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ABSTRACT
Background. Acute myocardial infarction (AMI) is considered one of the most
prominent causes of death from cardiovascular disease worldwide. Knowledge of the
molecular mechanisms underlying AMI remains limited. Accurate biomarkers are
needed to predict the risk of AMI and would be beneficial for managing the incidence
rate. The gold standard for the diagnosis of AMI, the cardiac troponin T (cTnT)
assay, requires serial testing, and the timing of measurement with respect to symptoms
affects the results. As attractive candidate diagnostic biomarkers in AMI, circulating
microRNAs (miRNAs) are easily detectable, generally stable and tissue specific.
Methods. TheGene ExpressionOmnibus (GEO) database was used to comparemiRNA
expression between AMI and control samples, and the interactions between miRNAs
andmRNAswere analysed for expression and function. Furthermore, a protein-protein
interaction (PPI) networkwas constructed. ThemiRNAs identified in the bioinformatic
analysis were verified by RT-qPCR in anH9C2 cell line. ThemiRNAs in plasma samples
from patients with AMI (n= 11) and healthy controls (n= 11) were used to construct
receiver operating characteristic (ROC) curves to evaluate the clinical prognostic value
of the identified miRNAs.
Results. We identified eight novel miRNAs as potential candidate diagnostic biomark-
ers for patients with AMI. In addition, the predicted target genes provide insight into
the molecular mechanisms underlying AMI.

Subjects Bioinformatics, Cardiology
Keywords Diagnostic biomarkers, miRNA-mRNA network, Differentially expressed genes, Acute
myocardial infarction

INTRODUCTION
Acute myocardial infarction (AMI) is the most common cardiac event worldwide and
among cardiovascular diseases (CVDs) is a leading threat to human health (Guo et al.,
2019). AMI is caused by acute coronary syndrome (ACS), which is induced by plaque
ulceration or intravascular thrombosis and thrombotic material after rupture (Li, Zhou
& Huang, 2017). Early diagnosis and interventional therapy are important to minimize
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the damage to cardiac muscle and have the potential to significantly reduce mortality and
improve prognosis (Braunwald, 2012). Although the cardiac troponin T (cTnT) assay, the
gold standard for diagnosis of AMI, has facilitated the diagnosis of AMI and contributed
to lower mortality, it can lead to false positives in patients with chronic but stable coronary
artery disease or healthy controls (Braunwald, 2012). Therefore, novel biomarkers with
high sensitivity and specificity are urgently needed to allow the early diagnosis of AMI and
thereby improve clinical outcomes.

microRNAs (miRNAs), which are RNAs containing approximately 20 to 24 nucleotides,
do not have the potential to encode proteins but can negatively regulate genes (Cheng
et al., 2019). miRNAs restrain protein translation or mRNA degradation by binding to
the 3′UTRs of messenger RNAs (mRNAs) (Fasanaro et al., 2010). Accumulating studies
have revealed that miRNAs are involved in multifarious biological functions, including
cell proliferation, apoptosis and inflammation, and exhibit strong correlations with
mechanisms of disease, especially in cardiovascular disease (Feinberg & Moore, 2016).
miRNAs have been identified as biomarkers of pathological events during the process
of AMI (Boon & Dimmeler, 2015). In particular, the knockdown of miR-155 inhibits
cardiomyocyte apoptosis in AMI-induced mice, and miR-155 is upregulated by negatively
regulating the RNA-binding protein Quaking (QKI) (Guo & Liu, 2019). Cai & Li (2019)
found that miR-29b-3p overexpression could protect cardiomyocytes against hypoxia-
induced injury by negatively regulating the level of TRAF5, which suggests a potential
therapeutic method for AMI. Circulating miRNAs are easily detectable, relatively stable
and tissue specific, making them attractive candidate biomarkers (Wang et al., 2010).
Enhancing our understanding of the relationships between miRNAs and target genes can
help reveal detailed mechanisms and identify novel biomarkers for AMI. In this study, we
aimed to identify miRNAs with high clinical applicability for distinguishing patients with
AMI from those without.

To that end, we identified circulating miRNAs that are differentially expressed (DE) in
AMI by using integrated analysis. Gene expression profiles in AMI were acquired through
the Gene Expression Omnibus (GEO) database. Then, a competitive endogenous RNA
(ceRNA) network was constructed after a comprehensive analysis. Receiver operating
characteristic (ROC) curve analysis was applied to analyse the diagnostic usefulness of
the identified DE-miRNAs and genes. Finally, eight potential miRNAs were identified as
significant predictors of AMI. Our study may be helpful for elucidating the mechanisms of
AMI pathogenesis and identifying diagnostic biomarkers for AMI.

