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shown that the analysis you use in Lines 241-250 is not the
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Fear and stressing in predator-prey ecology: considering the
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Introduced predators have strongly deleterious effects on biodiversity in many parts of the
world. Exponential growth of human populations is, at the same time, causing degradation
of natural habitats and increasing the interaction rates of humans and wildlife, such that
conservation management now is beginning to consider the effects of human impacts as
tantamount to or surpassing the impacts of introduced predators. The need to
simultaneously manage both of these threats is particularly acute in urban areas that are,
increasingly, being recognized globally as hotspots of wildlife activity. Australia is a good
example of this, as 89% of the human population lives in urban areas that also host
introduced mesopredators that are driving extinctions of native wildlife. Pressure from
introduced predators and human activity may both initiate fear responses in prey species
above those that are triggered by natural stressors in ecosystems. If fear responses are
experienced by prey at elevated levels, on top of responses to multiple environmental
stressors, chronic stress impacts may occur. Despite common knowledge of the negative
effects of stress, however, it is rare that stress management is considered in conservation
management. We propose that mitigation of stress impacts on wildlife will be crucial for
preserving biodiversity, especially as the value of habitats within urban areas increases. As
such, we aim to highlight the need for future studies to consider fear and stress in
predator-prey ecology to preserve both biodiversity and ecosystem functioning. We
suggest that modern methods allow non-invasive in-situ investigations of endocrinology
and ethology, along with habitat influences, to conduct cumulative effects assessments
that include considerations of fear and stress impacts.
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 23 

Abstract 24 

Introduced predators have strongly deleterious effects on biodiversity in many parts of the world. 25 

Exponential growth of human populations is, at the same time, causing degradation of natural 26 

habitats and increasing the interaction rates of humans and wildlife, such that conservation 27 

management now is beginning to consider the effects of human impacts as tantamount to or 28 

surpassing the impacts of introduced predators. The need to simultaneously manage both of these 29 

threats is particularly acute in urban areas that are, increasingly, being recognized globally as 30 

hotspots of wildlife activity. Australia is a good example of this, as 89% of the human population 31 

lives in urban areas that also host introduced mesopredators that are driving extinctions of native 32 

wildlife. Pressure from introduced predators and human activity may both initiate fear responses 33 

in prey species above those that are triggered by natural stressors in ecosystems. If fear responses 34 

are experienced by prey at elevated levels, on top of responses to multiple environmental 35 

stressors, chronic stress impacts may occur. Despite common knowledge of the negative effects 36 

of stress, however, it is rare that stress management is considered in conservation management. 37 

We propose that mitigation of stress impacts on wildlife will be crucial for preserving 38 

biodiversity, especially as the value of habitats within urban areas increases. As such, we aim to 39 

highlight the need for future studies to consider fear and stress in predator-prey ecology to 40 

preserve both biodiversity and ecosystem functioning. We suggest that modern methods allow 41 

non-invasive in-situ investigations of endocrinology and ethology, along with habitat influences, 42 

to conduct cumulative effects assessments that include considerations of fear and stress impacts. 43 

 44 
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Introduction 45 

Biodiversity is declining globally as human populations increase and agricultural, industrial, and 46 

urban development expand, altering and destroying natural habitats (Madsen et al., 2010). Due to 47 

such expansions, human activities are increasingly becoming an additional stressor that 48 

influences ecosystem function. Pressures exerted both directly and indirectly by human activities 49 

have been likened to the pressures exerted by the presence of a top predator on prey (e.g. Frid 50 

and Dill, 2002; Rehnus, Wehrle, and Palme, 2014; Patten and Burger, 2018). Predators in many 51 

systems influence the local distribution and abundance of their prey (e.g. Polis et al., 1998; Ayal, 52 

2007; Estes et al., 2011; Weissburg et al., 2014), and can indirectly influence the functioning of 53 

whole ecosystems via trophic cascades (Prugh et al., 2009; Ritchie et al., 2009; Estes et al., 54 

2011; Ripple et al., 2014). While predation may contribute to ecosystem function, predators 55 

often elicit fear responses in prey that affect their behaviour, energy budget and the way they 56 

interact with their environment (Brown and Kotler, 2004; Clinchy et al., 2004; Romero, 2004). 57 

These effects arise due to the ‘landscape of fear’ that prey individuals perceive – that is, the costs 58 

and benefits that prey must balance while pursuing food and safety (Laundré et al., 2001). 59 

Natural predation pressures coupled with human-imposed predation-like pressures and / or 60 

additional exogenous stressors, such as pollution, arising from anthropogenic activities are likely 61 

to negatively affect prey species by increasing their levels or frequency of stress. If predators are 62 

introduced, their impacts on prey are likely to be exacerbated owing to prey naïveté (Doherty et 63 

al., 2016). Such impacts have been shown to be particularly acute on wildlife in Australia, where 64 

eutherian carnivores are recent arrivals (Salo et al., 2007). 65 

Current research is developing a more nuanced understanding of the effects of human 66 

activity and predator presence on prey stress (e.g. Arlettaz et al., 2015; Jaatinen, Seltmann, and 67 
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Öst, 2014, respectively). However, relatively few studies in terrestrial ecosystems consider both 68 

of these pressures simultaneously or consistently correlate observed behavioural responses with 69 

endocrinological evidence of stress. Despite this, advances in endocrinology make it possible to 70 

fill this knowledge gap with minimally invasive in-field techniques (see Sheriff et al., 2011; 71 

