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ABSTRACT
Extracellular matrix (ECM) proteins play an essential role in various biological
processes in multicellular organisms, and their abnormal regulation can lead to many
diseases. For large-scale ECM protein identification, especially through proteomic-
based techniques, a theoretical reference database of ECM proteins is required. In this
study, based on the experimentally verified ECM datasets and by the integration of
protein domain features and a machine learning model, we developed ECMPride, a
flexible and scalable tool for predicting ECM proteins. ECMPride achieved excellent
performance in predicting ECM proteins, with appropriate balanced accuracy and
sensitivity, and the performance of ECMPride was shown to be superior to the
previously developed tool. A new theoretical dataset of human ECM components was
also established by applying ECMPride to all human entries in the SwissProt database,
containing a significant number of putative ECM proteins as well as the abundant
biological annotations. This dataset might serve as a valuable reference resource for
ECM protein identification.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Extracellular matrix proteins, Proteomics, Prediction tool, Random forest, Under-
sampling ensemble method

INTRODUCTION
The extracellular matrix (ECM) is a vital component of the cellular microenvironment,
providing structural and functional support to surrounding cells (Bonnans, Chou &
Werb, 2014; Theocharis et al., 2016). ECM proteins play crucial roles in regulating diverse
functions of cells, including differentiation, proliferation, survival, andmigration (Bonnans,
Chou & Werb, 2014; Hynes, 2009), and their dysregulation can result in a wide range of
diseases (Bateman, Boot-Handford & Lamandé, 2009; Liu et al., 2019; Tokhmafshan et al.,
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2017; Walker & Mojares, 2018). A better understanding of the composition and function
of ECM proteins should contribute to useful therapeutic targets for related diseases.

The rapid development of multi-omics research has substantially benefited ECM
identification and characterization. However, for large-scale ECM protein identification,
especially for proteomics-based techniques, a general reference database of ECM proteins
is required. Many strategies have been developed by the researchers to define the set of
ECM proteins, including the molecular fishing method (Cain et al., 2009), the systematic
curation method (Cromar et al., 2012), and the domain-based method (Naba et al., 2016).
Besides, the Richard-Blum lab established the MatrixDB database, which is focused on
the interactions established by extracellular proteins and polysaccharides and can provide
interaction evidence for putative ECMs validation (Clerc et al., 2018). Domain architectures
change during evolution (Apic, Huber & Teichmann, 2003), and proteins with the same
domain architecture are frequently related (Bornberg-Bauer & Alba, 2013). By utilizing the
domain-based structure of ECM proteins, Naba et al. used an in silico approach to define
ECM components and, based on this, constructed the Matrisome database in 2012 (Naba
et al., 2012). The Matrisome has become a general reference database for proteomics-based
ECM research in recent years (Åhrman et al., 2018; Gopal et al., 2017; Lennon et al., 2014;
Mayorca-Guiliani et al., 2017). Further, Naba et al. (2016) presented the first draft of the
ECM atlas, which was established by integrating publicly available mass spectrometry data
from studies explicitly designed to characterize the global composition of ECM proteins.
However, when compared withMatrisome, there is relatively low overlap∼51% (∼73% for
Core matrisome and ∼42% for Matrisome-associated) between experimentally identified
ECMs and theoretically predicted ones, which likely reflects the poor representation of
insoluble matrix tissues in the experimental datasets used for comparison. Additionally, the
in silico Matrisome was constructed via a semi-empirical and manual-assisted approach,
so there are some difficulties for the database in dealing with the problems of constant
updating and expansion to other species.

Several attempts have also been made by bioinformatics researchers to predict
ECM proteins based on machine learning methods; specifically, a series of tools were
developed, including ECMPP (Jung et al., 2010), EcmPred (Kandaswamy et al., 2013),
PECM (Zhang et al., 2014), IECMP (Yang et al., 2015), ECMP-HybKNN (Ali & Hayat,
2016), BAMORF (Guan, Zhang & Xu, 2017), and TargetECMP (Kabir et al., 2018). Most
tools were developed based on a generic pipeline, which uses different machine learning
algorithms to build classification models on the extracted features and training datasets
and can achieve automated prediction of ECM proteins. The most significant shortcoming
of these tools is their lack of a connection with experimental biological features, especially
concerning standard dataset construction and classification feature extraction (Article S1).
In addition, there are no tools available other than EcmPred.