MATERIAL AND METHODS
Subjects
A total of 11 AMI patients and 11 healthy subjects were enrolled from Affiliated Hospital
of Qingdao University between 2017 and 2018 (Table S2). All of the AMI patients had been
diagnosed for the first time and undergone a primary percutaneous coronary intervention
(PCI). The diagnosis for AMI was made based on the following criteria: (i) acute ischaemic
chest pain within 24 h; (ii) electrocardiogram changes (pathological Q wave, ST-segment
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elevation or depression) and (iii) increases in cardiac biomarkers. The exclusion criteria
were selected due to their potential influence on miRNA expression and were as follows:
previous history of cardiac disease, tumour, renal insufficiency, surgery within the six
previous months, and anticoagulant therapy. The study was conducted in accordance
with the Declaration of Helsinki. The ethical committee of Affiliated Hospital of Qingdao
University approved the study numbered QYFYWZLL25621.

Sample collection and RNA isolation
Blood samples were collected into EDTA tubes before coronary angiography and
application of heparin. Serum was obtained after centrifugation at 3,000 g for 10 min
at 4 ◦C to remove debris and stored in RNase-free tubes at −80 ◦C at Affiliated Hospital
of Qingdao University until analysis. All participants were informed of the study details by
the ethics committee of the hospital and provided written informed consent. Total RNA
from the serum samples was extracted using TRIzol reagent (Sigma, St. Louis, MO, USA)
following the manufacturer’s instructions. For normalization, 25 fmol Caenorhabditis
elegansmiR-39 (cel-miR-39) (Qiagen, Valencia, CA) was added to each serum sample after
the addition of TRIzol, following previous methods.

Data sources
The data expression profiles of AMI were searched in the GEO database, and two
independent datasets of research on AMI, GSE24591 and GSE31568, were included in
our study. Using the genome-wide expression data of miRNAs obtained from the two
selected independent cohorts, differential genes were screened according to the control
group and AMI group of samples.

Data preprocessing and identification of DEGs
GEO2R, which is an interactive web tool that allows comparisons between two groups of
samples to analyse almost any GEO series, was used to confirm DEGs between the control
group and AMI group. The limma R package was applied by GEO2R and served as the
processor to handle the supplied processed data tables. DEGs between the control and AMI
groups were screened out according to the criteria p value less than .05 and absolute log
fold change greater than 1.

Analyses of miRNA-mRNA targets
Investigating the target genes of miRNAs is crucial for identifying the regulatory
mechanisms and functions of miRNAs. Herein, we identified 8 DE-miRNAs and then
predicted the targets of the DEGs by employing three miRNA-target tools: miRWalk
V2.0 database, mirDIP, and miRTarBase. The miRNA targets were screened based on
the overlapping results from the three websites. Then, the regulatory networks of the
miRNA-mRNA pairs were extracted (based on an expression fold change >2.5 and an FDR
<0.05) and visualized using Cytoscape software (Smoot et al., 2011).
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Table 1 The primer used in QPCR.

hsa-miR-545 Forward: 5′-TCAGTAAATGTTTATTAGATGA-3′

hsa-miR-139-3p Forward: 5′-GGAGACGCGGCCCTGTTGGAG-3′

hsa-miR-101 Forward: 5′-CGGCGGTACAGTACTGTGATAA-3′

hsa-miR-24-1* Forward: 5′-TGCCTACTGAGCTGATATCAGT-3′

hsa-miR-598 Forward: 5′-CGTACGTCATCGTTGTCATCGTCA-3′

hsa-miR-33a Forward: 5′-AGCGTGCATTGTAGTTGCATTGCA-3′

hsa-miR-142-3p Forward: 5′-TGTAGTGTTTCCTACTTTATGGA -3′

hsa-miR-34a Forward: 5′- CGCGTGGCAGTGTCTTAGCT-3′

Gene Ontology (GO) annotation and Kyoto Encyclopaedia of Genes
and Genomes (KEGG) pathway enrichment analyses of the DEGs
GO annotation andKEGGpathway enrichment analyses of the DEGswere performed using
the Database for Annotation, Visualization and Integrated Discovery (DAVID) (selected
with enrichment significance evaluated at p< .05), which revealed the biological processes
(BPs), cellular components (CCs), molecular functions (MFs) and pathways associated
with the DE-miRNAs.

Protein–protein interaction (PPI) network construction and hub gene
identification
To gain insights into the interactions of the 591 target genes of the identified miRNAs, a
PPI network was constructed and analysed with the STRING tool to reveal the molecular
mechanisms underlying AMI. Target genes in the PPI network serve as nodes, the lines
between two nodes denote associated interactions, and the strengthof the interaction is
expressed by the colour of the line. The hub genes, which were defined as genes that play
essential roles in the network, were distinguished according to the cutoff criteria of degree
calculated by cytoHubba in Cytoscape. The corresponding interactions were visualized
using Cytoscape software (http://cytoscape.org/) (Su et al., 2014).

