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ABSTRACT
Soil salinization is a global problem closely related to the sustainable development
of social economy. Compared with frequently-used satellite-borne sensors,
unmanned aerial vehicles (UAVs) equipped with multispectral sensors provide an
opportunity to monitor soil salinization with on-demand high spatial and temporal
resolution. This study aims to quantitatively estimate soil salt content (SSC) using
UAV-borne multispectral imagery, and explore the deep mining of multispectral
data. For this purpose, a total of 60 soil samples (0–20 cm) were collected from
Shahaoqu Irrigation Area in Inner Mongolia, China. Meanwhile, from the UAV
sensor we obtained the multispectral data, based on which 22 spectral covariates
(6 spectral bands and 16 spectral indices) were constructed. The sensitive spectral
covariates were selected by means of gray relational analysis (GRA), successive
projections algorithm (SPA) and variable importance in projection (VIP), and from
these selected covariates estimation models were built using back propagation neural
network (BPNN) regression, support vector regression (SVR) and random forest
(RF) regression, respectively. The performance of the models was assessed by
coefficient of determination (R2), root mean squared error (RMSE) and ratio of
performance to deviation (RPD). The results showed that the estimation accuracy of
the models had been improved markedly using three variable selection methods,
and VIP outperformed GRA and GRA outperformed SPA. However, the model
accuracy with the three machine learning algorithms turned out to be significantly
different: RF > SVR > BPNN. All the 12 SSC estimation models could be used to
quantitatively estimate SSC (RPD > 1.4) while the VIP-RF model achieved the
highest accuracy (R2

c = 0.835, R2
P = 0.812, RPD = 2.299). The result of this study

proved that UAV-borne multispectral sensor is a feasible instrument for SSC
estimation, and provided a reference for further similar research.
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INTRODUCTION
Soil salinization is a global ecological and environmental problem, which has become one
of the main obstacles to agricultural production and sustainable economic development,
especially in arid and semi-arid areas (Wu et al., 2008). The process of salinization is
mainly due to the comprehensive influence of specific natural conditions (geological,
topographic and climatic conditions) and improper agricultural practice. It is reported that
salinized soil has a high concentration of salt ions, directly affecting the normal growth,
yield and quality of crops (Tavakkoli et al., 2011; Munns, 2010). To manage and utilize
saline soil, some effective methods are needed to acquire the saline soil information
quickly, dynamically and accurately in arid and semi-arid areas.

Soil salt content (SSC) is an effective evaluation indicator of soil salinization
(Gorji, Tanik & Sertel, 2015). Field-based (in-situ) are logistically difficult such as labor
intensive and time-consuming (Metternicht & Zinck, 2003). Many scholars monitored
soil salinization using satellite-borne remote sensing (RS) data together with field
measurement over last two decades (Yu et al., 2018; Allbed, Kumar & Sinha, 2014;
Ivushkin et al., 2019b), yet satellite images can be easily affected by bad weather and
unfavorable revisit times. The recent development of unmanned aerial vehicle (UAV)
has ushered in a new era enabling monitoring of environment and agriculture at
unprecedented temporal and spatial, especially in the monitoring of such soil ingredients
as moisture, heavy metals and organic carbon (Gilliot, Vaudour & Joël, 2016; Bian et al.,
2019; Yi et al., 2018; Easterday et al., 2019; Jay et al., 2018). There have been a few
cases involving the application of UAV-borne RS in soil salinization monitoring.
For instance, Ivushkin et al. (2019a) combined three UAV-borne sensors to measure salt
stress in quinoa plants, and their result showed UAV-borne RS was a useful technique
to measure salt stress in plants. Hu et al. (2019) characterized and estimated soil salinity
using a hyperspectral and electromagnetic induction (EMI) equipment mounted on a
UAV platform, and concluded that UAV-borne hyperspectral imager was an effective tool
for field-scale soil salinity monitoring and mapping. Aside from these studies, existing
research showed that the majority of UAV-borne soil salinity estimations were conducted
using hyperspectral or thermal cameras while there are few reports on the application
of UAV-borne multispectral imagery to soil salt estimations. Compared with hyperspectral
sensors, multispectral sensors have a much lower cost, and the band preprocessing is
relatively simple, so it is significative to assess the capability of UAV-borne multispectral
sensor in SSC estimation.