Cook, 2012; Palme, 2019). Conservation management and the associated scientific research is 72 

often viewed from a single discipline perspective, which may have its strengths in finding 73 

biological conclusions. However, the ecological problems arising from anthropogenic influences, 74 

including the introduction of novel species and the creation of novel species interactions, call for 75 

multidiscipline solutions. Globally, urban edge habitats are becoming increasingly valuable as 76 

hotspots of wildlife activity (Ives et al., 2016), and human activity / influences are spreading 77 

further into natural habitats (Otto, 2018). There is growing evidence that human activity can 78 

impose stress impacts akin to predation pressures, or worse, (Clinchy et al., 2016) and that 79 

multiple introduced stressors (e.g. introduced predators and disturbance from humans) can have 80 

compounding impacts on wildlife especially when interacting with stressors naturally found in an 81 

ecosystem (Geary et al., 2019). For these reasons, we felt it pertinent to bring together relevant 82 

information from the broad knowledge bases of conservation physiology and ecology to 83 

communicate the urgent need for wildlife managers and future urban conservation scientific 84 

studies to routinely consider fear and stress effects from multiple sources, particularly those 85 

created by introduced predators and human activities, and their roles in ecosystem functioning.  86 

The central tenet of this review is to illustrate the importance of considering fear and 87 

stress in wildlife conservation, particularly when it is imposed by the multiple stressors of human 88 

activity and introduced predators. To do this we first illustrate the physiological responses of 89 

wildlife to fear and stress, then argue that the landscape of fear theorem supports our contention, 90 

PeerJ reviewing PDF | (2019:09:41203:0:1:NEW 25 Sep 2019)

Manuscript to be reviewed

cjs21
Cross-Out

cjs21
Inserted Text
change to "multifaceted" or "cross-disciplinary"

cjs21
Cross-Out

cjs21
Cross-Out

cjs21
Inserted Text
elicit stress responses

cjs21
Cross-Out



and that human activity should be considered as part of the ecosystem so that overall stress 91 

impacts can be managed accordingly. We use Australia as an example of a system that would 92 

benefit from considering cumulative fear and stress impacts, as wildlife there are subject to 93 

adverse impacts from both introduced eutherian predators and human activity. We demonstrate 94 

finally how fear and stress can influence habitat use, and conversely how vegetation and 95 

microhabitat management potentially may be used to alleviate stress for target wildlife species.  96 

 97 

Review method 98 

This is not a systematic review, but instead is a carefully researched and, hopefully, thought-99 

provoking synthesis of existing knowledge. It seeks to extend ideas on the physiological impacts 100 

of fear and stress, behavioural ecology, predator-prey dynamics, and conservation management 101 

to look at the influence of humans and introduced predators in the urban environment. This 102 

review was compiled in a logical order, historical definitions were first reviewed and then further 103 

reviews stemmed from them to build on each topic, as new information arose. Numerous 104 

literature searches where conducted via Google Scholar ©, Web of Science ©, JSTOR ©, and 105 

Wiley Interscience Online Library ©. All manuscripts were mined for their relevant information 106 

to wildlife fear and stress in terms of ecological management under anthropogenic pressures, 107 

including introduced predators. The literature searches were undertaken using the following key 108 

terms as part of their title, keywords, and / or within the abstract: “acute stress”, “chronic stress”, 109 

“homeostasis”, “cumulative stress”, “multiple stressors”, “multiple threats”, “allostatic load”, 110 

“allostatic overload”, “acclimitisation”, “glucocorticoid response”, “hypothalamic pituitary 111 

adrenal axis”, “fear arousal”, “fear evolution”, “fear predation”, “amygdala” “fear”, “Pavlovian 112 

fear conditioning”, “glucocorticoid assay”, “f(a)ecal glucocorticoid”, “non-invasive 113 
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glucocorticoid assay”, “reactive scope model”, “landscape(s) of fear”, “risk allocation 114 

hypothesis”, “olfaction” + “fear” + “mammal”, “post-traumatic stress disorder”, “predator” + 115 

“odo(u)r” + “fear”,  “predator cue(s)”, “predation stress hypothesis”, “predator-sensitive food 116 

hypothesis”, “human activity” + “stress” + “wildlife”, “human disturbance”, “interactive stress”, 117 

“multiple stress(ors)”, “additive stress impacts”, “synergistic stress impacts”, “antagonistic stress 118 

impacts”, “human” + “wildlife” + “resource subsidies”, “predator trophic cascade”, “wildlife 119 

urban adaptation”, “urban ecology” + “wildlife”, “Australian mammal extinction”, “critical 120 

weight range mammal”, “diet” + “change” + “Australian” + “predator”, “red fox” + “Australia”, 121 

“domestic cat” + “Australia”, “human activity” + “wildlife” + “Australia”, “Australia” + 122 

“biodiversity” + “conservation policy” + “urban hotspot”, “Australian environment protection 123 

and biodiversity conservation act" + “cumulative stress”, “Australia” + “conservation” + 124 

“glucocorticoids”, “introduced predator control”, “habitat structural complexity”, “habitat 125 

structural diversity”, “vegetation diversity”, “vegetation heterogeneity”, “habitat heterogeneity 126 

hypothesis”, “cumulative effects assessments”.  127 

 128 

Physiological responses to fear and stress 129 

An individual animal experiences stress in response to ecological conditions that threaten its 130 

survival or compromise its ability to maintain homeostasis. Examples include acute or chronic 131 

encounters with predators, inclement weather, significant natural disturbances including fire and 132 

flood, reduced oxygen availability, and depleted food resources (Lima, 1998; King and 133 

Bradshaw, 2010; Malcolm et al., 2014; Santos et al., 2014; Crocker, Khudyakov, and 134 

Champagne, 2016). If two or more stressors are present, the resultant combined stress may 135 

present severe challenges to an individual's physiological systems (Johnstone et al., 2012; 136 
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Brearley et al., 2013; Malcolm et al., 2014; Arlettaz et al., 2015; Geary et al., 2019; Legge et al., 137 

