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ABSTRACT
In protein evolution, due to functional and biophysical constraints, the rates of
amino acid substitution differ from site to site. Among the best predictors of
site-specific rates are solvent accessibility and packing density. The packing density
measure that best correlates with rates is the weighted contact number (WCN), the
sum of inverse square distances between a site’s Cα and the Cα of the other sites.
According to a mechanistic stress model proposed recently, rates are determined
by packing because mutating packed sites stresses and destabilizes the protein’s
active conformation. While WCN is a measure of Cα packing, mutations replace side
chains. Here, we consider whether a site’s evolutionary divergence is constrained by
main-chain packing or side-chain packing. To address this issue, we extended the
stress theory to model side chains explicitly. The theory predicts that rates should
depend solely on side-chain contact density. We tested this prediction on a data set of
structurally and functionally diverse monomeric enzymes. We compared side-chain
contact density with main-chain contact density measures and with relative solvent
accessibility (RSA). We found that side-chain contact density is the best predictor
of rate variation among sites (it explains 39.2% of the variation). Moreover, the
independent contribution of main-chain contact density measures and RSA are
negligible. Thus, as predicted by the stress theory, site-specific evolutionary rates are
determined by side-chain packing.

Subjects Biophysics, Computational Biology, Evolutionary Studies, Mathematical Biology
Keywords Protein evolution, Structural constraints, Packing, Contact density, Rate variation
among sites, Side chain

INTRODUCTION
Why do some protein sites evolve more slowly than others? Protein evolution is driven by

random mutations and shaped by natural selection (Liberles et al., 2012; Sikosek & Chan,

2014). Mutations are selected depending on their impact on functional properties, such as

the chemical nature of catalytic residues, active site conformation, and the protein’s ability

to fold rapidly and stably. Since changes of these properties depend on the mutated site,

amino acid substitution rates vary from site to site.

We can reformulate the question opening the previous paragraph: What specific

properties account for site-dependent rates of evolution? The most studied predictors
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Figure 1 The two environments of a protein residue. Images of the environments of Thr93 of Human
Carbonic Anhidrase II (pdb code 1CA2). (A) Environment of the main chain Cα : the size and colors of
protein atoms increase with the inverse square distance to Thr93 Cα (gold ball). (B) Environment of the
side chain: size and colors of atoms increase with the inverse square distance to the geometric center of
Thr93 side chain (gold wireframe).

are structural site-specific properties (Franzosa & Xia, 2009). For years, the main structural

predictor was believed to be solvent accessibility, as quantified by the Relative Solvent

Accessibility (RSA) (Bustamante, Townsend & Hartl, 2000; Conant & Stadler, 2009;

Franzosa & Xia, 2009; Ramsey et al., 2011; Shahmoradi et al., 2014). However, local packing

density, quantified by the Weighted Contact Number (WCN), predicts evolutionary rates at

least as well as RSA (Shih & Hwang, 2012; Yeh et al., 2014a; Yeh et al., 2014b).

The relationship between WCN and substitution rates can be understood in terms

of a mechanistic stress model of protein evolution (Huang et al., 2014). Given an

ancestral wild-type protein, the model assumes that its native conformation is the

active conformation. Mutating a site perturbs (stresses) its interactions with other sites,

destabilizing the active conformation. Such a destabilization determines the probability of

the mutation being accepted or rejected, and therefore the rate of amino acid substitution.

Using the energy function of the parameter-free Anisotropic Network Model (Yang, Song

& Jernigan, 2009), the expected destabilization was found to be proportional to WCN, and

site-specific substitution rates were predicted to decrease linearly with increasing WCN, in

agreement with observations.

A site’s WCN is the sum of inverse square distances from its Cα to the Cα of other

sites: it is a measure of Cα packing density. Therefore, previous substitution rate vs. WCN

studies were based on main chain (Cα) packing (Shih & Hwang, 2012; Yeh et al., 2014a;

Huang et al., 2014). However, mutations replace side chains. Consider a protein residue,

e.g., Thr93 of Human Carbonic Anhidrase II (pdb code 1CA2) (Fig. 1). The environment

of the main chain (Fig. 1A) differs from that of the side chain (Fig. 1B). When Thr93

is mutated, what environment would determine whether the mutation is accepted or

rejected? More specifically: Do site-specific substitution rates depend on main-chain

packing or on side-chain packing?