The spectral index, a composition of different spectral wavebands, has been frequently
used to establish the correlation between spectral data and the information of soil
salinization (Allbed, Kumar & Sinha, 2014; Allbed, Kumar & Aldakheel, 2014). A series of
common salt indices, including Normalized Difference Salinity Index (NDSI) (Zewdu,
Suryabhagavan & Balakrishnan, 2017), Salinity Index (SI) (Allbed, Kumar & Aldakheel,
2014) and Simple ratio index (SR) (Chen, 1996), have been widely used to represent soil
salinization. Besides, some two-band (2D) indices and three-band indices (TBI) were
proposed for the estimation of soil moisture content and soil electric conductivity, and the
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results showed that these newly proposed indices containing more spectral information
displayed a higher correlation with measured data (Wang et al., 2019b).

However, such indices construction will generate a large amount of redundant
information, so it is important to filter the redundant information through variable
selection method for model optimization. Research has shown that variable selection
methods can improve the model predictive accuracy (Hong et al., 2018). Variable
importance in projection (VIP) scores evaluates the importance of each variable in the
projection used in a PLS model. Gray relational analysis (GRA) identify the primary
and secondary relations among variables through the calculation and comparison of
correlation sequence, and they both have been proved to be effective methods for variable
selection (Santos et al., 2019;Wang et al., 2018a). Successive projections algorithm (SPA) is
a variable selection method widely used in food and chemical engineering (Diniz et al.,
2015; Ghasemi-Varnamkhasti et al., 2012; Wu et al., 2009). Wang et al. (2019c) proved
the applicability of SPA method to soil salinity estimation, and the SPA method improved
the accuracy of the inversion model. However, there are few studies on the application
of these three variable selection methods to SSC estimation.

A common method to estimate SSC is the utilization of the mathematical statistical
model using RS data, especially the linear regression model including partial least squares
regression (PLSR) (Farifteh et al., 2007; Xu & Wang, 2015; Sidike, Zhao & Wen, 2014).
But the relationship between spectral covariates and soil properties is rarely linear in
nature (Ge et al., 2019). Machine learning provides an alternative mean of fitting nonlinear
problems (Nawar et al., 2016). Machine learning algorithms, including back propagation
neural network (BPNN), support vector regression (SVR), random forest (RF), extreme
learning machine (ELM) and Cubist, have been extensively used in the quantitative
estimation recently (Hoa et al., 2019; Shataee et al., 2012; Maimaitiyiming et al., 2019;
Li et al., 2015; Houborg & Mccabe, 2018). The BPNN algorithm, strong in nonlinear fitting
and self-learning, has been proven to be superior to traditional linear regression in
prediction accuracy in many studies (Pradhan & Lee, 2010; Bansal, Chen & Zhong, 2011).
The SVR algorithm grounded on kernel-based learning methods has the ability to
solve nonlinear and high-dimensional problems. Chen et al. (2015) reported that SVR
algorithm could effectively improve the accuracy of SSC estimation using the modified
vegetation index. Many scholars have concluded that the RF algorithm has such unique
advantages as small sample data processing, and nonlinear fitting problem solving
(Mutanga, Adam & Cho, 2012; Oliveira et al., 2012). For instance, Cushman &Wasserman
(2018) compared logistic regression and RF in multi-scale predictive model, and concluded
the RF model had a much stronger ability to estimate presences and absences in the
training set than logistic regression model. These studies showed that BPNN, SVR and
RF are feasible methods for quantitative estimation. However, most of the existing
researches focused on the comparison between machine learning algorithms and linear
regression methods, and there is a lack of the combination of these three machine learning
methods.

So far there are many researches on hyperspectral data mining (Wang et al., 2019a), but
very few reports on deep mining of UAV-borne multispectral data. We try to answer the
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following questions: The correlation between spectral indexes and SSC tends to vary,
so which spectral indexes are suitable for this study and which variable selection method
is the most effective? Which selection method and which regression algorithm can be
combined to have the best prediction accuracy? These questions are unavoidable in
UAV-borne multispectral monitoring of soil salinity.

Specifically, this study aimed to: (1) evaluate the potential and feasibility of UAV-borne
multispectral RS for SSC quantitative estimation; (2) compare the effect of GRA, SPA
and VIP on model accuracy, and investigate whether the three variable selection methods
can improve the model predictive accuracy; (3) compare the prediction accuracy of BPNN,
SVR and RF models, and identify the optimal SSC quantitative estimation model.

