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Nitrogen deposition (Ndep) is considered a significant threat to plant diversity in grassland
ecosystems around the world. The evidence supporting this conclusion comes from both
observational and experimental research, with “space-for-time” substitution surveys of
pollutant gradients a significant portion of the former. However, estimates of regression
coefficients for Ndep impacts on species richness, derived with a focus on causal
inference, are hard to locate in the observational literature. Some influential observational
studies have presented estimates from univariate models, overlooking the effects of
omitted variable bias, and/or have used P-value-based stepwise variable selection (PSVS)
to infer impacts, a strategy known to be poorly suited to the accurate estimation of
regression coefficients. Broad-scale spatial autocorrelation has also generally been
unaccounted for. We re-examine two UK observational datasets that have previously been
used to investigate the relationship between Ndep and plant species richness in acid
grasslands, a much-researched habitat in this context. One of these studies (Stevens et al.
2004, Science, 303:1876–1879) estimated a large negative impact of Ndep on richness
through the use of PSVS; the other reported smaller impacts (Maskell et al. 2010, Glob.
Change Biol., 16:671–679), but did not explicitly report regression coefficients or partial
effects, making the actual size of the estimated Ndep impact difficult to assess. We
reanalyse both datasets using a spatial Bayesian linear model estimated using integrated
nested Laplace approximation (INLA). Contrary to previous results, we found similar-sized
estimates of the Ndep impact on plant richness between studies, both with and without
bryophytes, albeit with some disagreement over the most likely direction of this effect. Our
analyses suggest that some previous estimates of Ndep impacts on richness from space-
for-time substitution studies are likely to have been over-estimated, and that the evidence
from observational studies could be fragile when confronted with alternative model
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specifications, although further work is required to investigate potentially nonlinear
responses. Given the growing literature on the use of observational data to estimate the
impacts of pollutants on biodiversity, we suggest that a greater focus on clearly reporting
important outcomes with associated uncertainty, the use of techniques to account for
spatial autocorrelation, and a clearer focus on the aims of a study, whether explanatory or
predictive, are all required.
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9 Abstract

10 Nitrogen deposition (Ndep) is considered a significant threat to plant diversity in grassland ecosystems 

11 around the world. The evidence supporting this conclusion comes from both observational and 

12 experimental research, with “space-for-time” substitution surveys of pollutant gradients a significant 

13 portion of the former. However, estimates of regression coefficients for Ndep impacts on species 

14 richness, derived with a focus on causal inference, are hard to locate in the observational literature. 

15 Some influential observational studies have presented estimates from univariate models, overlooking 

16 the effects of omitted variable bias, and/or have used P-value-based stepwise variable selection (PSVS) 

17 to infer impacts, a strategy known to be poorly suited to the accurate estimation of regression 

18 coefficients. Broad-scale spatial autocorrelation has also generally been unaccounted for. We re-

19 examine two UK observational datasets that have previously been used to investigate the relationship 

20 between Ndep and plant species richness in acid grasslands, a much-researched habitat in this context. 

21 One of these studies (Stevens et al. 2004, Science, 303:1876–1879) estimated a large negative impact of 

22 Ndep on richness through the use of PSVS; the other reported smaller impacts (Maskell et al. 2010, 

23 Glob. Change Biol., 16:671–679), but did not explicitly report regression coefficients or partial effects, 

24 making the actual size of the estimated Ndep impact difficult to assess. We reanalyse both datasets 

25 using a spatial Bayesian linear model estimated using integrated nested Laplace approximation (INLA). 

26 Contrary to previous results, we found similar-sized estimates of the Ndep impact on plant richness 

27 between studies, both with and without bryophytes, albeit with some disagreement over the most likely 

28 direction of this effect. Our analyses suggest that some previous estimates of Ndep impacts on richness 

29 from space-for-time substitution studies are likely to have been over-estimated, and that the evidence 

30 from observational studies could be fragile when confronted with alternative model specifications, 

31 although further work is required to investigate potentially nonlinear responses. Given the growing 

32 literature on the use of observational data to estimate the impacts of pollutants on biodiversity, we 

33 suggest that a greater focus on clearly reporting important outcomes with associated uncertainty, the 

34 use of techniques to account for spatial autocorrelation, and a clearer focus on the aims of a study, 

35 whether explanatory or predictive, are all required.
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36 Introduction

37 Nitrogen deposition (Ndep) is a significant threat to the plant diversity of various habitat types, both in 

38 north-western Europe (UK National Ecosystem Assessment, 2011) and around the world (Phoenix et al., 

39 2006). The evidence for this position comes from a variety of sources, including correlative analyses of 

40 observational data (e.g. Maskell et al., 2010), typically conducted across relatively large areas as “space-

41 for-time” gradient studies, and small scale experiments (e.g. Van der Eerden et al., 1991), although the 

42 latter have also frequently been pooled across larger areas through meta-analyses or other approaches 

43 to evidence synthesis (Clark et al., 2007; Phoenix et al., 2012; Soons et al., 2017). Reviews of Ndep 

44 impacts on plant biodiversity have typically drawn on all of this evidence (Bobbink et al., 2010; UK 

45 National Ecosystem Assessment, 2011; Stevens et al., 2011c; RoTAP, 2012; Rowe et al., 2017), in 

46 addition to other types of studies, such as Before-After surveys of historic plots (e.g. Britton et al., 2009). 

47 Observational and experimental studies are therefore both generally considered useful ways of 

48 understanding pollutant-driven biodiversity change in terrestrial ecosystems.

49 Different inferential approaches are often considered complementary, with large-scale, observational 

50 methods potentially allowing access to “treatment” effects across pre-existing gradients, with levels of 

51 replication that would likely be challenging to resource via an experimental route (but see Fraser et al., 

52 2013). One cost of this approach is that the effect of interest is likely to be crossed in various complex 

53 ways with numerous other variables, including historic drivers for which data are likely to be 

54 inaccessible, leaving one with a large choice of covariates that could potentially be included in a model, 

55 including some which will be unknown, or suspected to be of importance but impossible to access. 

