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Extracellular matrix (ECM) proteins play an essential role in various biological processes in
multicellular organisms, and their abnormal regulation can lead to many diseases. For
large-scale ECM protein identification, especially through proteomic-based techniques, a
theoretical reference database of ECM proteins is required. In this study, based on the
experimentally verified ECM datasets and by the integration of protein domain features
and a machine learning model, we developed ECMPride, a flexible and scalable tool for
predicting ECM proteins. ECMPride achieved excellent performance in predicting ECM
proteins, with appropriate balanced accuracy and sensitivity, and the performance of
ECMPride was shown to be superior to the previously developed tool. A new theoretical
dataset of human ECM components was also established by applying ECMPride to all
human entries in the SwissProt database, containing a significant number of putative ECM
proteins as well as the abundant biological annotations. This dataset might serve as a
valuable reference resource for ECM protein identification.

PeerJ reviewing PDF | (2019:12:43724:1:0:NEW 17 Feb 2020)

Manuscript to be reviewed



1 ECMPride: Prediction of human extracellular matrix 

2 proteins based on the ideal dataset using hybrid 

3 features with domain evidence
4

5

6 Binghui Liu1, Ling Leng2, Xuer Sun3, Yunfang Wang3, Jie Ma1, Yunping Zhu1, 4

7

8 1 State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for 

9 Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.

10 2 Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union 

11 Medical College and Chinese Academy of Medical Sciences, Beijing, China.

12 3 Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.

13 4 Basic Medical School, Anhui Medical University, Anhui, China.

14

15 Corresponding Authors:

16 Jie Ma

17 State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for 

18 Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, 102206, China.

19 Email address: majie729@163.com

20 Yunping Zhu

21 State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for 

22 Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, 102206, China.

23 Email address: zhuyunping@gmail.com

24

PeerJ reviewing PDF | (2019:12:43724:1:0:NEW 17 Feb 2020)

Manuscript to be reviewed



25 Abstract

26 Extracellular matrix (ECM) proteins play an essential role in various biological processes in 

27 multicellular organisms, and their abnormal regulation can lead to many diseases. For large-scale 

28 ECM protein identification, especially through proteomic-based techniques, a theoretical 

29 reference database of ECM proteins is required. In this study, based on the experimentally 

30 verified ECM datasets and by the integration of protein domain features and a machine learning 

31 model, we developed ECMPride, a flexible and scalable tool for predicting ECM proteins. 

32 ECMPride achieved excellent performance in predicting ECM proteins, with appropriate 

33 balanced accuracy and sensitivity, and the performance of ECMPride was shown to be superior 

34 to the previously developed tool. A new theoretical dataset of human ECM components was also 

35 established by applying ECMPride to all human entries in the SwissProt database, containing a 

36 significant number of putative ECM proteins as well as the abundant biological annotations. This 

37 dataset might serve as a valuable reference resource for ECM protein identification.

38

39 Introduction

40 The extracellular matrix (ECM) is a vital component of the cellular microenvironment, providing 

41 structural and functional support to surrounding cells (Bonnans et al. 2014; Theocharis et al. 

42 2016). ECM proteins play crucial roles in regulating diverse functions of cells, including 

43 differentiation, proliferation, survival, and migration (Bonnans et al. 2014; Hynes 2009), and 

44 their dysregulation can result in a wide range of diseases (Bateman et al. 2009; Liu et al. 2019; 

45 Tokhmafshan et al. 2017; Walker et al. 2018). A better understanding of the composition and 

46 function of ECM proteins should contribute to useful therapeutic targets for related diseases.

47

48 The rapid development of multi-omics research has substantially benefited ECM identification 

49 and characterization. However, for large-scale ECM protein identification, especially for 

50 proteomics-based techniques, a general reference database of ECM proteins is required. Many 

51 strategies have been developed by the researchers to define the set of ECM proteins, including 

52 the molecular fishing method (Cain et al. 2009), the systematic curation method (Cromar et al. 