2019). Exposure to a stressor(s) that is prolonged, constant, or recurring can have chronic 138 

impacts, as recovery from a stressor cannot occur whilst the threat remains (Sapolsky, Romero 139 

and Munck, 2000). Acute stress occurs as the initial response to a threat to sustain fitness in the 140 

short term; it subsides once the responding action—be it freezing, fighting, or fleeing—141 

diminishes the threat (Wingfield and Kitaysky, 2002). The activation of the hypothalamic-142 

pituitary-adrenal (hereafter HPA) axis in an acute stress response has rapid effects that increase 143 

immune system function, energise muscles via enhanced cardiovascular tone, and heighten 144 

cognition, including memory (Sapolsky, Romero, and Munck, 2000). These responses occur via 145 

increased cerebral perfusion rates and use of glucose, all of which come at the cost of decreased 146 

appetite and reproductive behaviours (Sapolsky, Romero, and Munck, 2000). Effectively, the 147 

acute stress response suspends non-essential behaviours in favour of altered behaviours that aid 148 

in minimizing the threat (Wingfield and Kitaysky, 2002).  149 

Continued exposure to a stressor, or stressors, creates a state of chronic stress, which is 150 

classically described as allostatic overload (Dantzer et al., 2014). Allostatic load describes the 151 

body’s ability to maintain homeostasis in response to a stressor (Sterling and Eyer, 1988; 152 

McEwen and Stellar, 1993; McEwan and Wingfield, 2003). Allostatic overload, by extension, 153 

refers to the inability to maintain homeostasis and thus an organism’s increased susceptibility to 154 

external stressors (Sterling and Eyer, 1988; McEwen and Stellar, 1993; McEwan and Wingfield, 155 

2003). Chronic stress reduces an organism’s resilience to future stressors by inducing extended 156 

behavioural changes in feeding, fighting, and mating, as well as suppression / impairment of the 157 

reproductive system and decreasing physiological resistance to pathogens and toxins through the 158 
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suppression of immune function (Dhabhar and McEwan, 1999; McEwan and Wingfield, 2003; 159 

Romero, 2004; Mineur, et al., 2006; Travers, et al., 2010; Feng, et al., 2012).  160 

Cases of acclimatisation to chronic or repeated acute stressors have been observed, 161 

although the process often results in enhanced activation of the HPA axis to novel stressors, and 162 

thus may not be beneficial to fitness (Romero, 2004). Instead of acclimatising to a chronic or 163 

repeated stressor, glucocorticoid levels can remain the same, or become chronically elevated, or 164 

the HPA axis can shut down completely and render an animal vulnerable to stressors (Romero, 165 

2004). Physiological impairment of the neurological, cardiovascular and musculoskeletal 166 

systems may also result from chronic stress: neurons of the brain can atrophy and impair 167 

memory, or grow and enhance fearfulness with extensive releases of adrenaline and cortisol 168 

(Roozendaal, 2000; McEwan, 2004); atherosclerotic plaques also may form and impede blood 169 

flow from repeated elevation of blood pressure (Manuck et al., 1988), and skeletal muscle can 170 

suffer severe protein loss (Wingfield and Kitaysky, 2002).  171 

Activation of the HPA axis may vary depending on the nature of the stressor (Mason, 172 

1971), and it is important to consider this when assessing stress impacts on a system. Changes in 173 

abiotic conditions, such as to food and shelter resources, and the introduction of toxins or 174 

diseases can be stressful, but do not induce fear arousal. However, a stress response, of 175 

peripheral autonomic and neuroendocrine changes (Yates, 1971; Sapolsky, Romero, and Munck, 176 

2000; McEwan and Wingfield, 2003), can be initiated by fear arousal (LeDoux, 2003; LaBar and 177 

LeDoux, 2011). Animals with sophisticated nervous systems have a central motive state between 178 

threat stimulus and response that is driven by the amygdala (Pitkanen, 2000) and can be 179 

identified as ‘fear’ (Mineka, 1979; Öhman, 2000). The development of successful defense 180 

mechanisms to fear-inducing stressors has clear survival benefits for animals, and thus fear can 181 
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be seen as a driver of evolutionary adaptations (Tooby and Cosmides, 1990). Common strategies 182 

of escape and avoidance are designed to deal with recurrent stressors, such as the fear-inducing 183 

threat of predation (see Lima and Dill, 1990).  184 

The sections of the amygdala associated with fear behaviour serve as an interface 185 

between sensory input and information transport and processing, endocrine response, and motor 186 

output (Davis and Whalen, 2001). These interactions are associated with learning and memory 187 

via the involvement of the lateral and basal nuclei, as demonstrated on captive rodents using 188 

neurotoxic lesions on the basal and lateral nuclei of the amygdala (e.g. Wallace and Rosen, 189 

2001), and are evident in Pavlovian fear conditioning paradigms (Davis, 1992; Maren, 2001). 190 

Activation of glucocorticoids and norepinephrine in stress responses initiated by fear arousal 191 

provides feedback to the brain that influences emotion control and cognition, which contributes 192 

to fear conditioning (Rodrigues et al., 2009). Fear responses may, therefore, be both conditioned 193 

as aversive learnt behaviours (e.g. Fanselow and Poulos, 2005), and unconditioned as innate 194 

freezing responses (e.g. Schulkin et al., 2003). Given that fear motivates a stress response – 195 

initiating the freeze, and fight or flight actions – quantifying glucocorticoid outputs from the 196 

autonomic nervous and HPA systems, through the use of minimally invasive techniques that 197 

assay the level of glucocorticoids present in faeces, fur, or feather (see Sheriff et al., 2011; Cook, 198 

2012; Palme, 2019), should yield a measurable indication of fear from predation as a stressor. 199 

Using minimally invasive methods to measure glucocorticoid levels in the wild does not 200 

necessarily yield an isolated 'output' of a fear or predator/human-induced stress response (Rosen 201 

and Schulkin, 2004). Nevertheless, such methods could usefully compare responses among 202 

habitats or along gradients with variable exposure to predators, be these animal or human-203 

induced, to yield estimates of relative physiological stress.  204 
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 205 