Cell culture and treatment
The H9C2 cell line was obtained from the Shanghai Institutes for Biological Sciences
(Shanghai, China) and cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% FBS (ExCell Bio, Shanghai, China) and 1% antibiotics. The cells were
cultivated in a humidified atmosphere with 5% CO2 at 37 ◦C. The cells were trypsinised
to generate single cell suspensions at 80% confluency. The cells were treated with 2 µM
doxorubicin (DOX) for 24 h.

RT-qPCR analysis
A reverse transcription kit (Takara, Otsu, Japan) was applied to synthesize the cDNA.
RT-qPCR was accomplished using SYBR Green PCR Master Mix (Yeasen, Shanghai,
China). The forward primers arepresented in Table 1, and the same reverse primer with
the sequence 5′-GTGCAGGGTCCGAGGT-3′ was used for all miRNAs.
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The average expression levels of serum miRNAs were normalized against cel-miR-39
(Qiagen, Valencia, CA), and the expression of cell-derived miRNAs were normalized
against U6 (Takara, Otsu, Japan).

Fold changes in miRNA expression were calculated using the 2−11Ct method for
each sample in triplicate (Chang, Chen & Yang, 2009). Taking the calculation method of
miRNA expression in plasma as an example, 11Ct= [(CtmiRNA – Ct cel−miRNA−39)diseased -
(CtmiRNA-Ct cel−miRNA−39)control]. In brief, with this method, the Ct values from the target
miRNA in both AMI and control group are adjusted in relation to the Ct of a normalizer
RNA (cel-miR-39), which resulted in 1Ct. In order to compare diseased and control
samples, we calculated 11Ct values, which allowed us to determine the magnitude of
the difference in miRNA expression. To ensure consistent measurements throughout all
assays, for each PCR amplification reaction, three independent RNA samples were loaded
as internal controls.

ROC curves
ROC curves were constructed to discriminate AMI patients from control subjects for the
plasma miRNAs, and the areas under the ROC curves (AUCs) were analysed to assess the
diagnostic accuracy of each identified miRNA. Herein, a normalized miRNA score was
used to represent the expression level of the selected miRNA in the AMI group relative to
that in the control group (Goren et al., 2012). In brief, we used miRNA scores, which were
calculated by subtracting the normalized Ct from 40 and then adjusted by deducting the
minimal score, leading to miRNA scores with a lower bound of 0. All statistical analyses
were performed using SPSS 13.0 (Chicago, IL, USA).

Statistical analyses
Student’s t -test was carried out using GraphPad Prism 5 to compare test and control
samples. For the analysis of clinical characteristics in AMI patients and control individuals,
data were presented as means± standard deviations (SD) for quantitative variables. Mean
values of quantitative variables were evaluated by Student’s t -test, orMann–WhitneyU -test
when Student’s t -test were not satisfied. p< .05 was considered to indicate a statistically
significant difference. All statistical analyses were performed using SPSS 13.0 (Chicago, IL,
USA).

RESULTS
Identification of DE-miRNAs
|Log2FC|>1 and p value <.05 were considered as criteria to screen the DE-miRNAs. Among
the selected GEO datasets, 27 DE-miRNAs, including 25 downregulated and 2 upregulated
genes, were found in the GSE24591 profile (Fig. 1A), whereas 307 DE-miRNAs, including
132 upregulated and 175 downregulated genes, were found in the GSE31568 profile
(Fig. 1B). The candidate DE-miRNAs generated by the two datasets were intersected using
a Venn diagram (Fig. 1C). All intersecting DE-miRNAs are shown in Table 2 and included
hsa-miR-545, hsa-miR-139-3p, hsa-miR-101, hsa-miR-24-1, hsa-miR-598, hsa-miR-33a,
hsa-miR-142-3p, and hsa-miR-34a.
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Figure 1 Identification of differentially expressed miRNAs analysis. (A) Volcano plot of differentially
expressed miRNAs in GSE24591. The red dot represents upregulated miRNAs and the green dot repre-
sents downregulated miRNAs. (B) Volcano plot of differentially expressed miRNAs in GSE31568. The red
dot represents upregulated miRNAs and green dot represents downregulated miRNAs. miRNAs, microR-
NAs. (C) A Venn-diagram between GSE24591 and GSE31568. The coincident part represents the differen-
tially expressed genes shared by the two series, accounting for a total of eight.

Full-size DOI: 10.7717/peerj.9129/fig-1

Table 2 The DE-miRNAs.