56 Furthermore, spatially autocorrelated variables that are not captured by the covariates included, or 

57 other processes causing spatial structure such as dispersal, may also need to be accounted for to ensure 

58 accurate estimation of regression coefficients (Beale et al., 2010; Crase et al., 2014). The ultimate 

59 purpose of a statistical model must also be taken into account in making analytical decisions: does one 

60 primarily wish to make predictions, or is the focus on unbiased effect estimation to develop causal 

61 understanding (Mac Nally, 2000; Stephens, Buskirk & del Rio, 2007; Shmueli, 2010)? Although causal 

62 inference may imply predictive success, models that are constructed using methods that solely seek to 

63 maximise predictive accuracy will not necessarily capture causal processes accurately. Even when 

64 explicitly aiming for causal explanations through regression modelling in non-experimental situations, 

65 estimated coefficients may still only have a weak claim to be viewed as causal effects (Gelman & Hill, 

66 2007; Young, 2018). Statistical issues then, in addition to domain-specific understanding, must also be at 

67 the forefront when attempting to make statements about cause and effect from observational data 

68 (Rubin, 2004; Young, 2018).

69 The work on Ndep presented here arose from a desire to use information from existing studies to inform 

70 the analysis of new data through the use of informative priors in a Bayesian framework (Lemoine, 2019). 

71 However, causality-focused estimates of regression coefficients from observational studies of Ndep 

72 impacts on plant richness proved hard to find in the current literature. For example, several studies have 

73 presented “headline” estimates from univariate models after multiple regression modelling (Stevens et 

74 al., 2004; Maskell et al., 2010; Field et al., 2014), implying regression coefficient values for Ndep that do 

75 not necessarily have any causal meaning, and/or have used P-value-based stepwise variable selection 

76 (PSVS) to derive final models, a strategy long known to be poorly suited to the accurate estimation of 

77 regression coefficients for inferential purposes (Greenland & Neutra, 1980; Mac Nally, 2000; 

78 Whittingham et al., 2006; Faraway, 2014; Harrell, 2015; Heinze, Wallisch & Dunkler, 2018). Re-analysis 
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79 of existing studies with the primary aim of developing models that focus on causal inference should 

80 therefore be valuable in exploring the dependence of earlier conclusions on modelling choices. 

81 Fortunately, data focusing on UK acid grasslands from two such studies (Stevens et al., 2004; Maskell et 

82 al., 2010) were available for re-analysis; but note also that very similar work has been done across other 

83 habitats (e.g. Maskell et al., 2010; Field et al., 2014), and across larger areas (e.g. Dupré et al., 2010).

84 The main focus of the current work is on deriving estimates of the effect sizes of nitrogen deposition on 

85 plant species richness, rather than on their statistical significance (Amrhein, Greenland & McShane, 

86 2019), whilst accounting for previously unmodelled broad-scale spatial autocorrelation. The model 

87 forms investigated were specified a priori; in general these were delimited by the full sets of covariates 

88 previously investigated by the original studies, given that these all have good ecological reasons for 

89 inclusion. We do not make the (unprovable) claim that our “full” models are fully correct with respect to 

90 reality, merely that the inclusion of as many plausible “pre-treatment” covariates as possible is likely to 

91 help avoid omitted variable bias, given that the ignorability assumption (i.e. all confounders are 

92 measured) is more likely to be satisfied (Gelman & Hill, 2007; Young, 2018), and that even our worst 

93 case ratio of response data points to predictors meets rules of thumb put forward by statisticians to help 

94 ensure that coefficients can be estimated accurately (Harrell, 2015, p. 72; Heinze, Wallisch & Dunkler, 

95 2018). In addition, we also include a model for the Stevens et al. (2004) data that focuses on a reduced 

96 set of covariates chosen for their expected similarity to the ecological impacts of the covariates used by 

97 Maskell et al. (2010) for comparative purposes. Two additional models for the Maskell et al. (2010) data 

98 were specified post hoc, due to a desire to investigate differences between our results and those of the 

99 original paper.

100 Note that some covariates of interest (e.g. pH, Al, C:N, and soil %N) could themselves be influenced by 

101 Ndep, but will also have independent impacts on the dependent variable (species richness). These types 

102 of partly intermediate variables are sometimes distinguished from fully post-treatment variables as 

103 “proxy variables” (Angrist & Pischke, 2009, pp. 64–68) whose inclusion is often better than their 

104 omission when a causal interpretation is desired. We assume here that, due to their pre-treatment 

105 importance for richness, adjusting for these covariates is more likely to result in accurate estimates of 

106 the effect of Ndep that not adjusting for them (Angrist & Pischke, 2009); indeed, in some cases, their 

107 inclusion will be essential for avoiding bias (Rosenbaum, 1984). Ultimately, we assume that these 

108 potential post-treatment (or proxy) variables are “plausible surrogate[s] for … clearly relevant but 

109 unobserved pretreatment variable[s]” (Rosenbaum, 1984).