Behavioural responses to fear and stress: the landscape of fear theorem  206 

A high perceived predation risk can shape adaptive behavioural responses that allow for a 207 

prepared response in prey, improving their likelihood of survival (Bókony et al., 2009). 208 

However, chronic stress impacts that are sufficient to affect reproduction and long-term survival 209 

can be experienced by prey species perceiving recurring predation risks (Thomson et al., 2010; 210 

Clinchy et al 2011). Chronic perceived predation risk may also result in altered foraging activity 211 

driven by prey fear. This can affect where and what prey eat (Schmitz et al., 2004), causing them 212 

to move from exploiting risky to sheltered microhabitats (Trussell et al., 2006), in turn altering 213 

the distribution and availability of resources. Fear-based adaptive behavioural responses such as 214 

these are the premise of the landscape of fear theorem.  215 

The landscape of fear theorem (Laundré et al., 2001) postulates that prey are aware of 216 

microhabitat patches associated with high and low predation risk, where predators are either 217 

active and ubiquitous or scarce (Laundré et al., 2001; Shrader et al., 2008; van der Merwe and 218 

Brown, 2008). Theoretically, landscape of fear effects increase exponentially with increasing 219 

landscape homogeneity, as simple landscapes offer less opportunity for hiding and more open 220 

hunting access for predators (Bleicher, 2017; Gaynor et al., 2019). However, this relationship 221 

can depend on the species and condition of the habitat and, for some species, simple habitats can 222 

be the safest (e.g. Hammerschlag, et al., 2015; Schmidt, and Kuijper, 2015; Atuo and O'Connell, 223 

2017). Landscape of fear effects will also be more pronounced in systems where interactions 224 

between predators and prey are less frequent (Schmitz, 2008), as is evident in findings from 225 

Pavlovian fear conditioning, and the ‘risk allocation hypothesis’ – which states that animals 226 

exposed to constant high predation risk will increase their foraging risks over time (Lima and 227 

PeerJ reviewing PDF | (2019:09:41203:0:1:NEW 25 Sep 2019)

Manuscript to be reviewed



Bednekoff, 1999; Van Buskirk et al., 2002). Fear arousal in a landscape of fear results in two 228 

predictable outcomes: either avoidance of high risk areas, or modulation of behaviour (e.g. 229 

increased vigilance) to reduce predation risk when foraging in such areas (Gaynor et al., 2019). 230 

These outcomes indicate the importance of considering fear arousal and stress levels in 231 

ecological management, and the direct and indirect cues that may trigger these effects (Atkins et 232 

al., 2017). 233 

 Fear arousal can be triggered both directly from a predator and indirectly via a predator 234 

cue, such as an associated scent. Olfaction is believed to be a key driver of fear arousal (Soso et 235 

al., 2014; Banks et al., 2016; Jones et al., 2016; Parsons et al., 2017). The mechanics of this are 236 

best understood in mammals, where odours are assessed for threat by the accessory olfactory 237 

bulb that transmits information directly to the amygdala and hypothalamus, where fight or flight 238 

responses are developed (Fogaca et al., 2012; Canteras, Pavesi, and Carobrez, 2015). Laboratory 239 

studies exploring the effects of post-traumatic stress disorder exposed animals to predators or 240 

their cues in order to induce stress, and in doing so revealed that exposure to predator cues alone 241 

can affect the neural circuitry associated with fear (Rosen and Sculkin, 1998, 2004).  242 

Subtle cues such as predator odours may precede threats and allow for a prey animal's 243 

fear state to be conditioned to a cue that occurs before, or in correlation with, a previously 244 

encountered predation threat (Rescorla and Solomon, 1967; Rosen, 2004). Predation risk may, 245 

therefore, be perceived by prey species eavesdropping on predator scent marks, such as urine, 246 

faeces, or fur left in the environment (Banks and Bytheway, 2016; Jones et al., 2016). Such 247 

odours have been observed experimentally to induce fear-like responses of freezing (Wallace and 248 

Rosen, 2000), vigilance (Nersesian, Banks, and McArthur, 2012), fleeing (Anson and Dickman, 249 

2013), and avoidance (Hayes, Nahrung, and Wilson, 2006), across a wide range of species in 250 
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both field and laboratory experiments (Apfelbach et al., 2005, 2015). Consequently, landscape of 251 

fear topography, where predators indirectly influence prey behaviour across a range of 252 

microhabitats, can arise from the influence of predator olfactory cues on prey foraging behaviour 253 

as much as it can from the direct threat of predation (e.g. Persons and Rypstra, 2001; Brown and 254 

Kotler, 2004; Parsons and Blumstein, 2010; Cremona et al., 2014; Mella et al., 2014; Hoffman et 255 

al., 2016). Fear arousal to predator presence or cues alike can deplete a prey individual’s energy 256 

budget, resulting in poor reproduction and health either via energy exhaustion from stress (i.e. 257 

the predation stress hypothesis: Boonstra et al., 1998; Clinchy et al., 2004; Romero, 2004; Støen 258 

et al., 2015), or reduced nutrition from foraging compromises (i.e. the predator-sensitive food 259 

hypothesis: Sinclair and Arcese, 1995; Brown and Kotler, 2004; Clinchy et al., 2016). Mitigating 260 

the trigger of fear arousal, where possible, through mapping landscapes of fear (e.g. van der 261 

Merwe and Brown, 2008; Kauffman et al., 2010; Iribarren and Kotler, 2012) to identify, protect 262 

and extend safe foraging areas, could assist in the conservation of wildlife subject to multiple 263 

stressors, such as human activity and predators.  264 

 265 

Human activity as a fear inducing stressor 266 

Fear and acute/chronic stress may be constant hurdles faced by wildlife, but adding the effects of 267 

anthropogenic activities could result in the elevation of numerous acute stress responses to 268 

widespread chronic stress, and upscale the possible impacts from individuals to populations 269 