In summary, the Matrisome database presented by Naba et al. compiles in silico and
in vivo data on ECM proteins, and the existing bioinformatics prediction tools for ECMs
are robust in modeling. Thus, in this study, we proposed incorporating these advantages
of both approaches and developed ECMPride, a flexible and scalable tool for predicting
extracellular matrix proteins. Based on the experimentally verified ECM datasets, while
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integrating protein domain features and a machine learning model, ECMPride achieved
better performance when compared with EcmPred. We also provide researchers with a
comprehensive dataset of all putative human ECMs (named ECMPrideDB) by applying
ECMPride to all human protein sequences in the SwissProt database (The UniProt
Consortium, 2017), and this ECM dataset might serve as a valuable reference resource
for future investigations.

MATERIALS & METHODS
Datasets
The standard training dataset consists of a positive dataset of ECM proteins and a negative
dataset of non-ECM proteins (Table S1). The positive one consists of 521 human proteins
whose ECM-related status is supported byMatrisome with further credible evidence (Naba
et al., 2016) (Table S2). In contrast, the negative one consists of 11,336 human intracellular
proteins from the Human Protein Atlas database developed by Thul et al. (2017).

The detailed process of generating positive and negative datasets, as well as theMatrisome
categories of the positive dataset, can be found in Article S1.

Feature extraction
Three main classes and 167 features in total are introduced into ECMPride to represent
the characteristics of ECM proteins, including ECM protein-related structural domains
(from now on referred to as ECMdomains) (Naba et al., 2012), physicochemical properties
(Kandaswamy et al., 2013), and position-specific scoring matrix (PSSM) (Altschul et al.,
1997) (all features are listed in Table S3).

ECM domains
We are the first to introduce domain into machine learning algorithms to predict ECM
systematically. ECM proteins typically include multiple, independently folded domains
whose sequences and arrangements are highly conserved (Hynes, 2009). Based on this
hallmark, Naba et al. (2012) established a list of ‘‘inclusion domains’’ commonly found in
ECM proteins and a list of ‘‘exclusion domains’’ whose presence ruled a protein out from
being a part of the ECM. These two lists are first merged, and then, domains that are not
in the version of InterPro 69.0 (Mitchell et al., 2018) or do not exist in any protein of the
dataset are excluded. Finally, a list of 63 ECM domains is obtained (Table S3).

The score for i-th ECM domain Di of protein A is represented as follows:

Xi=

{
0
(
if Di ∈A

)
1
(
if Di 6∈A

) (i= 1,2,...,63)

Here, the evidence of whether Di belongs to A comes from SwissProt (The UniProt
Consortium, 2017).

Finally, a 63-D feature vector of ECMdomains is constructed for every protein sequence.

Position-Specific Scoring Matrix (PSSM)
For protein evolution, sequences evolve via the substitution, insertion, or deletion of
residues (Chou & Shen, 2007). After a long time, the accumulation of these changes
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slowly eliminates the similarities between the original protein and the final protein;
however, some of the critical residues associated with the essential properties of the protein
remain stable, which is referred to as evolutionary conservation (Zhang et al., 2014). Such
conservation usually occurs in sequences with important biological functions (Zuo et al.,
2014). Therefore, evolutionary information is critical to the prediction of protein structure
and function (Ding et al., 2014).

PSSM is a matrix that can well reflect the evolution information of a protein. It is
generated by running PSI-BLAST (Altschul et al., 1997) in the database of SwissProt
through three iterations, with 0.001 as an E-value cut-off. As shown below, it consists of
20× L elements, with L representing the length of the protein sequence.

PPSSM =



E1,1 E1,2
E2,1 E2,2

··· E1,j
··· E2,j

··· E1,20
··· E2,20

...
...

Ei,1 Ei,2
···

...

··· Ei,j
···

...

··· Ei,20
...

...

EL,1 EL,2
···

...

··· EL,j
···

...

··· EL,20


Here, Ei,j represents the score of the amino acid mutation in the i-th position of the

sequence to form the amino acid type j during evolution. Then, PSSM is converted into an
80-D vector by standardization and grey model theory (the detailed process of conversion
could be found in Article S1) (Chou, 2001; Matsuda et al., 2005).