To address this issue, we extended the stress model to consider main and side chains

explicitly and we theoretically derived that substitution rates depend only on side-chain of
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packing. We tested the theory on a data set of monomeric enzymes. In agreement with pre-

dictions, site-specific substitution rates correlate better with side-chain packing than with

main-chain packing measures and RSA. Moroever, partialing out the effect of side-chain

packing, the independent contributions of main-chain packing and RSA are negligible.

METHODS
Theory
In this section, we show that the mechanistic stress model of protein evolution predicts that

the substitution rate of a protein site is determined by the packing density of its side chain.

This prediction and its empirical assessment are the point of this paper.

The stress model was proposed by Huang et al. (2014) to explain the observed

correlation between site-specific substitution rates and packing density. The model is

based on the idea that a mutant is viable to the extent that it spends time in the active

conformation. In turn, this time will depend on mutational changes of the stability of the

active conformation. The fixation probability of a mutant is modeled as

pfix ∝
CF

mutρmut(ractive)

CF
wtρwt(ractive)

(1)

where wt stands for wild-type, mut for mutant, CF is the concentration of folded protein

and ρ(ractive) its probability of adopting the active conformation. Assuming that Cmut/Cwt

is equal to the ratio of partition functions, from basic statistical physics it follows that:

pfix ∝ e−βδV∗

, (2)

where β represents the selection pressure and

δV∗
= Vmut(ractive) − Vwt(ractive) (3)

is the energy difference between mutant and wild-type in the active conformation.

Assuming that βδV∗
≪ 1 (weak selection), from (2) we find:

K i
∝ −⟨δV∗

⟩
i
, (4)

i.e., the rate of substitution of site i, K i, is proportional to (minus) the change in stability of

the active conformation averaged over mutations at i, ⟨δV∗
⟩

i. This is the basic equation of

the stress theory.

In Huang et al. (2014), mutational stability changes were calculated using an elastic

network model in which each residue is represented by a single node. Within such a

one-node-per-residue representation, there is no differentiation between main chain and

side chain. Therefore, we cannot predict whether evolutionary rates will be determined by

main chain packing or side chain packing. To address this issue, here we represent each

residue using two nodes: a main-chain node α, placed at the residue’s Cα , and a side-chain

node ρ, placed at the geometric center of the residue’s side chain (Gly’s are represented
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using only one node at Cα). The energy function is:

V(r) =
1

2


i


j>i

kαiαj(rαiαj − dαiαj)
2
+

1

2


i


j>i

kαiρj(rαiρj − dαiρj)
2

+
1

2


i


j>i

kρiαj(rρiαj − dρiαj)
2
+

1

2


i


j>i

kρiρj(rρiρj − dρiρj)
2, (5)

where rninj is the distance between nodes ni and nj (n is α or ρ), kninj is the force constant of

the spring connecting these nodes, and dninj the equilibrium spring length.

A mutation at site i will replace ρi, affecting only the parameters of the energy function

related to this node. We emphasize: while the mutation may well induce global structural

changes involving the backbone and other side chains, the only parameters that will change

are those of the mutated side chain. Following Echave (2008) and Echave & Fernández

(2010), we model a mutation at i by adding random perturbations to the lengths of the

springs connected to ρi: dρiρj → dρiρj + δρiρj and dρiαj → dρiαj + δρiαj , to find, using (3)

and (5):

δV∗
=

1

2


j≠i

(kρiαjδ
2
ρiαj

+ kρiρjδ
2
ρiρj

). (6)

Assuming that perturbations are drawn independently from the same distribution,

averaging (6) over mutations at i we find:

⟨δV∗
⟩

i
∝


j≠i

(kρiαj + kρiρj). (7)

To finish, we assume, as in the parameter-free Anisotropic Network Model (pfANM)

of Yang, Song & Jernigan (2009), that kninj =
1

d2
ninj

. Then, from (4) and (7) we obtain:

K i
∝ −WCNαρ

ρ , (8)

where

WCNαρ
ρ =


j≠i


1

d2
ρiαj

+
1

d2
ρiρj


. (9)

WCNαρ
ρ , derived here, is the side-chain weighted contact number. It depends on contacts

between node ρ of the site considered (subscript) and nodes α and ρ of the other sites

(superscript). Therefore, the stress model, combined with a two-nodes-per-site pfANM

energy function, predicts that site-specific rates will depend on the contact density of the

side chain WCNαρ
ρ .

By analogy with (9) we can calculate the main-chain weighted contact number:

WCNαρ
α =


j≠i


1

d2
αiαj

+
1

d2
αiρj


. (10)
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We expect WCNαρ
α to correlate with WCNαρ

ρ , which may result in indirect correlations with

substitution rates. However, if the stress model is correct, rates will be determined only by

WCNαρ
ρ and there should not be any independent effect of WCNαρ

α .