53 2012), and the domain-based method (Naba et al. 2016). Besides, Richard-Blum lab established 

54 the MatrixDB database, which is focused on the interactions established by extracellular proteins 

55 and polysaccharides and can provide interaction evidence for putative ECMs validation (Clerc et 

56 al. 2018). Domain architectures change during evolution (Apic et al. 2003), and proteins with the 

57 same domain architecture are frequently related (Bornberg-Bauer & Alba 2013). By utilizing the 

58 domain-based structure of ECM proteins, Naba et al. used an in silico approach to define ECM 

59 components and, based on this, constructed the Matrisome database in 2012 (Naba et al. 2012). 

60 The Matrisome has become a general reference database for proteomics-based ECM research in 

61 recent years (Åhrman et al. 2018; Gopal et al. 2017; Lennon et al. 2014; Mayorca-Guiliani et al. 

62 2017). Further, Naba et al. presented the first draft of the ECM atlas, which was established by 

63 integrating publicly available mass spectrometry data from studies explicitly designed to 

64 characterize the global composition of ECM proteins (Naba et al. 2016). However, when 
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65 compared with Matrisome, there is relatively low overlap ~ 51% (~ 73% for Core matrisome and 

66 ~42% for Matrisome-associated) between experimentally identified ECMs and theoretically 

67 predicted ones, which likely reflects the poor representation of insoluble matrix tissues in the 

68 experimental datasets used for comparison. Additionally, the in silico Matrisome was 

69 constructed via a semi-empirical and manual-assisted approach, so there are some difficulties for 

70 the database in dealing with the problems of constant updating and expansion to other species.

71

72 Several attempts have also been made by bioinformatics researchers to predict ECM proteins 

73 based on machine learning methods; specifically, a series of tools were developed, including 

74 ECMPP (Jung et al. 2010), EcmPred (Kandaswamy et al. 2013), PECM (Zhang et al. 2014), 

75 IECMP (Yang et al. 2015), ECMP-HybKNN (Ali & Hayat 2016), BAMORF (Guan et al. 2017), 

76 and TargetECMP (Kabir et al. 2018). Most tools were developed based on a generic pipeline, 

77 which uses different machine learning algorithms to build classification models on the extracted 

78 features and training datasets and can achieve automated prediction of ECM proteins. The most 

79 significant shortcoming of these tools is their lack of a connection with experimental biological 

80 features, especially concerning standard dataset construction and classification feature extraction 

81 (Article S1). In addition, there are no tools available other than EcmPred.

82

83 In summary, the Matrisome database presented by Naba et al. compiles in silico and in vivo data 

84 on ECM proteins, and the existing bioinformatics prediction tools for ECMs are robust in 

85 modeling. Thus, in this study, we proposed incorporating these advantages of both approaches 

86 and developed ECMPride, a flexible and scalable tool for predicting extracellular matrix 

87 proteins. Based on the experimentally verified ECM datasets, while integrating protein domain 

88 features and a machine learning model, ECMPride achieved better performance when compared 

89 with EcmPred. We also provide researchers with a comprehensive dataset of all putative human 

90 ECMs (named ECMPrideDB) by applying ECMPride to all human protein sequences in the 

91 SwissProt database (Consortium 2017), and this ECM dataset might serve as a valuable reference 

92 resource for future investigations.

93

94 Materials & Methods

95 Datasets

96 The standard training dataset consists of a positive dataset of ECM proteins and a negative 

97 dataset of non-ECM proteins (Table S1). The positive one consists of the 521 human proteins 

98 whose ECM-related status is supported by Matrisome with further credible evidence (Naba et al. 

99 2016) (Table S2). In contrast, the negative one consists of 11336 human intracellular proteins 

100 from the Human Protein Atlas database developed by Thul et al. (Thul et al. 2017). 

101 The detailed process of generating positive and negative datasets, as well as the Matrisome 

102 categories of the positive dataset, can be found in Article S1.

103

104 Feature Extraction
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105 Three main classes and 167 features in total are introduced into ECMPride to represent the 

106 characteristics of ECM proteins, including ECM protein-related structural domains (from now on 

107 referred to as ECM domains) (Naba et al. 2012), physicochemical properties (Kandaswamy et al. 