110 Materials and Methods

111 Datasets

112 These are discussed chronologically by date of the field survey that created the original dataset, rather 

113 than the date of publication of the analysis. The data analysed by Maskell et al. (2010), “MEA10” 

114 hereafter, are described in that paper, and were originally collected as a part of the 1998 UK 

115 Countryside Survey (UKCS; http://www.countrysidesurvey.org.uk). Briefly, the data analysed by MEA10 

116 were selected from the 1998 UKCS on the basis of matches between plant communities in 2 x 2 m plots 

117 and particular National Vegetation Classification syntaxa; for acid grasslands, the chosen plots had a best 

118 fit to the acid grassland types U1-9 (Rodwell, 1992). For more details on the UKCS sampling strategy see 

119 Maskell et al. (2010) and Smart et al. (2003a); we only note here that the UKCS is a stratified sample of 

120 so-called UK land classes (Firbank et al., 2003), with systematic random sampling within strata. We take 
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121 the opportunity here to clarify some points relating to the datasets used in MEA10: the number of acid 

122 grassland plots used in analyses was 883, not 895 as reported; total nitrogen deposition from the 

123 modelled dataset of Smith et al. (2000) was specifically the estimated deposition over moorland, where 

124 moorland was defined according to the Land Cover Map 1990 (Fuller et al., 1993), and so is generally 

125 considered a better match to acid grassland than the grassland category of Smith et al. (2000); and, 

126 finally, the sulphur dioxide deposition covariate was not absolute deposition for a particular year, but 

127 the difference between the modelled values over moorland for 1998 and the modelled peak in 1970 at a 

128 5 x 5 km resolution (all L.C. Maskell & S.M. Smart, pers. comms). This approach attempts to ensure that 

129 the covariate effectively measures the recent and substantial reduction in acidifying sulphur deposition 

130 across Britain.

131 Descriptions of the data collected by Stevens et al. (2004), “SEA04” hereafter, can be found in that 

132 paper, and several others (e.g. Stevens et al., 2011b). The dataset reanalysed here was archived by 

133 Stevens, Dupré, Dorland et al. (2011a; Ecological Archives deposit E092-128). Briefly, SEA04 surveyed a 

134 random sample of 68 sites (after applying size and accessibility filters) from a larger database of acid 

135 grasslands collated by British national conservation agencies (note that the grasslands in this database 

136 may not be representative of the total national habitat resource). The random sample was stratified 

137 across a nitrogen deposition gradient, the gradient being again the deposition model of Smith et al. 

138 (2000), as for MEA10. Within sites, five 2 x 2 m plots were recorded (i.e. n = 68 × 5 = 340) within a larger 

139 100 x 100 m area chosen to contain at least 50% of NVC type U4 (Festuca ovina - Agrostis capillaris - 

140 Galium saxatile; Rodwell, 1992) acid grassland (Stevens et al. 2004). Note, however, that Stevens et al. 

141 (2011a) archived data for 320 of the plots from Stevens et al. (2004), and it is this dataset that we 

142 reanalyse here.

143 Data preparation

144 Within each dataset, some covariates were re-scaled to allow for more direct comparisons between 

145 regression coefficients, and to allow for their more intuitive ecological interpretation (Gelman & Hill, 

146 2007). For example, altitude, scaled in metres in the original datasets, were divided by 100 to produce 

147 regression coefficients that estimated the change in richness per 100 m. This produces a range of 9.75 

148 (0.00–9.75), comparable to the other covariates, and a more ecologically-interpretable regression 

149 coefficient (see Table 1 for all covariates used and their ranges). Although standardisation to unit 

150 variance is also often recommended for improving the comparability of coefficients in regression 

151 modelling (Gelman & Hill, 2007), it can also make direct comparisons between studies more difficult 

152 (Baguley, 2009), and so we focus here on models estimated using our rescaled covariates (where 

153 deemed necessary; see Table 1). MEA10 reported little difference in conclusions with respect to the 

154 analysis of vascular plant richness only or vascular plant plus bryophyte richness. SEA04 included 

155 bryophytes in their analyses. We focus primarily on vascular plant richness responses only (given that 

156 they are more likely to be accurately estimated; for example, MEA10 note that UKCS surveys only 

157 include “a selected range of the more easily identifiable bryophytes”), but we also report results from 

158 analyses including bryophytes in Supplementary Information 2.

159 SEA04 considered a larger number of covariates than MEA10, therefore we present two reanalyses of 

160 the SEA04 dataset here: model 1, using a smaller set of covariates chosen to match those of MEA10 in 

161 terms of their likely ecological effects; and model 2, using a larger set of covariates, matching those 

162 considered by SEA04 as closely as possible. Note that the full set of covariates considered by SEA04 

163 contains some that are perfect linear combinations of each other (e.g. total acid deposition is given by 
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164 SEA04 as total N plus total S; likewise, total N is normally calculated as reduced N plus oxidised N), for 

165 this reason, we only consider total N deposition and total S deposition as pollutant covariates in our 

166 models (Table 1). 

167 For SEA04 model 2, four of the available climate variables chosen to match the analysis of Stevens et al. 

168 (2004) had very high pairwise linear correlations (all with r ≥ 0.78); these variables (mean annual 

169 potential evapotranspiration (PET), mean annual daily maximum and minimum temperatures, 1996-

170 2006, all from the MARS dataset (see Stevens et al., 2011b); and mean annual potential 

171 evapotranspiration from Tanguy et al. (2018)) were combined using PCA and the first two principle 

172 components of this ordination used in their place (Table 1). PET data were unavailable for 3 sites (15 

173 plots) in SEA04 (all on Lundy Island, England, 51° 10′ 57.82″ N, 4° 40′ 11.46″ W), and these values were 

174 imputed as the mean PET value across the remainder of the SEA04 dataset prior to PCA. Imputation of 

175 the missing values by predicting the missing values of PET using the other highly correlated climate 

176 variables changed the imputed value of the missing data (all 15 plots had the same values for the 

177 predictive climate variables), but did not result in any substantive change to the final regression 

178 coefficients of the two climate principle components in the spatial Bayesian models described in the 

179 next section, nor to those of other variables.