Symbol P Value logFC Up/Down

hsa-miR-545 0.00038 −1.50467 Down
hsa-miR-139-3p 0.0005900000 −1.53651 Down
hsa-miR-101 0.0080000000 1.04767 Up
hsa-miR-24-1* 0.0001180000 −2.08228 Down
hsa-miR-598 0.0036000000 −1.14074 Down
hsa-miR-33a 0.0002760000 −1.98301 Down
hsa-miR-142-3p 0.0002622 −1.07909 DOWN
hsa-miR-34a 0.0031100000 1.90204 Up

miRNA-target gene interactions
Following data preprocessing and analysis of the three databases, an overlap of 591 gene
pairs from eight DE-miRNAs was obtained among the databases. These overlapping pairs
were used to predict the target genes that interact with the miRNAs. The predictions
were verified by more than four algorithms, including miRDB, RNA22, RNAhybrid, and
TargetScan. The network of miRNA-mRNA interactions was visualized in Cytoscape, as
shown in Fig. 2, and the target genes are listed in Table 3.
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Figure 2 MiRNA-target gene interactions. Interaction networks of miRNA and target DEGs in AMI.
The red dot represents miRNAs and the green dot represents target mRNAs.

Full-size DOI: 10.7717/peerj.9129/fig-2

Enrichment analyses of the target genes
To investigate the functions of the target genes, GO annotation andKEGGpathway analyses
of the interacting 591 genes from GSE24591 and GSE31568 were performed utilizing the
DAVID online tool. The top 10 GO and KEGG items, including the BPs, CCs, MFs and
KEGG pathways that were significantly enriched, are listed in Figs. 3A–3D. The significantly
enriched entries for BPs were positive regulation of transcription from the RNA polymerase
II promoter, transcription, and DNA-templated and negative regulation of transcription
from the RNA polymerase II promoter (Fig. 3A). Furthermore, the nucleus, cytoplasm,
and nucleoplasm accounted for the majority of the CC terms (Fig. 3B). The most enriched
MFs were functions in metal ion binding, zinc ion binding and poly (A) RNA binding (Fig.
3C). In the MF category, the top 10 most highly regulated DE-miRNAs were significantly
enriched in the pathways of cancer and the PI3K-Akt pathway. Intriguingly, the enrichment
in adrenergic signalling in cardiomyocytes was found to be closely related to AMI (Fig.
3D).
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Table 3 The miRNA-mRNA network.

Symbol Up/Down Count Target mRNA

hsa-miR-545 Down 85 USP15, WEE1, DDX3X, CSNK1G3, LRP1, FGF2, CRIM1, FAM13A, ZFHX4, PEX5L, RAB10, AGO4,
PLAG1, MAP3K7, HIGD1A, ZCCHC3, CNOT6L, PLEKHA1, PIP4K2C, NLK, ARID2, PSAT1, RNF138,
PTMA, BNC2, FZD6, SLC25A12, SYPL1, COL12A1, LRIG1, NUP50, ARIH1, RNF111, CDC42SE2,
TRIM37, GPATCH8, ZFR, PURB, ARHGAP12, SNAI2, PEG10, CCND1, YWHAQ, WNK3, PRDM4,
HMGB3, FXR1, PLAGL2, SMAD7, ACVR2B, CDV3, RREB1, DIP2C, GABARAPL1, UBN2, CDCA4,
MTDH, ATG14, TM9SF3, SLC7A2, HNRNPDL, DCAF17, SLC16A9, SPRED1, TMEM33, ZFHX3,
ZNF704, VCAN, NDUFB6, MID1, PARM1, CNTLN, MKX, SMG1, PHF3, IGF2R, ZNF622, PODXL,
PPM1A, NEGR1, ATP13A3, ACBD5, STRBP, EN2, ZFP91