(Rehnus, Wehrle, and Palme, 2014). There is ample evidence that human activity alone can both 270 

indirectly and directly create landscapes of fear and influence existing landscapes of fear through 271 

interactive effects. Interactive effects are context dependent (Belarde and Railsback, 2016). They 272 

can be additive and combine the multiple impacts, synergistic whereby the presence of one threat 273 
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amplifies another (Doherty et al., 2015), or antagonistic whereby one threat cancels the effects of 274 

the other; reduced activity of mesopredators in the presence of humans provides an example of 275 

antagonism (Clinchy et al., 2016). Additive, synergistic, and antagonistic reactions have each 276 

been observed in prey in natural systems in response to exposure to multiple stressors (Crain et 277 

al., 2008; Côté et al., 2016; Gunderson et al., 2016; Jackson et al., 2016; Geary et al., 2019; 278 

Legge et al., 2019). Thus, predator presence and human activity can interact to alter ecosystem 279 

structure and / or increase or decrease the predation risk perceived by prey species.   280 

It has been postulated that humans may impose widespread effects on ecosystem 281 

function, as they induce greater fear responses in ubiquitous small predators than top-predators 282 

do (Clinchy et al., 2016). In general, human activity can be comparable to the impacts of 283 

predation (Hofer and East, 1998; Frid and Dill, 2002; Rehnus, Wehrle, and Palme, 2014; Patten 284 

and Burger, 2018), and perhaps even stronger where foraging regimes are disrupted dramatically 285 

more than when influenced by natural stressors (Ciuti et al., 2012; Clinchy et al., 2016), or 286 

where top down cascading effects occur in response to humans acting as “super predators” 287 

disproportionately killing carnivores (Darimont et al., 2015). Trophic cascade effects can also 288 

occur when predators avoid human activity, and prey seek refuge behind a “human shield” 289 

(Kuijper et al., 2015; Leighton, Horrocks and Kramer, 2010). Conversely, provision of food 290 

subsidies, in areas of human activity, can increase predator activity and alter their foraging 291 

regimes (Iossa et al., 2010; Bateman and Fleming, 2012; Fischer et al., 2012; Newsome et al., 292 

2014, 2015). The negative effects of human activity can therefore differ between different 293 

species groups within trophic systems, as the effects of such disturbance on one species may 294 

result in positive consequences for its prey or competing species (e.g. Gill, Sutherland and 295 

Watkinson, 1996; Crooks and Soulé, 1999; Leighton, Horrocks and Kramer, 2010). These 296 
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effects, however, are strongly dependent on the availability of the required resources within the 297 

human occupied / disturbed areas, and may be unique in each system.  298 

A common response to increased exposure to human activity is a temporal shift in 299 

activity patterns, from diurnal to crepuscular or nocturnal to avoid interaction with humans 300 

(McClennen et al., 2001; Tigas et al., 2002; Riley et al., 2003; Ditchkoff, Saalfeld, and Gibson, 301 

2006); the same or reverse may occur too, to reduce predator interactions (Brown, 2000; Laundré 302 

et al., 2001). Such temporal shifts can have dire effects if they limit the forager's ability to locate 303 

and capture prey (Ditchkoff, Saalfeld, and Gibson, 2006). Regardless of the response, it is 304 

evident that human activity has profound indirect effects on community interactions through 305 

altering individual behaviour, particularly those contiguous to foraging, through either fear 306 

arousal or a stress response (e.g. Frid and Dill, 2002; Werner and Peacor, 2003).  307 

Human activity can influence predator distributions in various ways (e.g. Albert and 308 

Bowyer, 1991; Bowyer et al., 1999), depending on the type of activity. For example, high levels 309 

of disturbance or active interference can completely displace predators (Kloppers, St Clair, and 310 

Hurd, 2005; Berger, 2007). In contrast resource subsidies for shelter, water and food with year-311 

round primary production, can outweigh the stress of human disturbance and influence 312 

community behaviours (Parris, 2016), resulting in urban colonisation by wildlife (Shochat et al., 313 

2010; Jokimäki, et al., 2011).  314 

Synurbanisation, that is the adaptation of wildlife to urban environments, can occur 315 

through behavioural shifts in foraging, food preferences, predator avoidance, and in reproductive 316 

shifts that alter the timing of breeding (Ditchkoff et al., 2006; Møller, 2009; Shochat et al., 2010; 317 

Rodriguez et al., 2010; Otto, 2018; Santini et al., 2019). Human activity, can therefore, impose a 318 

form of natural selection on behaviour and endocrine traits (Bonier, 2012; Snell-Rood and Wick, 319 
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2013), and may select for bold individuals with reduced stress responses to human activity 320 

(Atwell  et al., 2012) that habituate over time (Sih, 2013). 321 

As the human population continues to grow, pressures on ecosystems from human 322 

activity are likely to increase in reach and intensity (Tilman et al., 2017). Ecosystem functioning 323 

will be influenced both directly and indirectly by human activities; namely: disturbance from 324 

human presence (Fernandez-Juricic and Telleria, 2000), displacement and habitat loss (Fahrig, 325 

2003), introduced chemicals and pollutants, (Schwarzenbach et al., 2006), reverse zoonotic 326 

disease transmission (Messenger et al., 2014), increased input of nutrients (Hobbie et al., 2017), 327 

food resource subsidies (Newsome et al., 2014, 2015), introduced light and sound (Navara and 328 

Nelson, 2007; Shannon et al., 2016), traffic (Blumstein et al., 2005; Jayakody et al., 2008; 329 

Stankowich, 2008; Scott, Hume & Dickman, 1999), introduction and continued spread of 330 

introduced species including cattle and domestic pets (Scott, Hume & Dickman, 1999; 331 