Other structural predictors
To assess the prediction of the previous section, we also consider the following structural

properties. First, the Weighted Contact Number WCN, which was introduced by Lin

et al. (2008) and found to be among the best structural predictors of site-dependent

evolutionary rates (Yeh et al., 2014a; Yeh et al., 2014b). It is defined as:

WCN = WCNα
α =


j≠i

1

d2
αiαj

(11)

where dαiαj is the distance between the the alpha carbons of sites i and j. For the sake of

clarity, wherever it is convenient we will use the notation WCNα
α to make explicit that the

distances between the Cα of a site (subscript) and the Cα of the other sites (superscript) are

considered. Therefore, WCNα
α can be considered a measure of main-chain packing density

(based only on Cα–Cα interactions).

Second, by analogy with (11) we can use side-chain centers of mass ρ rather than Cα to

define:

WCNρ
ρ =


j≠i

1

d2
ρiρj

(12)

WCNρ
ρ quantifies the packing density of the side chain including only ρ–ρ interactions.

Finally, we also consider the Relative Solvent Accessibility, RSA, which is the most

studied structural determinant of evolutionary rates. The RSA of a residue is obtained by

dividing its area accessible to the solvent (SA) by the maximum SA for the given amino acid

type (Tien et al., 2013).

Dataset and empirical substitution rates
To test our theory, we used the data set of Echave, Jackson & Wilke (2015). The set consists

of 209 monomeric enzymes of known structure covering diverse structural and functional

classes. Each structure is accompanied by up to 300 homologous sequences.

We used the empirical site-specific rates of evolution of Echave, Jackson & Wilke (2015).

They were calculated as follows. First, the homologous sequences for each structure

were aligned using MAFFT (Multiple Alignment using Fast Fourier Transform) (Katoh

et al., 2005; Katoh & Standley, 2013). Second, using the resulting alignments as input,

Maximum Likelihood phylogenetic trees were inferred with RAxML (Randomized

Axelerated Maximum Likelihood), using the LG substitution matrix (named after Le

and Gascuel) and the CAT model of rate heterogeneity (Stamatakis, 2014). Third, the

alignment and phylogenetic tree for each structure was used as input of Rate4Site to

obtain the site-specific rates of substitution using the empirical Bayesian method and

the amino-acid Jukes-Cantor mutational model (aaJC) (Mayrose et al., 2004). Finally,
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site-specific relative rates were obtained by dividing site-specific rates by their average over

all sites of the protein. We denote the empirical rates by KR4S.

Comparison of empirical rates with structural properties
For each protein of the dataset, we used the pdb structure to calculate the five

site-dependent structural properties defined above: WCNαρ
ρ , WCNαρ

α , WCNρ
ρ , WCNα

α

(= WCN), and RSA. For a given predictor x, we quantified its predictive power using

the squared Pearson correlation coefficient R2(KR4S,x). According to the theoretical

predictions, WCNαρ
ρ should be the sole determinant of site-specific rates. We quantified

the independent contribution of each of the other structural descriptors by partialing out

the effect of WCNαρ
ρ using semipartial correlations. The squared semipartial correlation

ρ2(KR4S,x|WCNαρ
ρ ) represents the unique contribution of predictor x. Also, it is the

amount by which the explained variation of KR4S (R2) would increase when going from

the single-variable linear fit K ∼ WCNαρ
ρ to the two-variable fit K ∼ WCNαρ

ρ + x. Expected

values, standard deviations, and p-values were obtained by averaging protein correlations

and semipartial correlations for 10,000 bootstrapped replicas of the dataset of 209 proteins.

For statistical analysis we used R (R Core Team, 2014). Correlation coefficients and

their p-values were calculated using cor.test(). Semipartial correlation coefficients and

p-values were calculated using spcor.test(). For bootstrapping with used boot() with

default options.

RESULTS AND DISCUSSION
We theoretically derived a new measure of contact density, the side-chain weighted

contact number WCNαρ
ρ which, according to the stress model, should be the sole

structural determinant of site-specific evolutionary rates. We tested this prediction on

a dataset of 209 functionally and structurally diverse monomeric enzymes. Empirical

site-specific evolutionary rates KR4S were obtained from multiple sequence alignments

using Rate4Site. We compared KR4S with WCNαρ
ρ (side-chain weighted contact number),

WCNαρ
α (main-chain weighted contact number), WCNρ

ρ (side-chain ρ − ρ weighted

contact number), WCNα
α = WCN (main-chain α − α weighted contact number), and RSA

(relative solvent accessibility). For each protein, we calculated correlation coefficients

between KR4S and each structural property and semipartial correlations to measure

independent contributions. Protein-by-protein results (Table S1) were averaged over all

proteins to obtain expected values, using bootstrapping to estimate standard deviations

and p-values (see Methods).