hsa-miR-139-3p Down 12 MTDH, SOX4, ZBTB7A, EHD3, ALOX15, ZNF585B, FAM162A, ZNF589, TBX20, HLA-A, FOXC1,
MRPL9

hsa-miR-101 Up 205 DUSP1, EZH2, FBN2, ATXN1, ARID1A, RAP1B, MYCN, TGFBR1, AEBP2, BICD2, FOS, BCL9,
MBNL1, RAB5A, ANKRD17, ZNF207, RANBP9, RAP2C, MOB4, NLK, DNMT3A, ZCCHC2, FNDC3A,
NACA, PTGS2, TNPO1, PAFAH1B1, MITF, RNF111, CBFA2T2, SMARCD1, ZBTB18, MAP3K4,
SOX9, DYRK2, SMARCA5, LCOR, ZNF654, LMNB1, SUB1, HNRNPF, UBE2D3, ICK, MBNL2,
SIX4, OTUD4, INO80D, ZEB2, APP, ABHD17C, MRGBP, ARID5B, CADM1, RREB1, MET, CDH5,
STMN1, MFSD6, TSPAN12, TMEM161B, TET2, PURB, SYNCRIP, PPP2R2A, UBE2A, ZEB1, AP1G1,
NR2F2, PPP2R5E, FMR1, TGIF2, ZFP36L2, ANKRD11, LIFR, PHF3, CERS2, NEK7, MPPE1, ZFX,
PRKAA1, TNRC6B, GNB1, BZW1, TMED5, UBN2, CPEB1, DDIT4, FZD6, FBXW7, KLF12, LRCH2,
ZNF451, EED, HNRNPAB, PIP5K1C, RORA, EIF4G2, SLC38A2, ATXN1L, RNF219, C1orf52, BCL2L11,
NAP1L1, C8orf4, KDM6B, ZC3H11A, DIDO1, ZBTB21, KDM3B, MLEC, STAMBP, MTSS1L, ARAP2,
POU2F1, ACVR2B, BEND4, PIK3C2B, NUFIP2, FAM84B, C10orf88, SPATA2, NUPL2, MAML3,
PSPC1, SGPL1, KLF6, LRRC1, RAC1, TMEM170B, RAB39B, TMEM68, LBR, PLEKHA1, AKAP11,
HSPA13, MCL1, AFF4, SACM1L, ZNF800, AP1S3, CAPN2, FRS2, SREK1IP1, MRPL42, FAR1, TRERF1,
RNF213, WWTR1, NACA2, SLC39A6, WNK1, TFAP4, DAZAP2, CNEP1R1, CBX4, SSFA2, SPIRE1,
GOLGA7, ATG4D, MORC3, TGFBR3, SNRNP27, ADO, TGOLN2, LIN7C, MNX1, PANK1, GPAM,
MTOR, NAA30, TMTC3, TBC1D12, PRPF38B, BLOC1S6, ELAVL2, KIAA1586, TBX18, DENND5B,
TNFAIP1, KPNA2, NXT2, RAB11FIP1, N4BP1, PEX5L, CLIC4, VEZT, NACC1, AP3M1, FBXO11, E2F3,
TEAD1, CDKN1A, ZNF350, PLAG1, ZNF645, REL, CMTM6, STX16, XPO7, CHAMP1, RNF44, DIMT1,
QSER1, FAM217B, ATP5B

(continued on next page)
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Table 3 (continued)

Symbol Up/Down Count Target mRNA

hsa-miR-24-1 Down 25 SLITRK1, FOXM1, CYP20A1, DPCR1, CLNS1A, RACGAP1, ZWINT, ELOVL5, DHX33, PRMT7,
PRKAR1A, ZNF367, TVP23C, DDIT4, TPM4, SLC23A3, SKAP2, TMEM231, STARD5, SLC38A9, SP2,
INCENP, SNX8, PNKD, ABI2

hsa-miR-598 Down 1 YWHAH
hsa-miR-33a Down 93 KPNA4, ZNF281, NPC1, ABCA1, YWHAH, HMGA2, CROT, ARID5B, PIM1, ABHD2, IRS2, SLC26A7,

RMND5A, GAS1, PAPOLG, SGCD, STYX, ZC3H12C, CPEB2, ANKRD29, BTBD2, FAM46C, NUFIP2,
PTHLH, RAB5A, DSC3, PIM3, FOXP1, SLC16A1, PPARA, TSG101, PCM1, LDHA, ZCCHC14, TWIST1,
PDE8A, SP1, FCHO2, REEP1, SOCS5, RBM33, SEMA7A, STRBP, HBS1L, PPP1R9A, PGM3, UBE2D1,
SRSF1, MLLT10, RNF19A, LIMA1, XIAP, GDNF, SLC39A14, NCOA3, SAMD8, CREBBP, NFYC,
RAP2C, SEC62, SNTB2, SECISBP2L, SPIN4, TCF12, HIF1A, GIGYF1, CNOT4, MAPK8, TIA1, PDIA6,
FIGN, KLHL15, ITGBL1, BCL10, PLEKHA8, DCBLD2, ACSL4, TMEM65, EDN1, FBXO30, ELL2, G2E3,
ZNF208, RARB, CAPRIN1, MATR3, PDE10A, BRWD1, IGF1R, KLF9, HSPA13, WNT5A, CEP170

hsa-miR-142-3p Up 11 CLTA, ZNF217, HMGA2, CPEB2, ZCCHC14, SGMS1, ACSL4, ZFX, XIAP, ZFP36L2, KLHL15
hsa-miR-34a Up 159 SYT1, NOTCH1, DLL1, PDGFRA, SATB2, E2F5, FUT8, LEF1, TPD52, FOXP1, UBP1, E2F3, JAG1,