Schlaepfer et al., 2005; Morgan, 2009; Bino et al., 2010; Butchart et al., 2010: Young et al., 332 

2011; Doherty et al., 2015, 2016, 2017), overexploitation (Pirotta and Lusseau, 2015; Verma, 333 

2016), and climate change effects (Rastandeh, Zari, and Brown, 2018). These stressors often co-334 

occur and have interactive effects (Côté et al., 2016; Gunderson et al., 2016; Jackson et al., 335 

2016) that erode biodiversity (Butchart et al., 2010). The combination of stress resulting from the 336 

combined pressures of human activities and introduced predators is yet to be investigated. 337 

Understanding the effects that both may impose is critical for effective conservation of wildlife 338 

in an increasingly human-influenced world. 339 

 340 

Fear and stressing in small mammal ecology in Australia; the need to consider the twin 341 

stressors of introduced predators and people in biodiversity management 342 
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Small mammals are presumed to be somewhat resilient to threatening processes owing to their 343 

high population growth rates (Cardillo et al., 2005, 2006). However, in Australia small mammals 344 

are declining quickly and due to causes dissimilar to those driving global declines (Woinarski et 345 

al. 2015). These declines have been attributed to a wide range of habitat stressors: habitat loss; 346 

altered fire regimes; disease; increasing temperatures; decreasing water availability; depleted soil 347 

quality, and salinity (Woinarski et al., 2015). However, mammals within a 'critical weight range' 348 

(CWR) of 35 to 5550 g are particularly vulnerable (Chisholm and Taylor, 2007; Woinarski et al., 349 

2015) owing to the effects of predation by two introduced carnivores, the red fox (Vulpes vulpes) 350 

and domestic house cat (Felis catus) that arrived in Australia some 150+ years ago (Johnson, 351 

2006). Although CWR mammals are of high conservation concern, predation from introduced 352 

predators poses a threat also to all native predators by reducing their food resources, which in 353 

turn may increase predation and predation-associated stress on alternative food sources such as 354 

smaller (< 35 g) or larger (> 5550 g) mammal species. For example, a study examining the diet 355 

of a nocturnal, avian predator, the sooty owl (Tyto tenebricosa) before and after red fox 356 

introduction, revealed a dietary shift post introduction, with owls consuming more arboreal than 357 

terrestrial prey species after fox arrival. This shift to consuming arboreal prey has increased 358 

dietary overlap with the sympatric powerful owl (Ninox strenua), providing disproportionate 359 

predation pressure on prey in the ecosystems of East Gippsland, Victoria (Bilney, Cooke, and 360 

White, 2006).  361 

Predation by red foxes and cats is prevalent not only in natural habitats but also in 362 

agricultural and urban habitats (Dickman, 1996; Morgan, 2009; Bino, 2010). The paths and roads 363 

that typically fragment urban and agricultural habitats are used frequently by these predators, 364 

which exacerbates their predation pressure on prey species by combining with impacts imposed 365 
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by human activities (Latham et al., 2011, Červinka et al., 2013). Consequently, this can result in 366 

increased abundances of red foxes and cats in human modified landscapes that border or include 367 

natural habitats (Towerton et al., 2011; Graham et al., 2012). Urban and agricultural habitats 368 

present many threats to wildlife, but they may also offer food and shelter opportunities (Pickett et 369 

al., 2001; Gaston et al., 2005; Hobs, Higgs and Harris, 2009). As reported by Ives et al. (2016), 370 

46 percent of threatened Australian animals occur in or near Australian cities. Thus, the fate of 371 

many species could depend on management that accommodates their needs in urban and 372 

agricultural habitats (Ives et al., 2016). A recent assessment of data collected at the Wildlife 373 

Rehabilitation Centre in Queensland Zoo, Australia, revealed that pet cat or dog attack, car 374 

strike, and entanglement in human-placed objects represented 56.4% of the causes of submission 375 

of injured wildlife; mortality rates associated with these traumas were also high, with 61.3% of 376 

admitted animals dying from their injuries (Taylor-Brown et al., 2019). These threats may 377 

contribute to landscapes of fear, through fear arousal, altered foraging behaviour, post-traumatic 378 

stress reactions, and cumulative stress exposures resulting in chronic stress responses.  379 

Despite growing knowledge of anthropogenic impacts on threatened species, Australian 380 

conservation planning continues to exclude urban and agricultural habitats from consideration 381 

(Dales, 2011). There is recognition of the scope of this issue in Australia (e.g. Hill et al., 2007; 382 

Carthey and Banks, 2012; Threlfall et al., 2012; McCauley et al., 2013; Banks and Smith, 2015; 383 

Ives et al., 2016), but few studies have explored the interactive effects of introduced predators 384 

and human activity on the survival of prey species. Despite the development of glucocorticoid 385 

analysis techniques to determine stress in animals dating back to the 1960s (Jones et al., 1964), 386 

only six of the 60 extant small mammals of conservation concern in Australia have been subject 387 

to studies seeking to better understand their glucocorticoid response to stressors, such as 388 
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predation by introduced species or human activity (Hing et al., 2014). Conservation management 389 

that considers stress from the combined impacts of introduced predators, human activity, and 390 

those that naturally occur in ecosystems, is a logical and progressive response towards preserving 391 

many species of Australian small mammals. 392 

 393 

Alleviating fear and stress for conservation  394 

As we have illustrated, fear can produce stress and simultaneous multiple stressors can have 395 

chronic effects that impact populations. Introduced stressors, such as human activity/disturbance 396 

(Patten and Burger, 2018) and introduced predators (Woinarski et al., 2015) can have cumulative 397 

impacts, either with each other or with stressors that occur naturally in ecosystems (Allan et al., 398 