Physicochemical properties
The structure and function of proteins are defined by the physicochemical properties
of the 20 amino acids, which have been the subject of a large number of experimental
and theoretical studies. The physicochemical properties of the 20 amino acids can be
represented by a set of 20 values of an amino acid index (AAIndex) (Kawashima et al.,
2007). There is now a database exclusively dedicated to storing AAIndex values (UMBC
AAindex Database).

Here, we use 24 physicochemical properties selected by Kandaswamy et al. (2013) from
theUMBCAAindexDatabase (Table S4). The formula for calculating each physicochemical
property of a protein is as follows:

PP =
1
L

L∑
i=1

AAIndexi

where AAIndexi is the AAIndex value of the physicochemical property corresponding to
the i-th amino acid in the protein sequence, and L is the length of the protein sequence.
Finally, a 24-D feature vector of physicochemical properties is established for every protein
sequence.

Feature selection
For feature selection, we first perform feature importance scoring. This involves scoring
the importance of all of the extracted features by the Maximum Relevance Minimum
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Redundancy (mRMR) algorithm (Peng, Long & Ding, 2005) (the detailed process is shown
in Article S1). The features are ranked according to the order of the scores from high to
low.

Next, we adopt the Incremental Feature Selection (IFS) method to obtain the optimal
feature subset based on the ranked feature set. The process begins with an empty feature
set and adds features one by one in order of importance from high to low. Each time a
feature is added, a new feature subset is generated so that n features will generate n feature
subsets (Lin et al., 2013). The subset of features with better predictive performance and
fewer features would be considered the optimal feature subset (Yang et al., 2015).

Prediction model and Performance evaluation
In this study, the Random forest model has been implemented in ECMPride for prediction.
Developed by Breiman, the Random Forest algorithm is an integrated classifier consisting
of numerous decision trees. It uses the bootstrap method to extract multiple identical
samples from the original sample to generate a training set and then builds a decision tree
with each sample in the training set. Finally, the final prediction result of the Random
Forest model is obtained by voting on all decision tree prediction results (Breiman, 2001).
Random Forests have high predictive accuracy, have good tolerance of outliers and noise,
and are not prone to over-fitting. They can handle both continuous and discrete variables,
making them advantageous and increasingly mature machine learning algorithms. Here we
use the randomForest package of R to implement the classification of ECM and non-ECM
components (Liaw &Wiener, 2002).

Ten-fold cross-validation is used to evaluate the predictive model, and the under-
sampling ensemble method is implemented to overcome the imbalance of the training
datasets. Meanwhile, we employed the following four parameters to evaluate the
performance of the ECM prediction models: sensitivity (Sn), specificity (Sp), accuracy
(Acc), and balanced accuracy (BAcc). These can be represented by four indicators: true
positive (TP), false negative (FN ), true negative (TN ), and false positive (FP). The detailed
model training and parameters calculation can be found in Article S1.

RESULTS
Construction of ECMPride
We built ECMPride, a command-line based tool that allows users to predict ECM
proteins. The tool is available and freely downloaded from the public repository GitHub:
https://github.com/Binghui-Liu/ECMPride.git. The overall workflow of ECMPride is
shown in Fig. 1. As a high-quality ECM prediction tool, ECMPride has several unique
features. First, positive and negative standard datasets (Table S1) are constructed based on
reliable experimental and theoretical sources, including the Matrisome, ECM Atlas (Naba
et al., 2016), the Human Protein Atlas (Thul et al., 2017) and Gene Ontology annotation
(The Gene Ontology Consortium, 2016), as well as a series of ECM proteomic studies (Table
S2). Then, three main classes and 167 features in total are introduced into ECMPride to
represent the characteristics of ECM proteins. In particular, the ECM domains proposed by
Naba et al. are introduced into machine learning algorithms for the first time. In addition,
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Figure 1 Flowchart of the ECMPride pipeline.
Full-size DOI: 10.7717/peerj.9066/fig-1

the mRMR-IFS methods are implemented to reduce feature redundancy. Finally, to handle
the classification problem of imbalanced datasets, the under-sampling ensemble method
is employed for modeling (Table S5), and balanced accuracy is adopted as the essential
criterion to evaluate the performance (Fig. S1). All details about the ECMPride pipeline
construction can be found in Materials & Methods and Article S1.