POGZ, MET, GALNT7, FOXN3, ZNF644, ACSL1, BCL2, NR4A2, VAMP2, ACSL4, SGPP1, MYCN,
RRAS, PEA15, KLF4, CCNE2, MAP2K1, AXL, EVI5L, SAR1A, CAMTA1, YY1, SIRT1, LDHA,
TMEM109, SLC4A7, BAZ2A, MTA2, CSF1R, FOSL1, ARHGAP1, GMFB, BMP3, INHBB, CCND1,
MTMR9, NOTCH2, GAS1, PODXL, SNTB2, VPS37B, MDM4, ZDHHC16, PPP1R16B, GRM7, CPEB3,
CDK6, IL6R, NCOA1, HSPA1B, TSN, SURF4, FAM46A, RDH11, LRRC40, CNOT4, VCL, PPP1R10,
METAP1, PEG10, HOXA13, EFNB1, STX1A, ADO, STRAP, CLOCK, LMAN1, SMAD4, SOCS4,
AREG, PLCG1, DOCK3, SLC35G2, POU2F1, PHF19, TM9SF3, CCL22, HNF4A, RAE1, EDEM3, MYB,
CDC25A, TNRC18, PPP3R1, TPPP, SHOC2, TOM1, WNT1, BCL2L13, IGF2BP3, MOAP1, GORASP2,
MYO1C, SRC, KIT, KMT2D, CBX3, UBL4A, GIGYF1, CYB5B, MBD6, HDAC1, SNAI1, ZNF551, SSX5,
ARHGDIB, ERLIN1, FIGN, TSPAN14, ZC3H4, ULBP2, ATP13A3, CDKN1B, STAG2, NEUROD2,
AXIN2, RTN4, RRAGD, FAM208A, MAZ, ATXN2L, ABLIM1, IGSF3, UST, CDAN1, JARID2, WDR77,
LRRFIP1, SNX12, CTIF, NDRG1, TMOD2, UCK2, HNRNPU, BIRC5, MTAP, RBM12, TMEM167A,
XIAP, SLC4A2, AK2, EFHD2, RNF169, IRGQ, DDX10, L1CAM
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Figure 3 Top 10 significant enrichment GO and KEGG terms of DEGs. (A) BP: biological process; (B)
CC: cellular component; (C) MF: molecular function; (D) KEGG: signaling pathway.

Full-size DOI: 10.7717/peerj.9129/fig-3

PPI network
To distinguish the connections among the 591 target genes, we mapped the PPIs using
the logical data originating from the STRING database (http://strin g.embl.de/). With
degree as the criterion, the top 100 linked DE-miRNAs were identified, as shown in Fig. 4.
The network is composed of 100 nodes and 700 edges and has an average local clustering
coefficient of .467. The top 10 genes with a high-ranking degree are labelled in purple and
associated with much larger circles; all the edges are distinguished based on connection
score (Fig. 4).

Biological analysis of the hub genes
Highly connected proteins in a network are master keys of regulation and are defined as
hub proteins (Yu et al., 2017). The hub proteins in the present study included CTNNB1,
CCND1, NOTCH1, EZH2, MTOR, BTRC, RAC1, CDKN1A, CDKN1B, and MAP2K1.
They were identified by evaluating degree with the Biological Networks Gene Ontology tool
(BiNGO) plugin of Cytoscape, which considered the top ten closely related interactions
(Table 4); these involved 10 nodes and 35 edges (Fig. 5A). Additionally, KEGG analysis
was performed on the potential hub genes (Fig. 5B), and the top 10 enrichment pathways
were identified (Fig. 5C).

Validation of the identified miRNAs
The expression levels of the identified miRNAs were quantified by RT-qPCR in H9C2 cells
treated with DOX to verify the results of the bioinformatic analyses. Emerging studies have
illuminated the role of cardiomyocyte apoptosis in DOX-induced myocardial damage,
which is similar to the proceeding of AMI (Catanzaro et al., 2019). Based on our previous
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Figure 4 The PPI networks of top 100 DEGs. All the circles are proteins encoded by top 100 DEGs. The
red colors represent the 10 highest degree genes and the circles with green represent the remaining genes.
Edges are distinguished using the color shading from white to yellow.

Full-size DOI: 10.7717/peerj.9129/fig-4

Table 4 Top 10 genes in network ranked by degree method.

Rank Symbol Score

1 CTNNB1 50
2 NOTCH1 47
3 CCND1 41
4 EZH2 36
5 MTOR 33
6 CDKN1B 31
7 CDKN1A 29
8 MAP2K1 27
9 BTRC 26
10 RAC1 24

study, we treated H9C2 cells with 2 µM DOX. As shown in Fig. 6, miR-34a, miR-101
and miR-598 were upregulated, and miR-24-1, miR-33a, miR-139-3p, miR-142-3p, and
miR-545 were downregulated. Furthermore, the results of miR-24-1*, miR-33a, miR-34a,
miR-101, miR-139-3p, and miR-545 in patients were consistent with the results obtained
for the tissue cultures. However, the expression of miR-142-3p did not have significant
change in blood samples and miR-598 was upregulated in blood but decreases in tissues
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Figure 5 Biological analysis of hub genes. (A) The interaction of 10 hub genes; (B) the KEGG enrich-
ment analysis by Cytoscape; (C) the top 10 KEGG enrichment analysis by R language.