108 2013), and position-specific scoring matrix (PSSM) (Altschul et al. 1997) (all features are listed 

109 in Table S3). 

110

111 ECM domains

112 We are the first to introduce domain into machine learning algorithms to predict ECM 

113 systematically. ECM proteins typically include multiple, independently folded domains whose 

114 sequences and arrangements are highly conserved (Hynes 2009). Based on this hallmark, Naba et 

115 al. established a list of “inclusion domains” commonly found in ECM proteins and a list of 

116 “exclusion domains” whose presence ruled a protein out from being a part of the ECM (Naba et 

117 al. 2012). These two lists are first merged, and then, domains that are not in the version of 

118 InterPro 69.0 (Mitchell et al. 2018) or do not exist in any protein of the dataset are excluded. 

119 Finally, a list of 63 ECM domains is obtained (Table S3).

120

121 The score for i-th ECM domain  of protein  is represented as follows:D𝑖 𝐴
122

123 𝑋𝑖 = {0 (𝑖𝑓 D𝑖 ∈ 𝐴)1 (𝑖𝑓 D𝑖 ∉ 𝐴) � (i = 1,2,…63)

124

125 Here, the evidence of whether  belongs to  comes from SwissProt (Consortium 2017).D𝑖 𝐴
126

127 Finally, a 63-D feature vector of ECM domains is constructed for every protein sequence.

128

129 Position-Specific Scoring Matrix (PSSM)

130 For protein evolution, sequences evolve via the substitution, insertion, or deletion of residues 

131 (Chou & Shen 2007). After a long time, the accumulation of these changes slowly eliminates the 

132 similarities between the original protein and the final protein; however, some of the critical 

133 residues associated with the essential properties of the protein remain stable, which is referred to 

134 as evolutionary conservation (Zhang et al. 2014). Such conservation usually occurs in sequences 

135 with important biological functions (Zuo et al. 2014). Therefore, evolutionary information is 

136 critical to the prediction of protein structure and function (Ding et al. 2014).

137

138 PSSM is a matrix that can well reflect the evolution information of a protein. It is generated by 

139 running PSI-BLAST (Altschul et al. 1997) in the database of SwissProt through three iterations, 

140 with 0.001 as an E-value cut-off. As shown below, it consists of 20 × L elements, with L 

141 representing the length of the protein sequence.

142
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143
𝑃𝑃𝑆𝑆𝑀 = [

𝐸1, 1 𝐸1, 2𝐸2, 1 𝐸2, 2

⋯ 𝐸1, 𝑗⋯ 𝐸2, 𝑗 ⋯ 𝐸1, 20⋯ 𝐸2, 20⋮ ⋮𝐸𝑖, 1 𝐸𝑖, 2 ⋯ ⋮⋯ 𝐸𝑖, 𝑗 ⋯ ⋮⋯ 𝐸𝑖, 20⋮ ⋮𝐸𝐿, 1 𝐸𝐿, 2 ⋯ ⋮⋯ 𝐸𝐿, 𝑗 ⋯ ⋮⋯ 𝐸𝐿, 20]
144

145 Here,  represents the score of the amino acid mutation in the i-th position of the sequence to 𝐸𝑖, 𝑗
146 form the amino acid type j during evolution. Then, PSSM is converted into an 80-D vector by 

147 standardization and grey model theory (The detailed process of conversion could be found in 

148 Article S1) (Chou 2001; Matsuda et al. 2005).

149

150 Physicochemical Properties

151 The structure and function of proteins are defined by the physicochemical properties of the 20 

152 amino acids, which have been the subject of a large number of experimental and theoretical 

153 studies. The physicochemical properties of the 20 amino acids can be represented by a set of 20 

154 values of an amino acid index (AAIndex) (Kawashima et al. 2007). There is now a database 

155 exclusively dedicated to storing AAIndex values (UMBC AAindex Database).