180 All other pairwise correlations in the SEA04 dataset were ≤ |0.57|, except for total Ndep and total Sdep, 

181 which were also highly correlated (r = 0.83); a similar situation applied to the MEA10 data, where total 

182 Ndep and Sdep change had a correlation of r = -0.70 (all others were ≤ |0.68|). However, in both cases 

183 these pollutant variables were retained in our models due to their intrinsic interest to our causal 

184 question. Collinearity should not bias regression coefficient estimates, but can lead to higher variance 

185 (Harrell, 2015; Fox, 2016); variance inflation factors (VIFs) calculated for both datasets using standard 

186 Poisson generalised linear mixed effects models (with a random intercept for each 1 kilometre square 

187 containing plots; see below) indicated that all VIFs were below 5.4. The square-root of this VIF is 2.3, 

188 below the range that Fox (2016, p. 343) indicates can present serious issues for the precision with which 

189 regression coefficients are estimated.

190 Statistical models

191 As discussed by Blangiardo & Cameletti (2015), models for point-referenced data (i.e. those with 

192 measurements of some outcome across a set of specific locations, where the locations are indexed by a 

193 two (or three) dimensional vector) are one type of spatial data that can be modelled within a Bayesian 

194 framework (such point-referenced data are also known as geostatistical data). Hierarchical approaches 

195 to regression modelling, where unstructured random effects are incorporated within the model, are 

196 often implemented using a Bayesian approach (Gelman & Hill, 2007; Blangiardo & Cameletti, 2015). 

197 Such models can be extended to include structured random effects that allow analysts to account for 

198 similarities based on temporal or spatial neighbourhoods. The integrated nested Laplace approximation 

199 (INLA) method of approximate Bayesian inference is particularly well-suited to this area of modelling 

200 given its speed and relative ease of implementation (Blangiardo & Cameletti, 2015). 

201 We modelled both datasets using hierarchical Poisson regressions in R-INLA (Rue, Martino & Chopin, 

202 2009; www.r-inla.org). All models included a set of covariates and an additional random spatial field, to 

203 account for broad-scale spatial autocorrelation, as independent variables. The spatial field was 

204 evaluated using the stochastic partial differential equation (SPDE) approach developed by Lindgren et al. 

205 (2011), and was specified as a mesh constructed using a triangulation based on the 1 × 1 kilometre 
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206 squares of the British national grid (EPSG identifier 27700). Our models also included a random effect for 

207 the 1 kilometre squares containing the plots (as per Maskell et al., 2010), because in both datasets there 

208 were instances of multiple plots being recorded within a single square. Therefore the random spatial 

209 field models broader scale spatial autocorrelation between squares, whilst the 1 km square random 

210 effect captures smaller scale autocorrelation between plots within squares (Maskell et al., 2010). For the 

211 MEA10 dataset, such models had considerably lower values of the Deviance Information Criterion (DIC) 

212 than models omitting a random effect of 1 km square (ΔDIC = 54.6 or 31.8, without and with bryophyte 

213 data respectively); for SEA04 models 1 and 2 the inclusion of the 1 km square random effect was less 

214 important, but still generally improved the model (model 1: ΔDIC = 1.3 or -3.7; model 2: ΔDIC = 2.6 or 

215 2.0; both without and with bryophyte data respectively). The 1 km square random effect was therefore 

216 included for all models. The same check was made on the inclusion of the random spatial field based on 

217 excluding this term from a model including the 1 km square random effect. The results indicated that 

218 the spatial random field was required in five out of six models (MEA10: ΔDIC = 7.4 or 10.8, without and 

219 with bryophyte data respectively); for SEA04: model 1: ΔDIC = 7.4 or -1.1; model 2: ΔDIC = 11.1 or 10.6; 

220 both without and with bryophyte data respectively). The form of our final model can therefore be 

221 described as follows:

222  𝑦𝑖𝑗 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ𝑖𝑗)
223  λ𝑖𝑗 = exp (𝛽0 +  ∑𝑀𝑚 = 1

𝛽𝑚𝑋𝑚𝑖𝑗 +  𝛽𝑗𝑄𝑗[𝑖] + 𝜔𝑖𝑗)
224 Where yij is an observation of plant species richness in any plot/square combination, i is a unique plot 

225 identifier, j is a unique 1 km square identifier,  is a global intercept,  is the regression coefficient for 𝛽0 𝛽𝑚
226 covariate  (m = 1,…,M) and  is the hierarchical coefficient for each 1 km square, with  𝑋𝑚 𝛽𝑗 𝛽𝑗~𝑁(0,𝜃2

)

227 and Qj[i] indicates the association of the ith observation with the jth square (Gelman & Hill, 2007). The 

228  term represents an additional spatial effect assumed to be a zero mean Matern Gaussian Markov 𝜔𝑖𝑗
229 random field (GMRF) evaluated by the SPDE solution estimated over the specified triangulated mesh 

230 (Figure A1.7). A detailed overview of geostatistical models estimated using SPDEs and GMRFs can be 

231 found in Blangiardo & Cameletti (2015). Priors for all parameters were left at the INLA defaults (see 

232 www.r-inla.org).

233

234 Results

235 The inclusion of both the 1 km square random effect and the spatial random field improved almost all 

236 the models of the effects of N deposition on plant species richness in acid grassland explored here (as 

237 judged by DIC, see “Statistical models” above). The one model (SEA04 model 1 with bryophyte data) 

238 where ΔDIC was negative when either the 1 km square random effect or the spatial random field was 

239 dropped (indicating that the simplified model was preferred) still required a spatial random effect at 

240 some scale: dropping both random effects gave a DIC value of 1732.7 compared to a value of 1712.7 for 

241 the full model; the preferred model in this case was that with the spatial random field only (DIC = 

242 1709.0). Estimates of the overall random effects variance explained by the structured spatial field varied 

243 between 87.4% (MEA10, vascular plants only) to 99.7% (SEA04 Model 1, vascular plant and bryophyte 

244 richness combined) across the models including both random effects.