MATERIALS AND METHODS
Study area
Hetao Irrigation District (HID) is one of the three major irrigated areas in China. It is
located in the upstream of the Yellow River and the west of Inner Mongolia. With a total
irrigation area of 5740 km2, HID is an important production base of cereal and oil plants
in China. Shahaoqu Irrigation Area (107�05′~107�10′ E, 40�52′~41�00′ N), a typical
region of saline soil in HID, was chosen as the study area (Fig. 1). Its terrain surface is
relatively flat with the altitude from 1,034 m to 1,037 m. The climate is typically temperate
continental, with its mean precipitation, evaporation and annual temperature of about
140 mm, 2,000 mm and 7 �C, respectively, and the frost-free period of 120–150 days.
The local soil texture is mainly silty clay loam. Due to the unreasonable high irrigation,
low drainage of local agriculture and the impact of such natural factors as geological,
topographic and climatic conditions, the problem of salinization in this area is increasingly
prominent, seriously affecting the development of local agricultural economy (Wu et al.,
2008; Gao et al., 2015).

Data collection
Sample collection and chemical analysis

The Hetao irrigation district administration gave field permit approval to us
(No. 2017YFC0403302). Considering the various degree of salinization in Shahaoqu
Irrigation Area, We chose four typical and representative areas (Area A, B, C and D,
in Fig. 1) with different degrees of salinization in the farmland. Fifteen sampling cells
(0.5 m × 0.5 m) of bare soil were distributed in each area (16 hm2). Altogether 60 sampling
cells were identified, and the geographical position of each cell was recorded by GPS
(Fig. 2). Samples were collected from May 14 to May 17, 2018, with a sampling depth of
0–20 cm. The soil samples were stored and sealed in aluminum boxes.

All the soil samples were dried, ground, and then passed through a 2.0 mm sieve to wipe
off small stones and deadwood in the laboratory. Subsequently, the soil solution was
prepared with the soil to water ratio of 1:5. After 8 h of full immersion, the electrical
conductivity (EC1:5, ds/cm) of the soil solution was measured by conductivity meter
(DDS-307A; Shanghai Youke Instrument Branch, Shanghai, China), and then the SSC (%)
was calculated by empirical formula: SSC = (0.2882 EC1:5 + 0.0183) (Huang et al., 2018).
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Acquisition and processing of UAV-borne multispectral data
The flight platform adopted was the DJI Matrice 600 six-rotor UAV (Shenzhen Dajiang
Innovation Technology Co., Ltd., Shenzhen, China) equipped with a Micro-MCA
multispectral sensor (Tetracam Corporation, Chatsworth, CA, USA) (Fig. 3). The sensor is
light, small and remote controllable. The parameters of the sensor are shown in Table 1.
Simultaneous with the collection of soil samples, the UAV RS imagery of the four
areas were acquired at 13:00 Beijing time every day from May 14 to May 17, 2018.
The weather was sunny and windless, which is favorable for data acquisition. The UAV
followed the fixed route at a height of 120 m, the spatial resolution of the imagery being
6.5 cm. The images were captured every 3 s and its overlap rate was 85%.

The post-processing of images included image mosaicking, geometric correction,
radiation correction and orthographic correction with software Pix4D mapper 2.0.104
(Lausanne, Switzerland). Then four false color composite band images were generated and
the sampling points of GPS information were input into the four images of the study
area via software ENVI Classic. The gray values of the six bands of each sampling point
and the whiteboard were extracted and the reflectance of the sampling points was obtained
from the division of the former by the latter.

Spectral indices construction
The spectral index is highly related to soil surface, which is an effective indicator to
monitor soil salinization. Therefore, some of widely used soil salinity indices were
chosen in this study. In addition, to find the sensitive spectral indices suitable for the study
area and fully dig for the spectral data information, we built three 2D indices: the difference
index (DI), the ratio index (RI) and the normalization index (NDI). The formulas of
the spectral indices above are shown in Table 2.

Figure 1 The distribution of sampling point. (A–D) The distribution of the four study areas respectively.
Full-size DOI: 10.7717/peerj.9087/fig-1
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Figure 2 The distribution of sampling point. (A–D) The distribution of the four study areas
respectively. Full-size DOI: 10.7717/peerj.9087/fig-2

Figure 3 (A) M600 unmanned aerial vehicle; (B) micro-MCA multispectral sensor.
Full-size DOI: 10.7717/peerj.9087/fig-3
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Variable selection methods
Gray relational analysis
GRA is an approach to measure the degree of correlation between factors according to the
degree of similarity or difference in the development trend between factors. Its basic
principle is to identify the primary and secondary relations among various factors through
the calculation and comparison of correlation degrees (Wang et al., 2018d). GRA requires
less data, and the principle is simple to grasp. The calculation steps of this method
are: (1) determining comparison sequence and reference sequence; (2) normalizing the

Table 1 MCA multispectral sensor parameters.