156

157 Here, we use 24 physicochemical properties selected by Kandaswamy et al. (Kandaswamy et al. 

158 2013) from the UMBC AAindex Database (Table S4). The formula for calculating each 

159 physicochemical property of a protein is as follows:

160

161 𝑃𝑃 =
1𝐿 𝐿∑𝑖 = 1

𝐴𝐴𝐼𝑛𝑑𝑒𝑥𝑖
162

163 Where  is the AAIndex value of the physicochemical property corresponding to the i-𝐴𝐴𝐼𝑛𝑑𝑒𝑥𝑖
164 th amino acid in the protein sequence, and L is the length of the protein sequence. Finally, a 24-

165 D feature vector of physicochemical properties is established for every protein sequence.

166

167 Feature Selection

168 For feature selection, we first perform feature importance scoring. This involves scoring the 

169 importance of all of the extracted features by the Maximum Relevance Minimum Redundancy 

170 (mRMR) algorithm (Peng et al. 2005) (The detailed process is shown in Article S1). The features 

171 are ranked according to the order of the scores from high to low.

172

173 Next, we adopt the Incremental Feature Selection (IFS) method to obtain the optimal feature 

174 subset based on the ranked feature set. The process begins with an empty feature set and adds 

175 features one by one in order of importance from high to low. Each time a feature is added, a new 
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176 feature subset is generated so that n features will generate n feature subsets (Lin et al. 2013). The 

177 subset of features with better predictive performance and fewer features would be considered the 

178 optimal feature subset (Yang et al. 2015).

179

180 Prediction model and Performance evaluation

181 In this study, Random forest model has been implemented in ECMPride for prediction. 

182 Developed by Breiman, the Random Forest algorithm is an integrated classifier consisting of 

183 numerous decision trees. It uses the bootstrap method to extract multiple identical samples from 

184 the original sample to generate a training set and then builds a decision tree with each sample in 

185 the training set. Finally, the final prediction result of the Random Forest model is obtained by 

186 voting on all decision tree prediction results (Breiman 2001). Random Forests have high 

187 predictive accuracy, have good tolerance of outliers and noise, and are not prone to over-fitting. 

188 They can handle both continuous and discrete variables, making them advantageous and 

189 increasingly mature machine learning algorithms. Here we use the randomForest package of R to 

190 implement the classification of ECM and non-ECM components (Liaw & Wiener 2002).

191

192 Ten-fold cross-validation is used to evaluate the predictive model, and the under-sampling 

193 ensemble method is implemented to overcome the imbalance of the training datasets. 

194 Meanwhile, we employed the following four parameters to evaluate the performance of the ECM 

195 prediction models: sensitivity (Sn), specificity (Sp), accuracy (Acc), and balanced accuracy 

196 (BAcc). These can be represented by four indicators: true positive (TP), false negative (FN), true 

197 negative (TN), and false positive (FP). The detailed of model training and parameters calculation 

198 can be found in Article S1.

199

200 Results

201 Construction of ECMPride

202 We built ECMPride, a command-line based tool that allows users to predict ECM proteins. The 

203 tool is available and freely downloaded from the public repository GitHub: 

204 https://github.com/Binghui-Liu/ECMPride.git. The overall workflow of ECMPride is shown in 

205 Fig. 1. As a high-quality ECM prediction tool, ECMPride has several unique features. First, 

206 positive and negative standard datasets (Table S1) are constructed based on reliable experimental 

207 and theoretical sources, including the Matrisome, ECM Atlas (Naba et al. 2016), the Human 

208 Protein Atlas (Thul et al. 2017) and Gene Ontology annotation (Consortium 2016), as well as a 

209 series of ECM proteomic studies (Table S2). Then, three main classes and 167 features in total 

210 are introduced into ECMPride to represent the characteristics of ECM proteins. In particular, the 

211 ECM domains proposed by Naba et al. are introduced into machine learning algorithms for the 

212 first time. In addition, the mRMR-IFS methods are implemented to reduce feature redundancy. 