245 The addition of an extra kilogram of total N deposition on plant species richness per hectare per year 

246 was consistently amongst the smallest effect estimated by our models, with low uncertainty in 
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247 comparison to other covariates (Figs 1a-c, A2.1, A2.2, A2.3). Exponentiating the fixed effects indicated 

248 that the impact of increasing total N deposition is equivocal across these datasets and models (Table 2): 

249 six models estimated a drop of around 1% in species richness as the most likely impact (Figs 1b-c, A2.2, 

250 A2.3, A3.1, A3.2), although two of these models (Supplementary Information 3; SI3) were formulated 

251 post hoc and were not favoured as the best models for the dataset by their DIC estimates. Two models, 

252 estimated from MEA10 using the DIC-favoured model, suggested that an increase in species richness 

253 had more support (Figs 1a, A2.1; Table 2). The reduced covariate set used for the SEA04 data (model 1) 

254 for closer comparison to the covariate set used in the MEA10 analysis made no difference to the 

255 estimated effect of N deposition calculated from the larger set of covariates from SEA04 (model 2; Figs 

256 1b-c, A2.2, A2.3; Table 2). Figure 2 illustrates the estimated partial effect of N deposition (with other 

257 covariates set to zero) on vascular plant species richness for two of our models (MEA10 and SEA04 

258 model 1); these demonstrate both the relatively small predicted mean impact on species richness, the 

259 disagreement in impact direction between the datasets, and the uncertainty attached to these 

260 predictions. 

261 The results presented in SI3 were included as exploratory, post hoc, analyses after it was found that our 

262 DIC-favoured models of the MEA10 dataset indicated that the most likely overall influence of Ndep on 

263 species richness was more likely to be positive, contrary to the conclusions of Maskell et al. (2010). Our 

264 additional analyses (SI3), each with only one of the spatial random effects used in the full model, did 

265 show a reversal of average sign, with the analysis matching that of Maskell et al. (2010), i.e. using a 1 km 

266 square random effect, indicating the strongest negative effect of N deposition on vascular plant richness 

267 (a mean of a 2% loss of species richness per kg ha-1 yr-1 of total N deposition; Table 2, Fig. A3.1). 

268 However, this model had a DIC value 7.4 units higher than the favoured model.

269 Discussion

270 Previous work on the estimation of the effects of nitrogen deposition on plant species richness from 

271 space-for-time substitution studies is likely to have had a significant impact on both science and policy 

272 (assuming that the number of citations received can be used as an index to this). Therefore being clear 

273 about the reliability and accuracy of estimates from observational work is important, not only for 

274 fundamental reasons of improving ecological understanding and analysis, but also because policy 

275 decisions must be made concerning the utility of funding work in this area relative to other ways of 

276 assessing environmental change (although field experimental work may have issues of its own; Peters, 

277 1991; Phoenix et al., 2012). Clear and accurate estimates of the likely sizes of effects are invaluable for 

278 informing future studies, for example, through power analyses, or the use of informative priors for 

279 Bayesian approaches. Our results suggest that only small effects of nitrogen deposition on species 

280 richness may be detectable in these observational datasets.

281 The headline result of Stevens et al. (2004) reported “a reduction of one species per 4-m2 quadrat for 

282 every 2.5 kg N ha-1 yr-1 of chronic nitrogen deposition”. An estimated reduction in species richness of 

283 23% (based on a change from deposition of 5 kg N ha-1 yr-1 to 17 kg N ha-1 yr-1) was also highlighted as a 

284 key message using a regression coefficient estimated from a model including only Ndep as a covariate. 

285 The estimate from our SEA04 model 1 implied a loss of around 1% of richness per kg N ha-1 yr-1; 

286 however, this ignores the uncertainty associated with this particular coefficient estimate, which included 

287 an estimate of no effect at the 97.5% percentile, and the larger uncertainty associated with alternative 

288 model specifications (including ones that we have not explored here). Indeed, our estimates from the 
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289 larger, random-stratified national survey of Maskell et al. (2010) suggested that a small average increase 

290 in richness along the total nitrogen deposition gradient was more plausible under the favoured model 

291 for that dataset. Furthermore, the partial effects calculated from our full models (Fig. 2) indicated that 

292 the average effect on richness across Britain may only approach a difference of around one species in 

293 either direction. This is also notable because previous commentaries (e.g. Tipping et al. 2013) have 

294 suggested that differences in the apparent effect sizes of Ndep between the two observational studies 

295 reanalysed here were likely due to study design, whereas our work suggests that the differences are 

296 actually minimal, and that those found previously may simply be artefacts of the different statistical 

297 modelling procedures adopted by the original studies. The different median signs found in our analyses 

298 could also be due to differences in the statistical populations targeted, namely the differential sampling 

299 of grassland types, with the greater plant community coverage of the dataset of Maskell et al. (2010) 

300 potentially covering more sites on the left of a net primary productivity/diversity unimodal curve, 

301 resulting in an average increase in richness under fertilisation (see below for more discussion of the 

302 potential impacts of non-linear responses and other issues on the current work).

303 Our results should cause others to re-evaluate their approaches to observational data. For example, 

304 Field et al. (2014) also used PSVS, and other P-value based selection techniques, to formulate models in 

305 their space-for-time analyses of Ndep impacts for a number of semi-natural habitats across Britain, as 

306 well as highlighting simple univariate relationships through scatter plots. These authors, however, did 

307 note in their methods section that their results should be “interpreted with caution”, although this 

308 statement of uncertainty was not clearly carried through to other parts of their paper, nor to other 

309 research. For example, Payne et al. (2017) used data from both SEA04 and Field et al. (2014) to forecast 

310 the impacts of Ndep on plant species richness under future nitrogen deposition scenarios. Ndep and its 

311 polynomial transformations were the only covariates in these models. Payne et al. (2017) noted in their 

312 online supplementary material (their Web Panel S1) that such forecasting makes the strong assumption 

313 that covariances between variables remain the same at the future time point (i.e. the distribution of 

314 nitrogen deposition amounts will vary with, e.g., mean maximum July temperature in the same way in 

315 2030 as they did when originally modelled). However, they did not clearly acknowledge that the Ndep-

316 only models in their forecasting exercise had received no validation in support of their status as the best 

317 predictive (or explanatory, for that matter) models by the original studies or elsewhere. Ndep may be a 

318 useful covariate for producing good predictive models of species richness in certain habitats, but this 

319 should be demonstrated using measures of out-of-sample predictive ability, and the resulting partial 

320 effects of Ndep in such models have no intrinsic claim to be reliable estimates of its causal relationship 

321 with richness (cf. Payne et al. 2017).