Parameter Size

Weight/g 670

Field angle 38.26 × 30.97

The highest pixel 1,280 × 1,024

Band and band width/nm B1 490 (10–25)

B2 550 (10–25)

B3 680 (10–25)

B4 720 (10–25)

B5 800 (10–25)

B6 900 (10–25)

Table 2 Reference spectral indices. B, G, R, NIR1 and NIR2 are spectral reflectance at wavelengths of
490 nm, 550 nm, 680 nm, 800 nm and 900 nm, respectively. Bi and Bj represent the reflectance values
from random spectral bands available from the multispectral sensor.

Spectral
index

Formula Full name References

S1 B=R Salinity Index 1 Allbed, Kumar & Aldakheel
(2014)S2 B� Rð Þ= Bþ Rð Þ Salinity Index 2

S3 G� Rð Þ=B Salinity Index 3

S4 B� Rð Þ0:5 Salinity Index 4

S5 B� Rð Þ=G Salinity Index 5

S6-1 R� NIR1ð Þ=G Salinity Index 6-1

S6-2 R� NIR2ð Þ=G Salinity Index 6-2

SR-1 NIR1=R Simple Ratio Index 1 Chen (1996)

SR-2 NIR2=R Simple Ratio Index 2

BI-1 R2 þ NIR12ð Þ0:5 Brightness Index 1 Khan et al. (2005)

BI-2 R2 þ NIR22ð Þ0:5 Brightness Index 2

NDSI-1 R� NIR1ð Þ= Rþ NIR1ð Þ Normalized Difference Salinity
Index 1

NDSI-2 R� NIR2ð Þ=ðRþ NIR2) Normalized Difference Salinity
Index 2

DI Bi � Bj Difference Index Wang et al. (2019b)

RI Bi=Bj Ratio Index

NDI Bi � Bj
� �

= Bi � Bj
� �

Normalization Index
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spectral data; (3) calculating correlation coefficient; and (4) calculating correlation degree
and ranking gray correlation degree (GCD). The calculation process is completed by
software DPS 7.05 which is a data processing systemmade in China. The formula of GCD is:

GCD ¼ 1
n

Xn
i¼1

g x0 kð Þ; xi kð Þð Þ (1)

where g x0 kð Þ; xi kð Þð Þ ¼ mini maxk x0 kð Þ�xi kð Þj jþrmini maxk x0 kð Þ�xi kð Þj j
jx0 kð Þ�xi kð Þjþqmini maxk x0 kð Þ�xi kð Þj j , ρ is the distinguishing

coefficient with a value range [0,1]. In this study, ρ was set as 0.5.

Successive projections algorithm
SPA is a forward variable selection algorithm that minimizes collinearity in vector space,
which uses a simple projection operation in vector space to obtain minimum co-linear
variable subset. And it can greatly eliminate the co-linear effect between independent
variables, thereby reducing the model complexity and improving the model stability and
accuracy (Araújo et al., 2001). The core formula is as follows:

Pxj ¼ xj � xTj xk n�1ð Þ
� �

xk n�1ð Þ xTj xk n�1ð Þ
� ��1

(2)

where P is the projection operator; all j ∈ S, S represents the set of unselected variables;
K represents the selected independent variables.

Variable importance in projection
VIP is a variable selection method based on PLSR which was first proposed by
Wold, Martens & Wold (1983). VIP scores offer a useful method to select the variables
which contribute the most to the Y’s variance explanation. And it is calculated as follows:

VIP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�

PA
a¼1 Rd Y ; tð ÞW2PA
a¼1 Rd Y ; tð Þ

s
(3)

where K represents the total number of independent variables; A is the number of
components; t represents the selected independent variables; Rd (Y, t) represents the
interpretation degree of components to dependent variables; W2 represents the
importance of variable in each component; the value of VIP > 1 indicates a strong relation
between independent variables and dependent variables.

Model construction and validation
In this study, three machine learning algorithms, including BPNN, SVR and RF, were
applied to the quantitative inversion of SSC. The main method process is shown in
Fig. 4. To ensure that calibration dataset and validation dataset can represent the
statistical characteristics of the entire dataset, the division of samples was based on the
Kennard–Stone (k–s) algorithm (Kennard & Stone, 1969), and 40 samples were selected as
the calibration dataset and 20 samples as the validation dataset.

BPNN is a multi-layer feedforward neural network trained according to the error back
propagation algorithm. It does not need to establish a specific mathematical model in data
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analysis, and has strong fitting ability to figure out multi-factor nonlinear problems.
The BPNN model topology includes the input layer, the hidden layer, and the output
layer (Wang et al., 2018c). The sensitive variables selected by the three variable selection
methods were input layers in this study, the measured SSC data were the output layer, and
the size of hidden layer nodes was determined by cross-validation.