213 Finally, to handle the classification problem of imbalanced datasets, the under-sampling 

214 ensemble method is employed for modeling (Table S5), and balanced accuracy is adopted as the 

PeerJ reviewing PDF | (2019:12:43724:1:0:NEW 17 Feb 2020)

Manuscript to be reviewed



215 essential criterion to evaluate the performance (Fig. S1). All details about the ECMPride pipeline 

216 construction can be found in Materials & Methods and Article S1.

217

218 ECMPride achieves good performance

219 ECMPride reduces feature redundancy to a certain extent via the feature selection step. All of the 

220 167 features are scored and sorted by mRMR (Table S3), and the IFS method is used to generate 

221 167 feature subsets and further generate 167 corresponding candidate models (Table S6). As 

222 shown in Fig. 2, when the top 151 features are selected as the feature subset, the model achieves 

223 the highest balanced accuracy of 0.9142, and the corresponding value is 0.9070 when all 167 

224 features are used for prediction. Therefore, feature selection allows us to achieve better 

225 prediction with fewer features. In this context, ECMPride is established based on the top 151 

226 features.

227

228 A series of tools had been developed by researchers to predict ECM proteins (Ali & Hayat 2016; 

229 Guan et al. 2017; Jung et al. 2010; Kabir et al. 2018; Kandaswamy et al. 2013; Yang et al. 2015; 

230 Zhang et al. 2014), so it’s necessary to compare ECMPride with these tools. As the datasets used 

231 by ECMPride differ from the datasets used for previous tools, it is meaningless to compare their 

232 performance directly. Meanwhile, most of the previously released tools are no longer available 

233 for a variety of reasons, so it is impossible to compare ECMPride with such tools in an 

234 independent dataset. As such, we here attempt to reproduce the previous tools by carefully 

235 reviewing the articles about them; only for the tool EcmPred can localization be implemented 

236 well (Kandaswamy et al. 2013). Therefore, we applied ECMPride’s and EcmPred’s methods to 

237 each other’s training dataset and compared their performance (Table 1). Using the same method, 

238 the model based on ECMPride’s dataset behaved better than that based on EcmPred’s dataset, 

239 which means that the new dataset is better than the old one. With the same dataset, the model 

240 based on ECMPride’s method behaved better than that based on EcmPred’s method, which 

241 means that the method of ECMPride is better than that of EcmPred. Overall, ECMPride achieved 

242 better performance than EcmPred.

243

244 Construction of theoretical reference dataset of human ECM proteins

245 To obtained a comprehensive collection of theoretical human ECM proteins, we applied 

246 ECMPride to all human entries in the SwissProt database (Consortium 2017). 

247 The proteins with a probability of being ECM higher than 0.7 are considered to be confidently 

248 predicted results. These proteins together with the positive ECMs, are accepted as putative 

249 human ECM proteins and compose the theoretical reference dataset of human ECM proteins 

250 (named ECMPrideDB, Table S7). We also collected information on relevant databases to 

251 annotate genes in ECMPrideDB (Table S7), including Human Protein Atlas (Thul et al. 2017), 

252 ExoCarta (Keerthikumar et al. 2016) and GO (Consortium 2016). Then, we compared 

253 ECMPrideDB with Matrisome (Naba et al. 2016), as well as two experimental datasets generated 

254 from the ECM-related biological samples (Table S8) (Åhrman et al. 2018; Naba et al. 2017). 
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255 There are a total of 1510 putative ECM proteins (1494 genes) in ECMPrideDB, and the official 

256 gene symbols were used for comparison with other datasets. Overall, most ECM components in 

257 Human Matrisome are included in ECMPrideDB (~69.62%, Fig. 3A, the first Venn figure). 

258 Specifically, ECMPrideDB covers ~ 92.33% of the Core matrisome and ~ 61.35% of the 

259 Matrisome-associated components in Matrisome (Fig. 3A, the second Venn figure). 

260 Additionally, 779 more novel ECM components are found in ECMPrideDB. For the 21 Core 

261 matrisome components uniquely included in Matrisome, 15 of them were also predicted as 

262 potential ECMs by ECMPride but with relatively low confidence (probability <0.7). None of 

263 them were annotated with extracellular matrix terms in GO, indicating that there may be 

264 insufficient evidence to support these proteins to be real ECMs. A similar situation also prevailed 

265 in the 291 Matrisome-associated components uniquely included in Matrisome, a vast majority of 

266 them (275/291) were annotated without extracellular matrix annotations in GO. 