322 These issues from the literature should not detract from the fact that there are also several ways in 

323 which the work presented here could potentially be improved upon. Our efforts are linear models (as for 

324 SEA04, MEA10, Field et al. 2014, among others), but there is evidence that the response of species 

325 richness to Ndep may be better modelled as unimodal (Tipping et al., 2013; Simkin et al., 2016; Clark et 

326 al., 2019). Simkin et al. (2016) still, however, reported declines in the plant species richness of open 

327 habitats above 8.7 kg N ha-1 yr-1, very similar to the 7.9 kg N ha-1 yr-1
 richness decline threshold identified 

328 for acid grassland by Tipping et al. (2013), suggesting that a large part of the gradient studied by SEA04 

329 and MEA10 may still be well-approximated by a linear relationship (although we note that the approach 

330 of Tipping et al. 2013 also makes the assumption that there are no omitted linear or non-linear variables 

331 correlated with Ndep that might change their estimated univariate breakpoint relationship). Indeed, the 
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332 linear component of a non-linear trend is often considered the most policy-relevant summary by those 

333 who routinely produce ecological indicators (e.g. Soldaat et al., 2017). Different approaches to 

334 accounting for this likely non-linearity in multivariable models, such as the inclusion of interactions or 

335 smoothers, could however be further explored, particularly given that novel methods focused on causal 

336 inference that can account for these issues continue to be developed (Dorie et al., 2019).

337 Other uncertainties relating to our conclusions pertain to the fact that the broad-scale spatial field used 

338 here may be accounting for information that, if known, would change the size of the Ndep impact 

339 regression coefficient. This could be in the form of additional covariates, or more highly resolved 

340 estimates of the Ndep load that a location has actually received. The Ndep estimates used here (and by 

341 the original studies) are resolved to a grain size of 5 x 5 km, and this additional uncertainty could have 

342 attenuated our estimate of the regression coefficient (the measurement error in explanatory variables 

343 problem; e.g. see Fox, 2016), even if there is no systematic bias relating to the association of 5 x 5 km-

344 estimated Ndep levels with particular types of vegetation. This argument is likely to apply to many of the 

345 variables used here and in other studies, particularly given that many are estimated from other 

346 modelling exercises at relatively large spatial grain sizes (Table 1). Conversely, measurement error 

347 coupled with conditioning on statistical significance, as happens through PSVS (e.g. Stevens et al., 2004; 

348 Field et al., 2014), is likely to result in the overestimation of effects (Gelman & Carlin, 2014; Loken & 

349 Gelman, 2017). Whether or not the potential for these biases is more serious for inference than the 

350 absence of covariates that are unavailable, such as historic land management events (e.g. Rackham, 

351 1986), is difficult to say.

352 The new observational results presented here are in line with much of the experimental literature on 

353 Ndep impacts. For example, Phoenix et al. (2012) reviewed a group of nine experiments conducted 

354 across the UK, with N treatments which had been running for lengths of time between 7 and 22 years at 

355 the time of review. These studies aimed to examine the impacts of “modest treatment doses and 

356 avoid[ed] single dose or solid form applications” (Phoenix et al., 2012) in order to overcome previous 

357 criticisms relating to (potentially unrealistic) very high experimental loadings. These nine studies 

358 reported no effects of their experimental N treatments on higher plant richness (although these 

359 conclusions of no effect were all based on thresholding P-values); two sites indicated increases in 

360 richness using the calculated accumulated Ndep dose over the duration of an experiment, although 

361 these cases were discounted by Phoenix et al. (2012) as being of either minor ecological significance or 

362 transitory. Phoenix et al. (2012) put forward several reasons why the results from this series of 

363 experiments may not reflect the true impact of chronic Ndep on plant richness: for example, sensitive 

364 species might already have been lost prior to the establishment of an experiment, and/or an experiment 

365 might not have been running long enough for the impacts to have been fully realised. Of course, 

366 important changes in community structure can also occur without species loss (Hillebrand et al., 2018). 

367 Longer running studies, such as the Park Grass experiment at Rothamsted, England (1856 to the present 

368 day; Silvertown et al., 2006), avoid some of these criticisms. Although the Park Grass plots that have 

369 received experimental N addition have received very high doses, with annual N fertiliser doses starting 

370 at 48 kg N ha-1 yr-1 (Storkey et al., 2015), control plots having received only atmospheric deposition may 

371 be a useful comparator for some habitats in the wider landscape. Plot 3 of the Park Grass experiment, 

372 for example, has in theory only ever received ambient Ndep (Storkey et al., 2015); Lawes & Gilbert 

373 (1880) reported an average of around 48.5 plant species (including bryophytes) in the 0.5 acre (~2000 

374 m2) neutral grassland plot between 1862‒1877; the average between 1939‒1948 was 34 (Brenchley & 
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375 Warington, 1958), indicating a decline over this period that preceeded the local increase in Ndep (see 

376 the first figure of Storkey et al. 2015 for the local Ndep trend at this location over the 20th century). 

377 Unfortunately, the local increase in Ndep at Rothamsted coincided with the decision to split the plots 

378 into different liming treatments (Williams, 1974; Storkey et al., 2015) meaning that subsequent richness 

379 estimates cannot be unambiguously compared to the earlier numbers (there is confounding of the Ndep 

380 increase with the application of lime, and the area that could be directly compared shrinks to a quarter 

381 of the original plot, introducing the need for species-area adjustments). Over the period 1991‒2012, 
382 however, survey data indicate that there may have been a very slight recovery in richness in Plot 3 

383 (although Storkey et al. present no statistics for this trend), coinciding with a reduction in the N 

384 composition of the plot herbage and increases in Simpson’s diversity index (Storkey et al., 2015).