SVR is a machine learning algorithm based on the principle of structural risk
minimization. It has the advantages of simple structure, strong adaptability, and powerful
capability of tackling small sample, nonlinear and high-dimensional data problems
(Wang et al., 2019a). In this study, the kernel function was set as polynomial kernel
function (Polynomial). The training set cross-validation and grid search were used to
optimize the parameters. The penalty parameter (C) and the nuclear parameter (g) were
determined by a grid-searching technique and a leave-one-out cross validation procedure.

RF is an integrated learning algorithm of bagging algorithm and decision tree algorithm,
which can fit the complex nonlinear relationship between independent variables and
dependent variables (Wang, Fan & Wang, 2019). The major parameters in this algorithm
were set as follows: the scale was set as “TRUE”, and the number of trees (ntree) was
set as 500, the number of features tried at each node (mtry) depends on the lowest
out-of-bag error. The above three machine learning algorithms were conducted via
software R3.5.1 using the packages of “nnet”, “e1071” and “randomForest” respectively.

Figure 4 Method flow chart. (A) Data preprocessing; (B) modeling and (C) analysis.
Full-size DOI: 10.7717/peerj.9087/fig-4
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The accuracy of the model was evaluated using coefficient of determination (R2), root
mean squared error (RMSE) and ratio of performance to deviation (RPD). Model
prediction accuracy can be divided into three levels: Level A (RPD > 2.0) indicates very
good model prediction; Level B (1.40 ≤ RPD ≤ 2.00) rough quantitative estimation; Level C
(RPD < 1.40) unreliable model prediction (Chang et al., 2001). A reliable model usually
has the characteristics of high R2 and RPD values and low RMSE value. All the three
evaluation indicators were calculated via software R3.5.1.

RESULTS
Chemical characteristics
With reference to the classification standard for soil salinization degree (Huang et al.,
2018), the summary statistics are shown in Table 3. The proportion of none salinized soil,
mild salinized soil and severe salinized soil in the total samples is 33%, 40%, and 27%,
respectively, which is basically consistent with our field investigation. The coefficient of
variation (CV) of the total sample was 54%, that is, the variability of soil salinity was not
obvious in the cultivated area of the irrigation area.

The statistics of SSC for the entire dataset, calibration dataset and validation dataset are
shown in Fig. 5. The statistical indicators of the entire dataset were close to that of the
calibration dataset and the validation dataset, indicating that the SSC of the two selected
datasets represented the entire dataset. Compared with the field survey results, the
degree of the salinization at the sampling points can truly represent that of the cultivated
land in the irrigated areas.

The relationship between SSC and spectral indices
Table 4 shows the relationships between the spectral indices and SSC. Correlation analysis
showed a significant positive correlation (p < 0.01) between SSC and S1, S3, S4, S5, S6-1,
BI-1 and NDSI-2, and a significant positive correlation (p < 0.05) between SSC and S2,
S6-2, SR-2. The correlation coefficients of the measured SSC data and the three 2D
indices (RI, DI and NDI) for the two random spectral bands selected in multispectral
bands are shown in Fig. 6.

The bands with higher correlation between SSC and RI, DI, NDI, respectively, were
mainly concentrated on the red-edge band (B4) and two near infrared bands (B5, B6).
Then each 2D index with the optimal band combinations in the three were applied to
subsequent variable selection, and their correlation coefficients with SSC were calculated.

Table 3 Summary statistics of soil salinity sampling points.

Data set None
salinization
(<0.2%)

Mild
salinization
(0.2–0.5%)

Severe
salinization
(0.5–1.0%)

Min/% Max/% CV

Entire dataset (n = 60) 20 24 16 0.08 0.81 0.54

Calibration (n = 40) 14 16 10 0.08 0.81 0.54

Validation (n = 20) 6 8 6 0.09 0.71 0.57
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The maximal absolute values of PCC between SSC and RI, DI, NDI, were 0.59, 0.49 and
0.55, respectively.

Selection of sensitive variables
The GRA of the 22 spectral covariates (six spectral bands, thirteen soil salinity indices and
three 2D indices) and measured SSC were conducted by the gray system in the software
DPS, and the result is shown in Fig. 7. For the purpose of variable selection, the GCD

Figure 5 Violin plots showing the statistics of SSC for entire dataset, calibration dataset and
validation dataset (%). S.D.: standard deviation. Full-size DOI: 10.7717/peerj.9087/fig-5

Table 4 The relationship between SSC and spectral indices.