ECMPride achieves good performance
ECMPride reduces feature redundancy to a certain extent via the feature selection step. All
of the 167 features are scored and sorted by mRMR (Table S3), and the IFS method is used
to generate 167 feature subsets and further generate 167 corresponding candidate models
(Table S6). As shown in Fig. 2, when the top 151 features are selected as the feature subset,
the model achieves the highest balanced accuracy of 0.9142, and the corresponding value is
0.9070 when all 167 features are used for prediction. Therefore, feature selection allows us
to achieve better prediction with fewer features. In this context, ECMPride is established
based on the top 151 features.

A series of tools had been developed by researchers to predict ECM proteins (Ali &
Hayat, 2016; Guan, Zhang & Xu, 2017; Jung et al., 2010; Kabir et al., 2018; Kandaswamy
et al., 2013; Yang et al., 2015; Zhang et al., 2014), so it’s necessary to compare ECMPride
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Table 1 Performance comparison of models with different methods and datasets.

Method Dataset Sensitivity Specificity Accuracy Balanced
accuracy

D1 0.8925 0.9360 0.9340 0.9142
ECMPride

D2 0.8783 0.8623 0.8638 0.8703
D1 0.8462 0.9158 0.9145 0.8810

EcmPred
D2 0.6500 0.7700 0.8300 0.7100

Notes.
D1, Training dataset constructed in ECMPride’s model; D2, Training dataset constructed in EcmPred’s model.

with these tools. As the datasets used by ECMPride differ from the datasets used for
previous tools, it is meaningless to compare their performance directly. Meanwhile, most
of the previously released tools are no longer available for a variety of reasons, so it is
impossible to compare ECMPride with such tools in an independent dataset. As such,
we here attempt to reproduce the previous tools by carefully reviewing the articles about
them; only for the tool EcmPred can localization be implemented well (Kandaswamy et al.,
2013). Therefore, we applied ECMPride’s and EcmPred’s methods to each other’s training
dataset and compared their performance (Table 1). Using the same method (ECMPride
or EcmPred), the model based on ECMPride’s dataset (D1 in Table 1) behaved higher
balanced accuracy than that based on EcmPred’s dataset (D2 in Table 1), which means that
the new training dataset is better than the old one. With the same dataset (D1 or D2 in
Table 1), the model based on ECMPride’s method behaved higher balanced accuracy than
that based on EcmPred’s method, which means that the method of ECMPride is better
than that of EcmPred. Overall, ECMPride achieved better performance than EcmPred.
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Construction of theoretical reference dataset of human ECM proteins
To obtained a comprehensive collection of theoretical human ECM proteins, we applied
ECMPride to all human entries in the SwissProt database (The UniProt Consortium, 2017).

The proteins with a probability of being ECM higher than 0.7 are considered to
be confidently predicted results. These proteins, together with the positive ECMs, are
accepted as putative human ECM proteins and compose the theoretical reference dataset
of humanECMproteins (namedECMPrideDB, Table S7).We also collected information on
relevant databases to annotate genes in ECMPrideDB (Table S7), including Human Protein
Atlas (Thul et al., 2017), ExoCarta (Keerthikumar et al., 2016) and GO (The Gene Ontology
Consortium, 2016). Then, we compared ECMPrideDB with Matrisome (Naba et al., 2016),
as well as two experimental datasets generated from the ECM-related biological samples
(Table S8) (Åhrman et al., 2018; Naba et al., 2017). There are a total of 1,510 putative
ECM proteins (1494 genes) in ECMPrideDB, and the official gene symbols were used for
comparison with other datasets. Overall, most ECM components in Human Matrisome
are included in ECMPrideDB (∼69.62%, Fig. 3A). Specifically, ECMPrideDB covers
∼92.33% of the Core matrisome and ∼61.35% of the Matrisome-associated components
in Matrisome (Fig. 3B). Additionally, 779 more novel ECM components are found in
ECMPrideDB. For the 21 Core matrisome components uniquely included in Matrisome,
15 of them were also predicted as potential ECMs by ECMPride but with relatively low
confidence (probability < 0.7). None of them were annotated with extracellular matrix
terms inGO.A similar situation also prevailed in the 291Matrisome-associated components
uniquely included in Matrisome, about half of them (153/291) were predicted as potential
ECMs by ECMPride with low confidence (probability <0 .7), and a vast majority of them
(275/291) were annotated without extracellular matrix annotations in GO, indicating that
there might be insufficient evidence to support these proteins to be real ECMs and more
biological or structural information need to be explored.

