four horticulturally important
species of Zantedeschia (Araceae), a genus native to northeastern and southern Africa and
now globally naturalized. The sequencing, assembly, annotation and comparative analyses
revealed that the cp genome of Zantedeschia has a quadruple structure, with a gene order
and GC content similar to those of typical angiosperm cp genomes. However, unusual
IR expansion was found in this genus. SSR genetic diversity assessment showed that
Zantedeschia has moderately high-level diversity. Phylogenetic analysis showed that the
sampled species of the genus Zantedeschia formed a monophyletic clade. These sequences
will enable us to assess genome-wide mutational dynamics within the family Araceae, and
moreover, will facilitate investigations into gene expression and genetic variation within
these ornamental species.
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