2013), as outlined in Figure 1. Such cumulative stress impacts can result in homeostatic 399 

overload, or failure (as defined by Romero, Dickens, and Cyr, 2009), that may result in 400 

population collapses. If prey species face multiple interacting stressors, they may take greater 401 

foraging risks, or be less able to allocate energy to vigilance or fleeing behaviours, and thus 402 

become more susceptible to predation or additional stressors. In the case of population-impacting 403 

stressors, the local population may be impacted to a high degree such that it becomes threatened 404 

(e.g. Sweitzer, 1996; Doherty et al., 2015). As such, conservation action in areas where 405 

simultaneous introduced stressors occur in addition to natural ecosystem pressures, like in urban 406 

and peri-urban habitats, is urgently needed. The most direct way to alleviate stress in wildlife is 407 

to remove or reduce the stressors that can be controlled for, especially those imposed by human 408 

presence and disturbance. However, as the needs of the expanding human population often usurp 409 

those of wildlife, this is rarely, if ever, possible. Similarly, there are difficulties with the control 410 

of numbers of introduced predators, which is usually problematic, costly and ineffective (Glen 411 
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and Dickman, 2005; Rayner et al., 2007; Bergstrom et al., 2009; Norton, 2009; Warburton and 412 

Norton, 2009; Carroll, 2011; Newsome et al., 2017). Alternative solutions that offer some 413 

reprieve from fear and stress for wildlife therefore need to be considered. Managing vegetation 414 

structure, density and heterogeneity may well be such a solution, as it increases refuge potential 415 

and facilitates resource partitioning. In order to mitigate introduced fear and stress effects, it is 416 

important that future studies investigate whether the management of vegetation complexity can 417 

alleviate some of the pressures associated with multiple introduced stressors for target species. 418 

 419 

Managing habitat to alleviate fear and stress  420 

The impact of predators (or human activity) may be mitigated by changing the configuration of 421 

risky areas in a habitat (Hopcraft, Sinclair, and Packer, 2005; Lone et al., 2014). Food 422 

availability is often a dominant factor in habitat selection by species (e.g. Sherman, 1984; 423 

Johnson and Sherry, 2001), but predation risk, and similarly impactful human activity, affects a 424 

suite of correlated factors such as movement decisions (Turcotte and Desrochers, 2003), foraging 425 

patterns (Gil et al., 2017), social organisation (Rodríguez et al., 2001), and reproductive success 426 

(Zanette et al., 2011). Prey population survivorship, in the face of predation stressors, is often 427 

positively correlated with increased structural complexity of a habitat (Hopcraft, Sinclair, and 428 

Packer, 2005; Lone et al., 2014; Leahy et al., 2016). This has been demonstrated in many studies 429 

to be a consequence of the increased opportunities for prey to escape and hide, thereby mediating 430 

the predator-prey dynamics by reducing encounter rates, as only a proportion of the total prey 431 

population remains available to predators (e.g. Holt, 1984; Kotler and Brown, 1988; Taylor and 432 

Pekins, 1991; Bowers and Matter, 1997; McIntyre, and Wiens, 1999; Garb, Kotler, and Brown, 433 

2000; Bartholomew, 2002; Creel et al., 2005; Hernández and Laundré, 2005; Warfe and 434 
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Barmuta, 2006; Rilov, Figueira, Lyman, and Crowder, 2007; Bianchi, Schellhorn, and Van Der 435 

Werf, 2009; Rieucau et al., 2009 Valinoti, Ho, and Armitage, 2011; Klecka and Boukal, 2014; ; 436 

Laundré et al., 2014; Grutters, Pollux, Verberk, and Bakker, 2015).  437 

The extensive research surrounding the benefits to prey of habitat structural complexity 438 

has been built on the ‘habitat heterogeneity hypothesis,’ which postulates that structurally 439 

complex habitats can support increased species diversity by offering a wide range of niches and 440 

diverse ways of exploiting resources (Bazzaz, 1975). Habitat complexity, by extension, has been 441 

generalized to be a primary driver of biodiversity (Pianka, 2011). The landscape of fear theorem 442 

accepts this principle too, in that a wide range of microhabitat types offers multiple foraging 443 

conditions with varied predation risks for species. For example, northern quolls (Dasyurus 444 

hallucatus) of the semi-arid Pilbara region in Western Australia utilise complex rocky habitats in 445 

preference to open grasslands where the threat of predation from feral cats is greater (Hernandez-446 

Santin, Goldizen and Fisher, 2016).  447 

Animals in habitats with high predation pressures may display foraging preferences for 448 

microhabitats or times that they perceive to be safe (Brown, 2000; Laundré et al., 2001). Some 449 

small mammals seek structurally complex vegetation owing to the reduced risk of predation and 450 

increased reward of foraging they find there (Lima and Dill, 1990; Andruskiw et al., 2008). 451 

Others, such as the Australian hopping mouse Notomys alexis, have the ability to exhibit bursts 452 

of speed in open habitat, and due to their biomechanics are not so adept at moving through 453 

complex vegetation (Spencer et al., 2014). No matter the species, in landscape of fear habitats a 454 

prey species’ use of the topography, refuges, and escape substrates can indicate animals' 455 

perceived risk of predation (Brown and Kotler, 2004; van der Merwe and Brown, 2008; Shrader 456 

et al., 2008), and the associated fear and stress that may arise or be alleviated due to habitat 457 
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structure. The same principle may be relevant to reducing stress in proximity to human activity, 458 

considering that prey responses to human activity and predators are similar.  459 

Human activity and disturbance can quickly accelerate the reduction of habitat 460 

complexity (Western, 2001). However, enhancing habitat complexity and heterogeneity is 461 

increasingly being incorporated into restoration and management efforts, with some success 462 