For both proteomic experimental datasets, most of the identified proteins that overlap
with Matrisome are also contained in ECMPrideDB, and considerable numbers of novel
ECMs (96 and 127, respectively, Fig. 3C and Fig. 3D) are found in ECMPrideDB.

Validation of novel ECM components
To further validate the putative ECM proteins predicted by ECMPride, several analyses
were implemented. Among the 779 putative ECMs uniquely identified in ECMPrideDB,
283 of them contain at least one of the protein domains proposed by Naba et al. as the
specific features for CoreMatrisome (Naba et al., 2016) (Table S7). It is due to the update of
the underlying domain annotation that these newly predicted ECMs emerge. To an extent,
it also proves the reliability of putative ECMs predicted by ECMPride. The presentation
of experimental interactions with known ECM proteins could be supportive evidence for
the new putative ECMs. Thus, the protein-protein interactions of the 779 putative ECMs
with all ECMs in Matrisome are retrieved both from MatrixDB (Clerc et al., 2018) and
STRING (Szklarczyk et al., 2018) database. It is found that 619 of 779 putative ECMs can
interact with at least one known ECM in Matrisome. Finally, the detailed interactions, as

Liu et al. (2020), PeerJ, DOI 10.7717/peerj.9066 8/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.9066#supp-7
http://dx.doi.org/10.7717/peerj.9066#supp-7
http://dx.doi.org/10.7717/peerj.9066#supp-8
http://dx.doi.org/10.7717/peerj.9066#supp-7
http://dx.doi.org/10.7717/peerj.9066


ECMPrideDB

(1494)

Matrisome

(1027)

ECM proteomics dataset 
（Naba et al. 2895）

2558

683 299

96 13

228

487

C

ECMPrideDB

(1494)

Matrisome

(1027)

ECM proteomics dataset 
（Åhrman et al. 3328）

2924

652 295

127 17

260

455

D

Core matrisome

(274)

Matrisome-associated

(753)

ECMPrideDB

(1494)

779

21 291

253 462

0

0

779 715 312

ECMPrideDB

(1494)

Matrisome

(1027)

A B

Figure 3 Comparison of the new ECM proteins with HumanMatrisome and other experimental
datasets. The black, blue, and orange circles represent ECMPrideDB, Human Matrisome (dark blue for
core Matrisome and light blue for Matrisome-associated), and two proteomics experimental datasets,
respectively. (A) Overlap of ECMPrideDB and Matrisome. (B) Overlap of ECMPrideDB, core Matrisome,
and Matrisome-associated. (C) Overlap of ECMPrideDB, Matrisome, and ECM proteomics dataset of
Naba et al. (2016). (D) Overlap of ECMPrideDB, Matrisome, and ECM proteomics dataset of Åhrman et
al. (2018).
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well as the hyperlink of the Entrez gene summary, are provided with each putative ECM in
ECMPrideDB in Table S7.

Further, we confirmed the expression of several potential novel ECM components
in the top list of the ECMPrideDB by immunohistochemistry and immunofluorescence
experiments, including stabilin family members STAB1 and STAB2, and the jagged
canonical notch ligands JAG1 and JAG2 (Details refer to Article S1). Our results indicate
that all four molecules are expressed in the extracellular space of epidermis and dermis
(Fig. S2). Interestingly, STAB1, STAB2, and JAG1 are specifically located in the basement
membrane of skin tissue, which is the epidermal stem cell niches (Figs. S2A–S2C). And
JAG2 is specifically located in the spinous, granular, and stratum corneum layers of the
epidermis (Fig. S2D). Moreover, three new predicted ECM components (DLL4, LRP1, and
FCGBP) are found expressed in the extracellular space of normal human liver and skin
tissues, as well as RH-30 cell lines (Fig. S3). Although the current immunohistochemical
and immunofluorescence experiments are not sufficient to verify that these proteins are
ECM proteins, the results are nevertheless a useful preliminary validation, and more work
remains to be done.