Spectral index |R| Spectral index |R|

S1 0.36** SR-2 0.30*

S2 0.26* BI-1 0.71**

S3 0.59** BI-2 0.21

S4 0.66** NDSI-1 0.19

S5 0.43** NDSI-2 0.72**

S6-1 0.71** DI 0.49**

S6-2 0.27* RI 0.59**

SR-1 0.13 NDI 0.55**

Notes:
* p < 0.05.
** p < 0.01.
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threshold of sensitive variables was set as 0.7, and seven variables, including B4, B6, S1,
S6-2, SR-1, SR-2 and RI, were finally identified as sensitive variables.

The sensitive variables were selected by SPA method via MATLAB R2014b (Fig. 8)
(Araújo et al., 2001; Galvão et al., 2001). The selected variables were B3 and NDSI,
accounting for only 9% of the total number of variables, so the complexity of the model
was greatly reduced.

The VIP score of each variable was calculated using MATLAB R2014b (Fig. 9).
Then variables with scores higher than 1 were selected, namely, NDSI-2, S1, SR-1, SR-2,
BI-1, BI-2, and RI.

Figure 6 The correlation coefficients of the measured SSC data and the three 2D indices for the two
random spectral bands. (A) RI; (B) DI; (C) NDI. The color bar on the right side represents the color of
Pearson’s correlation coefficient (PCC) values. Red stands for positive correlation and blue for negative.
The darker the color was, the larger the PCC value was. Full-size DOI: 10.7717/peerj.9087/fig-6

Figure 7 Gray correlation degree between the variables and SSC.
Full-size DOI: 10.7717/peerj.9087/fig-7
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Model estimations and comparisons
Based on the selection criteria in the previous section, seven sensitive variables (B4, B6, S1,
S6-2, SR-1, SR-2 and RI) were selected using GRA; B3 and NDSI-1 were selected using

Figure 8 The selected variables based on SPA. Full-size DOI: 10.7717/peerj.9087/fig-8

Figure 9 VIP score of variables for SSC estimation. Full-size DOI: 10.7717/peerj.9087/fig-9
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SPA; seven variables (NDSI-2, S1, SR-1, SR-2, BI-1, BI-2, and RI) were selected using
VIP. Based on all the variables and the above sensitive variables, three machine learning
models (BPNN, SVR and RF) were conducted to estimate SSC. The model parameters are
shown in Table 5 and the results are shown in Table 6.

Analysis of BPNN model
First of all, from the results of the calibration, the R2

c of the three variable selection methods
were close to each other and all bigger than 0.64, and their RMSEC were all below
0.12. The comparison among the R2

P, RMSEP and RPD indicated that VIP had the highest

Table 5 The details on model parameters.

BPNN SVR RF

size C g ntree mtry

Raw-BPNN 5 – – – –

GRA-BPNN 3 – – – –

SPA-BPNN 2 – – – –

VIP-BPNN 3 – – – –

Raw-SVR – 1000 0.01 – –

GRA-SVR – 100 0.01 – –

SPA-SVR – 100 0.001 – –

VIP-SVR – 1000 0.01 – –

Raw-RF – – – 500 3

GRA-RF – – – 500 3

SPA-RF – – 500 2

VIP-RF – – – 500 3

Table 6 Comparisons of different machine learning models based on different selection methods.

Acronym R2
c RMSEC R2

P RMSEP RPD

Raw-BPNN 0.599 0.135 0.574 0.137 1.494

GRA-BPNN 0.661 0.116 0.677 0.116 1.764

SPA-BPNN 0.643 0.116 0.659 0.121 1.691

VIP-BPNN 0.675 0.118 0.695 0.113 1.811

Raw-SVR 0.533 0.136 0.566 0.145 1.410

GRA-SVR 0.645 0.120 0.625 0.131 1.562

SPA-SVR 0.582 0.126 0.581 0.133 1.539

VIP-SVR 0.643 0.115 0.631 0.128 1.598

Raw-RF 0.650 0.115 0.631 0.127 1.642

GRA-RF 0.768 0.099 0.765 0.105 1.949

SPA-RF 0.747 0.098 0.736 0.108 1.895

VIP-RF 0.835 0.085 0.812 0.089 2.299

Note:
Raw, all variables; R2

c , determination coefficient of calibration; RMSEC, root mean squared error of calibration;
R2
P, determination coefficient of validation; RMSEP, root mean squared error of validation; RPD, ratio of performance to

deviation.
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prediction accuracy, GRA came next, and the SPA the lowest. The RPD of the three
selection models were between 1.6 and 1.8, while the estimation performance of
Raw-BPNN model showed the lowest values (RPD = 1.494). With reference to the
three-level classification of RPD, BPNN models could only roughly estimate SSC
quantitatively.