(Brown, 2003; Bernhardt and Palmer, 2007; Palmer et al., 2010), and is likely to be of particular 463 

importance in such management in the future. In order to balance the needs of people and 464 

biodiversity, local planning procedures are increasingly incorporating green spaces and urban 465 

greening initiatives into urban areas. As habitat complexity and diversity are of particular 466 

importance in supporting biodiversity and population sustainability, it is important that this has 467 

some weight in the ecological engineering of wildlife habitats in urban and urban-adjacent 468 

habitats (Threlfall et al., 2016). The effectiveness of any management regime depends on 469 

recognising the direct and indirect flow-on impacts that occur across balanced ecosystems. 470 

Consequently, habitat complexity as a management objective requires that each landscape is 471 

approached as an independent case that requires a full ecosystem assessment before the habitat is 472 

ecologically engineered (Tews et al., 2004).  473 

 474 

Management tools to observe and alleviate fear and stress for conservation  475 

Speculative cumulative stress analyses that map human activity and stressors that occur naturally 476 

in ecosystems have maximized returns on restoration investments by efficiently indicating areas 477 

in need of intervention to prevent them from becoming high stress areas for wildlife (Allan et al., 478 

2013). Several methods are now available to measure stress in wildlife, many of which are also 479 
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cost efficient and accessible. These include techniques developed in conservation physiology to 480 

assess faecal/urine/fur/feather glucocorticoid metabolites (see Cook, 2012; Cooke et al., 2013; 481 

Sheriff et al., 2011; Palme, 2019), infrared motion sensor cameras that film giving-up density 482 

(Brown, 1988) trials to monitor landscape of fear effects (e.g. Leo et al., 2015), and habitat 483 

quality assessments that spatially correlate mapping resources (e.g. Willems and Hill, 2009). 484 

Assaying faecal glucocorticoid metabolites from fresh faecal samples collected opportunistically 485 

across habitat gradients of high human activity to connected protected areas, allows insight into 486 

the stress impacts from human activity based on the relative stress and sex hormone levels 487 

compared across the gradient (Rehnus, Wehrle, and Palme, 2014). This method could be applied 488 

similarly to comparing the effects on prey of living in areas of high and low predator activity. 489 

Such methods undoubtedly allow for better-informed conservation decisions to be made by 490 

mapping pathways of fear and stress, where/when they may be cumulative, and where 491 

conservation managers should intervene to effectively preserve populations.  492 

Cumulative Effects Assessments (CEA) were developed in the 1990’s amid growing 493 

concerns that Environmental Impact Assessments (EIA) did not consider all the effects of urban 494 

and peri-urban construction developments (Smit and Spaling, 1995). Numerous countries have 495 

since mandated that CEA be incorporated into all EIAs (Therivel and Ross, 2007). Despite the 496 

legal requirement and the concept of CEA being widely defined in scientific literature, it is rarely 497 

applied in practice (Ma et al., 2009; Foley et al., 2017). However, CEA has the potential to be a 498 

powerful tool to mitigate cumulative impacts, including human-imposed stressors, on wildlife if 499 

the results are adopted by on-ground practitioners (Duinker et al., 2013).  500 

We propose that the principles of the ‘reactive scope model’ may be used to develop 501 

CEAs that consider where cumulative stressors occur, and thus better inform conservation 502 
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management initiatives in areas where wildlife is subject to homeostasis overload or failure 503 

(Figure 2). The reactive scope model (Romero, Dickens, and Cyr, 2009) provides a useful insight 504 

into the range of physiological mediators available in response to a stressor. It maps the 505 

homeostasis range of a given species to four stages: 1) predictive – changes in response to 506 

routine environmental changes, such as seasons or day to night; 2) reactive – a change in 507 

response to an unpredictable change, to allow survival via classic stress responses; 3) overload – 508 

consistent changes in response to a stressor, chronic stress impacts start to occur; and 4) failure – 509 

inability to sustain homeostasis, very susceptible to additional stressors and death (Romero, 510 

Dickens, and Cyr, 2009). If our proposed CEA, based on the reactive scope model, were to be 511 

applied to the cumulative stressors problem for small mammals in urban, urban adjacent, and 512 

peri-urban ecosystems in Australia, for example, then areas of conservation concern could be 513 

identified where the additive or synergistic impacts of human disturbance and introduced 514 

predators combine with stressors that occur naturally. Appropriate management could then be 515 

implemented to alleviate these stressors. 516 

 517 

Conclusion 518 

Considering ongoing global urbanization and the acknowledged importance of urban areas to 519 

biodiversity conservation there is need for increased focus on the management of urban 520 

biodiversity. Management decisions require information about fear and stress impacts on 521 

wildlife, including impacts from both human activities and predators, especially if they are 522 

introduced. An understanding of the impacts of human activities is a research priority for modern 523 

science (Schindler 2001; Fleishman et al., 2011). There are many gaps in our current 524 

understanding of the associated fear and stress impacts, and of associated impacts of predation 525 
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pressures and the persistence of target populations. For the future sustainability of biodiversity in 526 

urban and urban-adjacent green space habitats and reserves, it is vital that we establish a better 527 

understanding and management of the multiple stressors that operate in these systems.    528 

 529 
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Figure 1
A Venn diagram showing two main categories of stressor.

On the left are stressors that occur naturally in ecosystems, such as native predators, social
and breeding interactions, availability of refuge and burrow/den microhabitats, availability of
food and water, and disease / parasite prevalence. On the right are introduced stressors,
primarily those arising from anthropogenic disturbances and introduced predators. Where
both categories of stressor occur together, as in many urban environments, cumulative
stress impacts can result in homeostatic overload or failure (as defined by Romero, Dickens,
and Cyr, 2009). In these situations populations may be at particular risk of collapse and
conservation action will be most urgent.
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Figure 2
A conservation management approach that outlines the key steps for assessing if
cumulative stress impacts are occurring between stressors that occur naturally in
ecosystems and introduced stressors.

The circled areas indicate where conservation management initiatives may be used to
mitigate these effects through management of vegetation complexity or supplementation
materials such as water stations or nest boxes.
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