385 Overall, then, experimental data using realistic applications of Ndep appear to support our finding that 

386 richness is a relatively insensitive metric of such impacts (see also Hillebrand et al., 2018). Finally, and to 

387 avoid any misunderstanding as to the thesis being presented in this paper, we note that we are not 

388 stating that overall eutrophication from all sources (e.g. livestock, local fertiliser drift etc.) is 

389 unimportant for the conservation of plant biodiversity. General signals of eutrophication in plant 

390 communities are widespread and beyond doubt (e.g. Smart et al., 2003b; Willi, Mountford & Sparks, 

391 2005). We are forced to conclude, however, that the contribution of Ndep to this phenomenon appears 

392 to be smaller, and more uncertain, than many previous analyses of space-for-time Ndep gradients have 

393 concluded (cf. Stevens et al., 2004; Field et al., 2014; Payne et al., 2017). It is possible that this is due to 

394 the fact that earlier losses of species due to accumulated historic deposition means that the remaining 

395 opportunity to detect effects in recent space-for-time studies is limited; this suggests, however, that 

396 richness should not be used as an indicator of Ndep impacts, and previous work taking this approach 

397 (particularly where highly significant statistical concerns abound) should no longer be cited in support of 

398 general conclusions regarding these impacts.

399 Conclusions

400 The evidence for large negative impacts of nitrogen deposition on plant species richness put forward 

401 through analyses of observational data appears to have been overstated. We estimate a possible decline 

402 in richness of around 1% per kg ha-1 yr-1 of total N deposition from two spatially and temporally 

403 separated British space-for-time gradient studies, considerably less than the estimates implied 

404 previously by described and/or plotted relationships from primary studies (Stevens et al., 2004; Maskell 

405 et al., 2010). Moreover, even this estimate appears uncertain, and our favoured model for the acid 

406 grassland data of Maskell et al. (2010) suggests that an average increase in richness of a similar 

407 magnitude may be more likely. The previous lack of presented regression coefficients derived with 

408 causal inference as their main focus, and of models that account for broad-scale spatial autocorrelation, 

409 is important to note, because scientists wishing to use the estimated effects of Ndep for the design of 

410 future studies, or for the construction of informative priors in new analyses, may be misled as to the size 

411 of effect that is expected to be detectable in datasets of this type. The various models presented here 

412 could be thought of as a small section of the “multiverse” of potential approaches to these data, an 

413 approach that has been put forward as an additional route to transparency and reproducibility in 

414 science, and which can provide insights into the fragility or robustness of particular conclusions (Steegen 

415 et al., 2016). As such this work is unlikely to be the last word on these datasets, or in the general area of 

416 observational studies of nitrogen deposition impacts. We hope that our re-analyses inspire further 

417 efforts to accurately extract the maximum available knowledge from these valuable datasets, whether 
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418 for explanatory or predictive purposes, and that evidence synthesis in this area takes these uncertainties 

419 and methodological issues into greater account going forwards.

420
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Figure 1
Regression coefficient plots

(a) Estimated regression coefficients for the reanalysis of Maskell et al. (2010); (b) estimated
regression coefficients for the reanalysis of Stevens et al. (2004) using a reduced set of
covariates chosen for their similar ecological status to the covariates used by Maskell et al.
(2010), referred to in this paper as SEA04 model 1; (c) estimated regression coefficients for
the reanalysis of Stevens et al. (2004) using a set of covariates designed to match the
original analysis of that paper as closely as possible, referred to in this paper as SEA04 model
2. The dependent variable was vascular plant species richness in all cases. White circles
represent the posterior median estimate, black bars the posterior 50% credible interval, grey
bars the posterior 95% credible interval. All covariates are described in Table 1.
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Figure 2
Total nitrogen deposition partial effect predictions.

INLA model predictions of the partial effect of total nitrogen deposition (Ndep; kg ha-1 yr-1) on
acid grassland species richness estimated for (a) MEA10 and (b) SEA04 model 1; both the
models used for these predictions used vascular plant richness only as the dependent

variable. Predictions were estimated for each 10th-percentile of the respective Ndep ranges
covered by each study using the linear combinations option of INLA. Linear combinations
were estimated for each point in the Ndep range with other covariates set to zero, hence the
low values of the predicted richnesses for different levels of total Ndep.
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Table 1(on next page)

Summary information for all covariates used in our reanalyses.

All covariates with their original spatial grain sizes, original ranges, and re-scalings as used in
the reanalyses of Maskell et al. (2010) (MEA10) and Stevens et al. (2004) (SEA04) presented
here.
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1 Table 1. All covariates with their original spatial grain sizes, original ranges, and re-scalings as used in the 

2 reanalyses of Maskell et al. (2010) (MEA10) and Stevens et al. (2004) (SEA04) presented here.

Covariate Supporting 

refs or 

sources

Original 

data grain 

size

Original 

range 

Original 

units

Rescaled 

range 

where 

relevant

Rescaled 

units where 

relevant

Relevant 

reanalysis

Total Ndep 

estimated 

over 

moorland

Maskell et 

al. (2010); 

Smith et al. 

(2000)

5 × 5 km 4.9‒40.0 kg ha-1 yr-1 - -

Change (1970 

to 1998) from 

peak Sdep 

estimated 

over 

moorland

Smith et al. 

(2000); L. 

Maskell 

(pers. 

comm.)

5 × 5 km -5.36‒0.00 Δ kg S ha-1 

yr-1

- -

Max. altitude Maskell et 

al. (2010)

1 × 1 km 0‒975 m 0.00‒9.75 100 m

Mean min. 