Analysis of SVR model
In terms of calibration effect, the accuracy of the VIP and GRA were relatively close, and
both R2

c were bigger than 0.64. The SPA did not show strong fitting effect, with the lowest
R2
c (0.581) and highest RMSEC (0.126). The validation results were similar to the

calibration results, and the VIP was only slightly higher than the GRA in prediction
accuracy while the SPA had the worst. Raw-SVR model had the worst performance.
In summary, the R2

P/R
2
c of the SVR models based on the three variable selection methods

were all close to 1, indicating that the SVR models had good robustness (Wang et al., 2018b).

Analysis of RF model
Raw-RF model had the lowest accuracy among the four RF models. According to the
accuracy of comprehensive calibration and validation, all the three selection RF models
achieved good effects (R2

c > 0.7) and the RPD reached up to 1.949, 1.895, and 2.299,
respectively. The respective R2

P/R
2
c of the three selection models were 0.9961, 0.9853 and

0.9725, indicating that there was neither over-fitting nor under-fitting. Therefore, it can be
concluded that the RF algorithm had excellent robustness and predictive ability.

Comprehensive evaluation and analysis of the model
Figure 9 shows the performance of the validation models. The estimation accuracy of
the models was improved in varying degrees using three variable selection methods, and
the values of R2

P were improved by 0.1 or more. It is interesting that the choice of the
different variable selection methods had less difference on model precision. The mean
value of RPD of VIP, GRA, and SPA were 1.758, 1.726, and 1.903, respectively. It can be
seen from Fig. 10 that the performance of the three selected methods is VIP > GRA > SPA
while the mean value of the RPD is not obviously different.

On the premise of the same variable selection method, different machine learning
algorithms demonstrated significant differences in the model prediction accuracy.
The mean value of the RPD of RF, BPNN and SVR were 2.048, 1.755 and 1.566,
respectively. Three RF models displayed high prediction accuracy, while the BPNNmodels
under-fitting and SVR models low prediction accuracy.

Figure 11 shows a comparison between the estimation results of the nine variable
selection models and the measured values. The RPD values of all the nine models were
bigger than 1.4, suggesting that all models had the ability to quantitatively estimate
SSC. The VIP-RF was the model with the best prediction performance (RPD = 2.299), and
its validation dataset points were well distributed on both sides of 1:1 line. In addition, the
selection of model regression method has a greater impact than that of the variable
selection method on the prediction accuracy of SSC.
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Figure 11 Comparison of the estimation results of the variable selection models. (A) GRA-BPNN,
(B) SPA-BPNN, (C) VIP-BPNN, (D) GRA-SVR, (E) SPA-SVR, (F) VIP-SVR, (G) GRA-RF, (H) SPA-RF
and (I) VIP-RF. Full-size DOI: 10.7717/peerj.9087/fig-11

Figure 10 Prediction performance of the models. Full-size DOI: 10.7717/peerj.9087/fig-10
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DISCUSSION
The UAV-borne multispectral RS technique has a great application potential for SSC
estimation. Compared with field sampling, UAV cost much lower. Establishing an effective
SSC estimation model is of great significance for salinization monitoring in arid and
semi-arid areas. Usually, a large number of spectral covariates will be generated in the
process of the estimation model construction, but these covariates may contain redundant
information, so the selection of sensitive variables is a key step in building an optimal
model. In this study, among the twenty-two spectral covariates the ones with higher
weights were NDSI, B3 and SR according to the results of the three selection methods.
The bands of the three variables were mainly at red band (680 nm) and two near-infrared
bands (800 nm, 900 nm), which is consistent with the results of former researches
(Wang et al., 2019b; Chen, 2018). The main water-soluble ions of our study area are Na+,
Ca2+, Cl− and SO2−

4 (Wang et al., 2019a). The visible-near infrared reflectance of salinized
soil is higher than that of non-salinized soil (Weng & Gong, 2006). Chen (2018)
proposed that salinized soil had an absorption peak at 671 nm, and Wang, Fan &
Wang (2019) found that the sensitive band of SSC was at 882–997 nm. These studies
revealed that the three bands (680 nm, 800 nm and 900 nm) contained more information
related to soil salinity.