DISCUSSION
More and more proteomics studies are applied for large-scale ECM protein identification,
and the theoretical ECM database was used in these studies to identify ECM proteins
and guide the biological analysis and experiments (Åhrman et al., 2018; Gopal et al.,

Liu et al. (2020), PeerJ, DOI 10.7717/peerj.9066 9/15

https://peerj.com
https://doi.org/10.7717/peerj.9066/fig-3
http://dx.doi.org/10.7717/peerj.9066#supp-7
http://dx.doi.org/10.7717/peerj.9066#supp-12
http://dx.doi.org/10.7717/peerj.9066#supp-10
http://dx.doi.org/10.7717/peerj.9066#supp-10
http://dx.doi.org/10.7717/peerj.9066#supp-10
http://dx.doi.org/10.7717/peerj.9066#supp-10
http://dx.doi.org/10.7717/peerj.9066#supp-11
http://dx.doi.org/10.7717/peerj.9066


2017; Lennon et al., 2014; Mayorca-Guiliani et al., 2017). Thus, the development of ECMs
prediction methods and the construct of comprehensive ECM reference datasets are
required and will benefit proteomics-based ECM researches.

In this study, we proposed a flexible and scalable tool ECMPride for predicting
extracellular matrix proteins by incorporating the advantages of experiment-based features
and robust predictionmodels. There are three classes of features implemented in ECMPride
to represent the characteristics of ECM proteins, including ECM protein-related structural
domains (63 features), physicochemical properties (24 features), and position-specific
scoring matrix (PSSM, 80 features). The physicochemical properties and PSSM have
been used in many models and tools for the prediction of protein structure and function
for multi-species (Chen & Li, 2013; Du & Yu, 2013; Hayat & Khan, 2012; Lundegaard et
al., 2008). While for the features of domains, ECM proteins are highly conserved among
different species, not only in the sequences of specific domains but also in the arrangements
of those domains (Hynes, 2009). Utilizing the conserved nature of domains across species,
Naba et al. used the same list of domains to construct human and mouse ECM datasets,
respectively (Naba et al., 2012). At present, we applied ECMPride to predict human ECM
proteins, but we think ECMPride can be useful for ECM proteins prediction for other
species.

Among all seven ECM prediction tools introduced in this study (ECMPP, EcmPred,
PECM, IECMP, ECMP-HybKNN, BAMORF, and TargetECMP), four of them (ECMPP,
EcmPred, PECM, and IECMP) were released with web-based applications. Unfortunately,
none of these tools are currently available. Therefore, the maintenance and update of
software tools are essential for public users. ECMPride is developed as an open-source
and easy-to-use tool. To analyze the large datasets efficiently, we also designed a parallel
version of ECMPride, which could perform the prediction of proteins with multi-threads
mode. All the source codes of ECMPride with single-thread and multi-threads versions are
publicly available from GitHub (https://github.com/Binghui-Liu/ECMPride.git). As the
experimental validated ECM proteins and annotation database based features would keep
updating, we will further improve the sensitivity and specificity of the prediction model
and provide the continuously update service of the ECMPride tool. Based on ECMPride,
we plan to develop a web-based database for reference ECM proteins for multi-species,
which can provide a user-friendly web interface for browsing, searching, and downloading
all putative ECM components, as well as the abundant biological annotations.

CONCLUSIONS
In this study, we developed ECMPride, a flexible and scalable tool for accurate and
automatic prediction of ECM proteins. ECMPride can achieve excellent performance in
predicting ECM proteins, with a relatively good balanced accuracy and sensitivity. By
applying ECMPride to human protein sequences in SwissProt, a new dataset ECMPrideDB
of all putative human ECM components was established. This dataset covers most known
ECMs in Human Matrisome, and more potential ECM proteins are identified when using
this dataset to annotate the experimental proteomics datasets. As ECMPride is developed
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based on the machine learning method, the robust of modeling makes it easy to deal with
other species’ proteins sequences in a similar way, i.e., mouse, rat, and so on. Also, with the
accumulation of publicly available ECM proteomics datasets, more experimentally verified
ECMs can be added into the standard dataset and further improve the model’s prediction
performance.
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