Jan. temp 

(1961-1999)

Maskell et 

al. (2010)

5 × 5 km -8.16‒0.08 °C - -

Mean max. 

Jul. temp 

(1961-1999)

Maskell et 

al. (2010)

5 × 5 km 14.11‒26.67 °C - -

Mean annual 

precipitation 

(1961-1999)

Maskell et 

al. (2010)

5 × 5 km 554.33‒330
5.80

mm 2.22‒13.22 250 mm

Change in 

sheep 

numbers

Maskell et 

al. (2010)

2 × 2 km -

11.19‒88.47
Δ sheep per 

year (1969 

to 2000)

-1.12‒8.85 Δ 10 sheep 

per year 

(1969 to 

2000)

M
E

A
1

0

Mean annual 

precipitation 

(1996-2006)

Stevens, 

Dupré, 

Dorland et 

al. (2011)

25 × 25 km 604.9‒1773.
3

mm 0.42‒7.09 250 mm

Mean annual 

daily max. 

temp. (1996-

2006)

Stevens, 

Dupré, 

Dorland et 

al. (2011)

25 × 25 km 11.5‒14.6 °C - -

Mean annual 

daily min. 

temp. (1996-

2006)

Stevens, 

Dupré, 

Dorland et 

al. (2011)

25 × 25 km 4.2‒8.1 °C - -

Topsoil 

aluminium

Stevens, 

Duprè, 

Gaudnik et 

al. (2011)

Empirical 

plot data

11.60‒1318.
75

mg kg-1 dry 

soil

0.06‒6.59 200 mg kg-1 

dry soil

S
E

A
0

4
: 

M
o

d
e

l 
1

Total Sdep 

estimated 

over 

grassland

Stevens et 

al. (2004); 

Smith et al. 

(2000)

5 × 5 km 3.20‒13.44 kg ha-1 yr-1 - -

Total Ndep 

estimated 

over 

grassland

Stevens et 

al. (2004); 

Smith et al. 

(2000)

5 × 5 km 7.70‒40.86 kg ha-1 yr-1 - -

Topsoil pH Stevens et Empirical 3.69‒5.37 pH unit 7.38‒10.74 0.5 pH unit

S
E

A
0

4
: 

M
o

d
e

ls
 1

 &
 2
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al. (2004); 

Stevens, 

Duprè, 

Gaudnik et 

al. (2011)

plot data

Max. altitude Stevens et 

al. (2004); 

Stevens, 

Duprè, 

Gaudnik et 

al. (2011)

Empirical 

plot data

15‒500 m 0.15‒5.00 100 m

Grazing 

intensity

Stevens et 

al. (2004); 

Stevens, 

Duprè, 

Gaudnik et 

al. (2011)

Empirical 

plot data

Coded as 

low/ 

medium/ 

high

- - -

Climate PC1 See 

methods

See 

methods

-4.90‒3.43 - - -

Climate PC2 See 

methods

See 

methods

-1.47‒1.20 - - -

C:N Stevens et 

al. (2004); 

Stevens, 

Duprè, 

Gaudnik et 

al. (2011)

Empirical 

plot data

13.34‒30.58 topsoil mass 

ratio

- -

Slope Stevens et 

al. (2004); 

Stevens, 

Duprè, 

Gaudnik et 

al. (2011)

Empirical 

plot data

0‒60 ° 0‒6 10°

Soil %N Stevens et 

al. (2004); 

Stevens, 

Duprè, 

Gaudnik et 

al. (2011)

Empirical 

plot data

0.12‒1.57 topsoil %N - -

Soil moisture 

deficit (SMD)

Stevens et 

al. (2004); 

Hough & 

Jones 

(1997)

40 × 40 km 1.66‒48.94 mm 0.17‒4.89 10 mm
S

E
A

0
4

: 
M

o
d

e
l 

2
 o

n
ly

3

4
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Table 2(on next page)

Estimated regression coefficients for total nitrogen deposition across models.

Exponentiated total nitrogen deposition regression coefficient medians, 2.5 and 97.5%
quantiles for all models (all given to 2 decimal places). For example, for model MEA10,
vascular plants only, a median value of 1.01 implies that a 1% gain of species richness per kg

ha-1 yr-1 of total N deposition is highly compatible with the data; however, the 2.5% quantile
value of 0.99 for this model also suggests that losses up to and around 1% are plausible (all
values being conditional on model assumptions and data accuracy).
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1 Table 2. Exponentiated total nitrogen deposition regression coefficient medians, 2.5 and 97.5% quantiles 

2 for all models (all given to 2 decimal places). For example, for model MEA10, vascular plants only, a 

3 median value of 1.01 implies that a 1% gain of species richness per kg ha-1 yr-1 of total N deposition is 

4 highly compatible with the data; however, the 2.5% quantile value of 0.99 for this model also suggests 

5 that losses up to and around 1% are plausible (all values being conditional on model assumptions and 

6 data accuracy).

Model, dependent richness variable Spatial error 

structure

2.5% 

quantile

Median 97.5% 

quantile

Model 

location

MEA10, vascular plants only Mesh + square 0.99 1.01 1.03 Fig. 1a

MEA10, vascular plants and bryophytes Mesh + square 0.99 1.00 1.02 Fig. A2.1

SEA04 model 1, vascular plants only Mesh + square 0.98 0.99 1.00 Fig. 1b

SEA04 model 2, vascular plants only Mesh + square 0.98 0.99 1.01 Fig. 1c

SEA04 model 1, vascular plants and bryophytes Mesh + square 0.98 0.99 1.01 Fig. A2.2

SEA04 model 2, vascular plants and bryophytes Mesh + square 0.98 0.99 1.01 Fig. A2.3

MEA10, vascular plants only Square only 0.97 0.98 1.00 Fig. A3.1

MEA10, vascular plants only Mesh only 0.98 0.99 1.01 Fig. A3.2

7
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