In this research, the number of variables selected by the three methods was 7, 7, and 2,
respectively, which effectively simplified the estimation model and improved the
modeling efficiency. The application of three variable selection methods did improve the
accuracy of the estimation models markedly. From the model prediction accuracy, the
three selection methods ranked from high to low were: VIP, GRA, and SPA, and this
result were consistent with that of Wang et al. (2019b). The SPA method had the lowest
accuracy, the possible reason for this result is that the method only selected two variables
(9%) and missed some relevant spectral information possibly. However, there was no
significant accuracy difference using three different variable selection methods, which
may be due to the fact that the number of spectral variables set in this study was not large
and these methods were mostly used for hyperspectral wavelength selection. We suppose
that the selection of regression model method has a more significant impact on the
prediction accuracy than that of variable selection method in that the multispectral
estimation model has relatively little spectral information.

All of the estimation models achieved satisfactory results (RPD > 1.4), and R2
P/R

2
c

were close to 1, that is, there was no over-fitting in the prediction results, which indicates
that the machine learning algorithm can well fit the complex nonlinear relationship
(Nawar et al., 2016). The RPD based on the three RF models were 1.949, 1.895 and 2.299,
respectively. Different machine learning algorithms had different results, and the RF
algorithm demonstrated the best performance. Many scholars drew similar conclusions
when comparing regression methods in the estimation models (Douglas et al., 2018;
Zeraatpisheh et al., 2019; Antoine et al., 2013). For example, Gomes et al. (2019) established
the predicting models of soil organic carbon content using RF, SVR, Cubist and
Generalized Linear Models (GLM) and the result showed that the RF algorithm achieved

Wei et al. (2020), PeerJ, DOI 10.7717/peerj.9087 17/24

http://dx.doi.org/10.7717/peerj.9087
https://peerj.com/


the best prediction result. Ge et al. (2019) estimated soil moisture by combining
UAV-based hyperspectral imagery and two machine learning algorithms, and concluded
the RF models were superior to the ELMmodels. These researches have demonstrated that
RF is an outstanding and stable ensemble-learning algorithm to construct estimation
models that can overcome non-linear small sample size, and it has the strong ability to
resist overfitting (Lindner et al., 2015; Chen & Liu, 2005). We think that BPNN and SVR
are not necessarily inappropriate algorithms because the prediction results obtained by
them are acceptable. SVR belongs to the supervised learning model, and the relative
low prediction accuracy of SVR may be due to the fact that SVR models are prone to
deviation estimation caused by high noise (Li et al., 2019). Besides, SVR model turning
can be very tricky and getting the parameters right is difficult. BPNN belongs to
neural work model, it is tough to fit, and in our three BPNN models, R2

P is slightly larger
than R2

c , that is, a weak under-fitting phenomenon occurs, which may be the relative small
number of verification samples that increased the instability of the prediction results.
An effective optimization may occur if the sample size was appropriate.

UAV-borne multispectral RS has the advantages of high resolution and dynamic
continuous monitoring. Besides, existing RS data provides a large number of potential
resources available, satellite-borne RS data is easy to obtain and covers a large area,
portable analytical spectral devices (ASD) provide hundreds of spectral bands. Therefore,
we can combine them in the future application, so as to take the particular advantages of
multi-source RS data, and form a multi-scale dynamic continuous SSC monitoring
network based on the mathematical estimation model.

Few limitations along with questions for future study should be noted in this research.
This paper clearly demonstrated that UAV-borne multispectral RS is an effective tool to
estimate SSC. It is well known that soil moisture affects the spectral reflectance, and
the existence of such difference will be considered in the subsequent studies. The research
was conducted during the short bare soil period in May. It is generally considered that
it is more meaningful to estimate the SSC during the crop growth period for the
development of precision agriculture. Further researches can focus on establishing SSC
model via spectral information of the crop canopy. In addition, estimating SSC by
combining machine learning algorithms with RS at different scales will be a future
direction.

CONCLUSION
In this study, we built twelve estimation models of SSC on the basis of UAV-borne
multispectral data during the bare soil period in the cultivated area. We finally came to the
following conclusions.

Firstly, the RPD values of all models were greater than 1.4, indicating all models have an
ability to quantitatively estimate SSC, so UAV-borne multispectral remote sensing is
feasible for quantitative SSC estimation.

Secondly, the performance of the models has been improved markedly using the three
variable selection methods, and the accuracy varied among the three methods: VIP > GRA
> SPA, but this difference was not significant.
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Thirdly, the choice of different machine learning algorithms had a great effect on
the prediction accuracy of the model. In general, the RF had the highest prediction
accuracy and strongest robustness, the SVR followed, and the BPNN had the lowest.
The VIP-RF model performed the best among the twelve models with R2

P, RMSEP and
RPD of 0.812, 0.089 and 2.229, respectively.

The UAV-borne multispectral RS has great potential for SSC estimation in the future.
This instrument can present an efficient method to decision makers of agriculture and
environment management departments.
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