267

268 For both proteomic experimental datasets, most of the identified proteins that overlap with 

269 Matrisome are also contained in ECMPrideDB, and considerable numbers of novel ECMs (96 

270 and 127, respectively, Fig. 3B and Fig. 3C) are found in ECMPrideDB.

271

272 Validation of novel ECM components

273 To further validate the putative ECM proteins predicted by ECMPride, several analyses were 

274 implemented. Among the 779 putative ECMs uniquely identified in ECMPrideDB, 283 of them 

275 contain at least one of the protein domains proposed by Naba et al. as the specific features for 

276 Core Matrisome (Naba et al. 2016) (Table S7). It is due to the update of the underlying domain 

277 annotation that these newly predicted ECMs emerge. To an extent, it also proves the reliability of 

278 putative ECMs predicted by ECMPride. The presentation of experimental interactions with 

279 known ECM proteins could be supportive evidence for the new putative ECMs. Thus, the 

280 protein-protein interactions of the 779 putative ECMs with all ECMs in Matrisome are retrieved 

281 both from MatrixDB (Clerc et al. 2018) and STRING (Szklarczyk et al. 2018) database. It is 

282 found that 619 of 779 putative ECMs can interact with at least one known ECM in Matrisome. 

283 Finally, the detailed interactions, as well as the hyperlink of the Entrez gene summary, are 

284 provided with each putative ECM in ECMPrideDB in Table S7.

285

286 Further, we confirmed the expression of several potential novel ECM components in the top list 

287 of the ECMPrideDB by immunohistochemistry and immunofluorescence experiments, including 

288 stabilin family members STAB1 and STAB2, and the jagged canonical notch ligands JAG1 and 

289 JAG2 (Details refer to Article S1). Our results indicate that all four molecules are expressed in 

290 the extracellular space of epidermis and dermis (Fig. S2). Interestingly, STAB1, STAB2 and 

291 JAG1 are specifically located in the basement membrane of skin tissue, which is the epidermal 

292 stem cell niches (Fig. S2A-C). And JAG2 is specifically located in the spinous, granular, and 

293 stratum corneum layers of the epidermis (Fig. S2D). Moreover, three new predicted ECM 

294 components (DLL4, LRP1, and FCGBP) are found expressed in the extracellular space of 
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295 normal human liver and skin tissues, as well as RH-30 cell lines (Fig. S3). Although the current 

296 immunohistochemical and immunofluorescence experiments are not sufficient to verify that 

297 these proteins are ECM proteins, the results are nevertheless a useful preliminary validation, and 

298 more work remains to be done.

299

300 Discussion

301 More and more proteomics studies are applied for large-scale ECM protein identification, and 

302 the theoretical ECM database was used in these studies to identify ECM proteins and guide the 

303 biological analysis and experiments (Åhrman et al. 2018; Gopal et al. 2017; Lennon et al. 2014; 

304 Mayorca-Guiliani et al. 2017). Thus, the development of ECMs prediction methods and the 

305 construct of comprehensive ECM reference datasets are required and will benefit proteomics-

306 based ECM researches.

307

308 In this study, we proposed a flexible and scalable tool ECMPride for predicting extracellular 

309 matrix proteins by incorporating the advantages of experiment-based features and robust 

310 prediction models. There are three classes of features implemented in ECMPride to represent the 

311 characteristics of ECM proteins, including ECM protein-related structural domains (63 features), 

312 physicochemical properties (24 features), and position-specific scoring matrix (PSSM, 80 

313 features). The physicochemical properties and PSSM have been used in many models and tools 

314 for the prediction of protein structure and function for multi-species (Chen & Li 2013; Du & Yu 

315 2013; Hayat & Khan 2012; Lundegaard et al. 2008). While for the features of domains, ECM 

316 proteins are highly conserved among different species, not only in the sequences of specific 

317 domains but also in the arrangements of those domains (Hynes 2009). Utilizing the conserved 

318 nature of domains across species, Naba et al. used the same list of domains to construct human 

319 and mouse ECM datasets, respectively (Naba et al. 2012). At present, we applied ECMPride to 

320 predict human ECM proteins, but we think ECMPride can be useful for ECM proteins prediction 

321 for other species.