Side-chain contact density (WCNαρ
ρ ) vs. main-chain contact den-

sity (WCNαρ
α )

According to the stress model, site-specific substitution rates depend only on side-chain

packing, so that main-chain packing should not be directly related to substitution rates.

To test this prediction, we compared empirical substitution rates KR4S with WCNαρ
ρ

and WCNαρ
α .
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Figure 2 Profiles of site-specific evolutionary rates for 1CA2. (A) empirical rates KR4S inferred by
Rate4Site. (B) Rates predicted from the side-chain contact density (WCNαρ

ρ ) . (C) Rates predicted from

the main-chain contact density (WCNαρ
α ). Both predicted profiles look similar to the KR4S profile.

However, the WCNαρ
ρ profile is somewhat better (The WCNαρ

α profile is too smooth).

Figure 3 Empirical vs. predicted rates for 1CA2. (A) Empirical rates inferred using Rate4Site vs. rates
predicted from the main-chain contact densities (WCNαρ

α ) (B) Empirical rates vs. rates predicted from
side-chain contact densities (WCNαρ

ρ ). The “x = y” line corresponding to a perfect fit is shown. WCNαρ
α

explains R2
= 41% of the variation of site-specific empirical rates, WCNαρ

ρ explains 56%.

Consider, for example, Human Carbonic Anhidrase II (pdb code 1CA2). As we

mentioned in the Introduction, main chain environments and side-chain environments

are different (Fig. 1). Accordingly, WCNαρ
ρ and WCNαρ

α result in different predicted rates

(Fig. 2). The two site-dependent profiles of predicted rates are similar to the empirical KR4S

profile. However, WCNαρ
ρ -based predictions look somewhat better (Fig. 2) and are better

(Fig. 3): the R2 values are 0.56 for WCNαρ
ρ and 0.41 for WCNαρ

α . Thus, for 1CA2 WCNαρ
ρ

outperforms WCNαρ
α as predictor of evolutionary rates.
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Figure 4 Side chain packing is the best predictor of substitution rates for most proteins. R2 is the
square correlation between empirical rates (KR4S) and either side-chain contact density (WCNαρ

ρ )

(y-axis) or main-chain contact density (WCNαρ
α ) (x-axis). Each point corresponds to one protein.

Empirical rates correlate better with (WCNαρ
ρ ) for 204 out of 209 proteins.

We repeated the previous assessment for each of the 209 enzymes of the data set

(Fig. 4). Empirical rates correlate with WCNαρ
ρ better than with WCNαρ

α for 204 of the 209

proteins studied. Aggregating the data over all proteins, we obtained expected R2 values of

0.392 ± 0.008 and 0.319 ± 0.008 for WCNαρ
ρ and WCNαρ

α , respectively. The difference

ΔR2
= 0.073 ± 0.003 is significantly positive (p < 10−3, bootstrapping). Therefore,

WCNαρ
ρ outperforms WCNαρ

α as predictor of site-specific substitution rates.

The stress model predicts WCNαρ
ρ to be the sole predictor of substitution rates. Any

correlation between rates and WCNαρ
α should be indirect. We measured the direct

association between empirical rates and WCNαρ
α using the squared semipartial correlation

ρ2(KR4S,WCNαρ
α |WCNαρ

ρ ), where the variation of rates due to WCNαρ
ρ is partialed out.

This measure is the unique contribution of WCNαρ
α and it represents how much R2 would

increase when going from the one variable model K ∼ WCNαρ
ρ to the two-variable

model K ∼ WCNαρ
ρ + WCNαρ

α . Averaging over the 209 proteins studied, we found

ρ2(KR4S,WCNαρ
α |WCNαρ

ρ ) = 0.0024 ± 0.0005. This value is statistically significant

(p < 10−3, bootstrapping), but very small: WCNαρ
α ’s unique contribution to rate variation

among sites is just 0.2%. As predicted by the stress model, the independent contribution of

WCNαρ
α is negligible.