Full-size DOI: 10.7717/peerj.9129/fig-5

(Fig. S1). To investigate the efficacy of DE-miRNAs as potential biomarkers of AMI,
we performed ROC curve analysis of patients with AMI and patients without AMI. The
expression levels of the DE-miRNAs were significantly different between AMI patients
and control individuals (Fig. 7). AUC values were used to evaluate the potential of the
DE-miRNAs as diagnostic markers. The AUC values of miR-24-1 and miR-545 were
greater than .9, and these DE-miRNAs also had the highest accuracies. Moreover, all five
miRNAs had high specificity with AUCs>.7 except for miR-142-3p that the accuracy is
likely to take place when the AUC above .7 (Catanzaro et al., 2019). These results indicated
that the predicted miRNAs, especially miR-24-1 and miR-545, have potential for clinical
application.

Relationships to conventional prognostic markers
To further evaluate the potential of circulating miRNAs as cardiac biomarkers, we tested
whether the levels of identified miRNAs correlate with troponin T (TnT) level. miR-24-1
and miR-545 were strongly correlated with TnT (r =−0.722, p < 1*10−3 and r =−0.57,
p= 0.006). miR-101, miR-139-3p, and miR-598 remained correlated with TnT levels in
AMI patients (r =−0.444, p= 0.038 for miR-101, r =−0.425, p= 0.048 for miR-139-3p
and r =−0.425, p= 0.048 for miR-598). However, miR-33a, miR-34a, and miR-142-3p
was not correlated with TnT which showed in Table S3. Combining ROC analysis results,
we concluded that miR-24-1 might be the most potential biomarker in AMI.

DISCUSSION
AMI, commonly referred to as acute heart attack, is generally acknowledged as the outcome
of sudden ischaemia that results in insufficient blood supply and a subsequent imbalance
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Figure 6 The relative expression of differentially expressed miRNA in H9C2. (A) miR-24-1*; (B) miR-33a; (C) miR-34a; (D) miR-101; (E) miR-
139-3p; (F) miR-142-3p; (G) miR-545; H, miR-598. The control group respects normal H9C2 and the DOX group respects the cell of H9C2 treated
with DOX (2 µM).

Full-size DOI: 10.7717/peerj.9129/fig-6

between the supply and demand of oxygen induced by cardiomyocyte death (Vogel et
al., 2019). AMI is a central contributor to the global disease burden, occurring in 4–10%
of people under 45 years, with a massive number of patients still suffering recurrent
cardiovascular events after treatment with medication or primary PCI (Tan et al., 2016).
Previous studies have identified potential mechanisms and biomarkers for early diagnosis
and treatment. Cardiac troponin (cTn) has served as the gold standard for AMI diagnosis
and is routinely applied for patients with suspected ACS to rule-in or rule-out AMI
(Sandoval et al., 2017). Nevertheless, with the advancing sensitivity of cTn assay, the assay
has exceeded the ninety-ninth percentile for stable chronic conditions, weakening its
specificity for the diagnosis of AMI (Park et al., 2017). This observation demonstrates that
there is an urgent need for the identification of novel diagnostic markers and therapeutic
targets withminimal risk of adverse effects andmaximum sensitivity and specificity (Cruz et
al., 2019). Various investigations have revealed that miRNAs can potentially predict CVDs
by modulating the ceRNA network, thus providing a therapeutic option, especially in AMI
(Lucas, Bonauer & Dimmeler, 2018). The downregulation of miR-155 expression restrains
apoptosis and maintains a proliferative effect in cardiomyocytes by targeting QKI and can
thereby serve as a therapeutic marker for MI. Accordingly, strategies for the diagnosis and
treatment of AMI could be furnished by analysing correlative data in the GEO database
(Cruz et al., 2019) and generating an AMI-associated miRNA-mRNA regulatory network
for clinical applications regarding diagnosis, therapy, and prognosis.
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Figure 7 Receiver operating characteristic curves (ROC) of differentially expressed miRNA between AMI patients and healthy controls. (A)
miR-24-1*; (B) miR-33a; (C) miR-34a; (D) miR-101; (E) miR-139-3p; (F) miR-142-3p; (G) miR-545; (H) miR-598.