322

323 Among all seven ECM prediction tools introduced in this study (ECMPP, EcmPred, PECM, 

324 IECMP, ECMP-HybKNN, BAMORF, and TargetECMP), four of them (ECMPP, EcmPred, 

325 PECM, and IECMP) were released with web-based applications. Unfortunately, none of these 

326 tools are currently available. Therefore, the maintenance and update of software tools are 

327 essential for public users. ECMPride is developed as an open-source and easy-to-use tool. To 

328 analysis the large datasets efficiently, we also designed a parallel version of ECMPride, which 

329 could perform prediction of proteins with multi-threads mode. All the source codes of 

330 ECMPrirde with single-thread and multi-threads versions are publicly available from GitHub 

331 (https://github.com/Binghui-Liu/ECMPride.git). As the experimental validated ECM proteins 

332 and annotation database based features would keep updating, we will further improve the 

333 sensitivity and specificity of the prediction model and provide the continuously update service of 

334 the ECMPride tool. Based on ECMPride, we plan to develop a web-based database for reference 
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335 ECM proteins for multi-species, which can provide a user-friendly web interface for browsing, 

336 searching and downloading all putative ECM components, as well as the abundant biological 

337 annotations.

338

339 Conclusions

340 In this study, we developed ECMPride, a flexible and scalable tool for accurate and automatic 

341 prediction of ECM proteins. ECMPride can achieve excellent performance in predicting ECM 

342 proteins, with a relatively good balanced accuracy and sensitivity. By applying ECMPride to 

343 human protein sequences in SwissProt, a new dataset ECMPrideDB of all putative human ECM 

344 components was established. This dataset covers most known ECMs in Human Matrisome, and 

345 more potential ECM proteins are identified when using this dataset to annotate the experimental 

346 proteomics datasets. As ECMPride is developed based on the machine learning method, the 

347 robust of modeling makes it easy to deal with other species’ proteins sequences in a similar way, 

348 i.e., mouse, rat, and so on. Also, with the accumulation of publicly available ECM proteomics 

349 datasets, more experimentally verified ECMs can be added into the standard dataset and further 

350 improve the model's prediction performance.
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Figure 1
Flowchart of the ECMPride pipeline.
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Figure 2
The feature selection curve of balanced accuracy for different feature subsets.

The 167 feature subsets were obtained by adding features one by one in order of importance
from high to low. On the basis of each feature subset, the model was established with 10-fold
cross-validation. The curve represents the relationship between the feature subset and its
corresponding model’s balanced accuracy.
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Figure 3
Comparison of the new ECM proteins with Human Matrisome and other experimental
datasets.

The red, blue, and green circles represent the new human ECM dataset, Human Matrisome
(dark blue for core matrisome and light blue for Matrisome-associated), and two proteomics
experimental datasets, respectively.
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Table 1(on next page)

Performance comparison of models with different methods and datasets.
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1 Table 1:

2 Performance comparison of models with different methods and datasets.

Method Dataset Sensitivity Specificity Accuracy Balanced accuracy

D1 0.8925 0.9360 0.9340 0.9142
ECMPride

D2 0.8783 0.8623 0.8638 0.8703

D1 0.8462 0.9158 0.9145 0.8810
EcmPred

D2 0.6500 0.7700 0.8300 0.7100

3 D1: Training dataset constructed in ECMPride’s model.

4 D2: Training dataset constructed in EcmPred’s model.

PeerJ reviewing PDF | (2019:12:43724:1:0:NEW 17 Feb 2020)

Manuscript to be reviewed