WCNαρ
ρ vs. WCNρ

ρ

WCNαρ
ρ , Eq. (9), is based on a two-nodes-per-site network representation of the protein.

It considers the contacts between the node ρ that represents the side chain of a site with all
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other nodes, ρ and α of the network. WCNρ
ρ , Eq. (12), is an alternative alternative measure

of side-chain packing based only on ρ − ρ contacts. WCNαρ
ρ is a better rate predictor than

WCNρ
ρ for 122 of the 209 proteins. The expected correlations are R2(KR4S,WCNαρ

ρ ) =

0.392 ± 0.008 and R2(KR4S,WCNρ
ρ) = 0.389 ± 0.008. The average difference ΔR2

=

0.0024 ± 0.007 is significant (p < 10−3, bootstrapping), but very small (just 0.24% of

explained variation). Thus, WCNρ
ρ-based predictions are (almost) as good as WCNαρ

ρ

predictions. However, while WCNρ
ρ was posed ad hoc, WCNαρ

ρ was theoretically derived.

WCNαρ
ρ vs. WCN

Currently, WCN (= WCNα
α), the original weighted contact number (Lin et al., 2008), is

one of the two main structural predictors of site-dependent evolutionary rates (Yeh et al.,

2014a; Yeh et al., 2014b). It is worthwhile to consider whether the new measure presented

here, WCNαρ
ρ provides an improvement over WCN.

We found that WCNαρ
ρ outperforms WCN for 206 out of the 209 proteins studied.

The expected correlations are R2(KR4S,WCNαρ
ρ ) = 0.392 ± 0.008 and R2(KR4S,WCN) =

0.314 ± 0.007. The difference is ΔR2
= 0.078 ± 0.003, which is statistically significant

(p ≪ 10−3, bootstrapping). Thus, not only does WCNαρ
ρ outperform WCN for almost

all proteins, but by a rather large amount: while WCN explains 31.4 % of the variation

of evolutionary rates, WCNαρ
ρ explains 39.2%, an increase by a factor of 1.25. Moreover,

ρ2(KR4S,WCN|WCNαρ
ρ ) = 0.0024 ± 0.005 (p < 10−3, bootstrapping). Despite statistical

significance, the unique contribution of WCN is just 0.2%, which is negligible. Thus,

WCNαρ
ρ is a better predictor and the independent contribution of WCN is negligible.

WCNαρ
ρ vs. RSA

The most studied structural predictor of site-dependent evolutionary rates is the relative

solvent accessibility RSA (Bustamante, Townsend & Hartl, 2000; Conant & Stadler, 2009;

Franzosa & Xia, 2009; Ramsey et al., 2011; Shahmoradi et al., 2014). Therefore, we compare

the new measure WCNαρ
ρ with RSA.

According to protein-by-protein results, R2(KR4S,WCNαρ
ρ ) > R2(KR4S,RSA) for 175 of

the 209 proteins. The expected square correlations are R2(KR4S,WCNαρ
ρ ) = 0.392 ± 0.008

and R2(KR4S,RSA) = 0.327 ± 0.007. The difference is ΔR2
= 0.065 ± 0.004, which

is statistically significant (p < 10−3, bootstrapping). Thus, WCNαρ
ρ outperforms RSA

as rate predictor for 84% of the proteins and WCNα
α explains 6.5% more of the rate

variation among sites, an improvement by a factor of 1.2 over the explaining power

of RSA. Moreover, the expected value of the independent contribution of RSA is

ρ(KR4S,RSA|WCNαρ
ρ ) = 0.005 ± 0.001). This is statistically significant (p < 10−3, boot-

strapping), but very small. Therefore, WCNαρ
ρ is a better predictor and the independent

contribution of RSA is minor.

CONCLUSION
We used the the mechanistic stress model to predict theoretically that site-specific rates of

evolution depend solely on the side-chain contact density WCNαρ
ρ . According to the stress
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theory, WCNαρ
ρ is proportional to the mutational destabilization of the protein’s active

conformation, which is why it correlates with rates: mutations are accepted or rejected

according to the degree of destabilization. We tested this prediction on a large dataset of

monomeric enzymes. We found that WCNαρ
ρ outperforms WCNρ

ρ , WCN and RSA and that

the independent contributions of the latter are negligible, which supports the theoretical

prediction.

To finish, we note that the structural properties studied do not explain all of the

variation of substitution rates among sites. The best predictor, WCNαρ
ρ explains on average

∼ 39% of the variation, leaving 61% unexplained. Further research is needed to gain a full

understanding of the variation of substitution rates among protein sites.
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