Full-size DOI: 10.7717/peerj.9129/fig-7

In this study, 27 DEGs in the GSE24591 dataset and 307 DEGs in the GSE31568 dataset
were screened in AMI and control blood samples based on the differential analysis of
GEO2R in the GEO database. Furthermore, 8 collective miRNAs (miR-545, miR-139-3p,
miR-101, miR-24-1, miR-598, miR-33a, miR-142-3p, and miR-34a) were selected and
identified as DE in AMI; there were few common DEGs because the two datasets were
independent. An interaction network of miRNAs and mRNAs was constructed by using
threewebsites,miRWalkV2.0,mirDIP, andmiRTarBase, andmore than 4 online prediction
tools, including miRDB, RNA22, RNAhybrid, and TargetScan. In addition, GO and KEGG
enrichment analyses of the mRNAs in the ceRNA network were performed. The PPI
network, analysed via the STRING database and visualized by Cytoscape software, showed
that 591 target proteins and 10 hub genes were significantly closely associated with the
miRNAs. The expression validation and ROC analyses of these DE-miRNAs based on the
RT-qPCR data supported the above results, which could quantify the diagnostic availability
of the identified DE-miRNAs.

Moreover, among the 8 miRNAs that might exert effects on the development of AMI,
miR-34a has been identified in mechanistic studies as a biomarker for AMI. It is highly
expressed in adult mice after MI and associated with a thin wall of the left ventricle (LV)
(Qipshidze Kelm et al., 2018). Yang et al. (2015). found that the suppression of miR-34a
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facilitated cardiac function following MI partly by modulating the interrelated genes
involved in cell proliferation and the cell cycle, including Bcl2, Cyclin D1, and Sirt1,
which revealed the potential of miR-34a to boost endogenous repair/regeneration in
the adult heart. Additionally, the remaining 7 miRNAs have been shown to regulate
cardiac performance. miR-545, the negatively correlated target of HOTAIR, promotes
cell apoptosis through the HOTAIR/miR-545/EGFR/MAPK axis (Li et al., 2018). miR-101
has been shown to mitigate the deterioration of cardiac function in post-MI rats (Pan
et al., 2012), and it can protect cardiac fibroblasts from hypoxia-induced apoptosis by
restraining the TGF-β signalling pathway, as shown by Zhao et al. (2015). In contrast, miR-
33 deteriorates myocardial fibrosis via the inhibition of MMP16 and the stimulation of p38
MAPK signalling (Chen et al., 2018). After I/R, the expression of miR-139-3p increases and
is downregulated by Urocortin 1 (Ucn-1), and the overexpression of miR-139-3p promotes
the expression of genes involved in cell death and apoptosis (Díaz et al., 2017). miR-24-1
was found to be significantly hypermethylated in ischaemic cardiomyopathy (ISCM) and
dilated cardiomyopathy (DCM) and significantly reduced in an ISCM group (Glezeva et
al., 2019). Additionally, miR-598 was identified as a significant predictor of heart failure
(HF) in a dyspnoea cohort (Ellis et al., 2013), and miR-142-3p sponged by lncRNA TUG1
has been suggested to potentially alleviate myocardial injury (Su et al., 2019). Thus, more
mechanistic research is needed to explore the potential functions of the identified miRNAs
in AMI. We found that several hub genes and correlative mechanism pathways including
Notch1, CTNNB1, RAC1, and MTOR had greater diagnostic potential for AMI. The
Notch1 activation pathway manages cardiac AMPK signalling by interacting with LKB1
during myocardial infarction (Yang et al., 2016). Spermidine (SPD) has been suggested
to be involved in the cardiac dysfunction induced by MI by promoting autophagy in the
AMPK/mTOR pathway (Yan et al., 2019). The inhibition of Annexin A3 (ANXA3) has
been reported to accelerate cardiomyocyte maintenance by activating PI3K/Akt signalling
in rats with AMI (Meng et al., 2019). RAC1 has been shown to inhibit the death of cardiac
myocytes stimulated by hypoxia and modify the phosphorylation levels of PI3K, AKT,
MAPK and ERK, which are significant factors of MI (Wang et al., 2017). Overall, we
inferred that the 4 hub genes might be regarded as diagnostic biomarkers and recovery
monitors in AMI.

There are several limitations to our present study. The number of samples we obtained
from GSE24591 and GSE31568 was small, generating some bias when analysing the
DE-miRNAs, and more blood samples are needed for validation with RT-qPCR in
further research. In addition, the functions and molecular mechanisms of genes are
very complicated, and predictions based only on bioinformatics need cellular and animal
experiments for verification.

CONCLUSIONS
Based on GEO database analysis, bioinformatic analysis, and experimental verification,
we not only identified eight significant DE-miRNAs in AMI but also detected 10 hub
genes that may serve as potential biomarkers of AMI. Our findings might provide reliable
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candidate biomarkers for the precise diagnosis and individualized treatment of AMI and
the development of further clinical applications in AMI.
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