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Abstract

Background. Methane seeps create unique_benthic ecosystems in the deep-sea dependent on+——{ Formatted: Line spacing: Multiple 1.15 I

chemosynthetic (methane derived) organic matter. In the present study we focused on the
recently described shallow-depth methane discharge area enat the northern Laptev Sea shelf. The
aim of this work was to understanddescribe the effect-of-seepingshallow-water methane en
benthic-macrofauna-at-depths-60-70-mseep fauna and to understand whether there are differencegl
in community structure between the methane seep and background areas.

Methods. Samples of macrofauna were taken during three expeditions of RV Akademik Mstislav
Keldysh in 2015, 2017 and 2018 using 0.1 m? grabs and the Sigsbee trawl. In total, 21 grabs and
two trawls were taken at two methane seep sites named Oden and C15-, located at depths of 60-
70 m. For control, sixthree 0.1 m? grabs were taken in an areasarea without methane seepage.
Results. The abundance of macrofauna was higher at methane seep stations, alse-at-Oden-the
biomass-and-diversity-were-higher-compared to etherareas:non-seep. Cluster analysis revealed
five station groups corresponding to the control area, Oden site and three at the C15 site. The
taxa responsible for differences between the station groups were mostly eemmen-and-widespread
Arctic species,_that were more abundant in samples from methane seep sites. However, large
densities of symbiotrophic siboglinids Oligobrachia sp. were found exclusively at al-methane
seep stations. In addition, several species \presumabM new to science were found enby-at several
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methane seep stations, including the gastropod Frigidalvania sp. and the polychaete
Ophryotrocha sp. The fauna at control stations was represented exelusivelyonly by well-known
and widespread Arctic taxa. The number of station groups revealed from C15 stations and high
species richness in C15 trawl samples_compared_to Oden indicated higher diversity of micro-
niches within the C15 site. The development of specific methane seep communities at such a
shallow depth-apparenthy-isdepths can be related to pronounced oligotrophic environment on the
northern Siberian shelf.
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Introduction
Methane gas seeping from the seafloor prevides—envirenment—and—habitatscan provide

environmental conditions for unique fauna largely independent of photosynthetic primary

production as occurs at hydrothermal vents (Van Dover, 2000). Distinct faunal response at
methane seeps (also known as “cold seeps™) expressed-in-sharpis associated with an increase in
their total abundance [and biomass, and presence of unique taxa absent in background areas. This

[ Commented [MC3]: Or and/or (/ alone is ambiguous)

pattern has been described from many areas of the \Ocean\ (Baker & German, 2004; Levin, 2005).

[Commented [MC4]: ocean?

These taxa either develop symbiotic relationships with methanotrophic or sulphide-oxidizing

bacteria or feed directly on benthic or suspended bacterial matter. At a higher_trophic level

predators feeding exclusively on such taxa may be present (Gebruk, 2002; Dando, 2010).

In the Arctic Ocean, erhy-fewseveral methane seep ecosystems have been discovered and
investigated. The most studied include the Hakon Mosby mud volcano in the Norwegian Sea
(Gebruk et al., 2003) and several sites around Svalbard and at Vestnesa Ridge (Astrém et al.,
2016)—TFhese—areas; Astrom et al., 2018). Other described cold seeps include the Lofoten-
Vesteralen continental margin area (Sen et al., 2019a) and mud volcanoes in the Beaufort Sea
(Paull et al., 2015). The cold seeps inhabited by specific benthic macrofauna different-from-that
in-the-surrounding-ecosystems-are mostly located below the photic zone {(=(depth >200 m in
theboth around Svalbard area-and=~1200-m at Hakon Mosby) (Gebruk et al., 2003; Astrém et al.,
2016). At the same time, in-areas with extensive methane disehargesdischarge located at shallow
depths in-ceastal-zones{forexample(e.q. in the Norwegian and White Seas at depths <100 m)
have been reported to have little or no reactionresponse of macrofauna is-ebserved-(Savvichev et
al., 2004; Levin, 2005). In general, #—was—shownthat-there—is—a glebal-trend—ofthe—depth
boundary is observed between shallow-water—vents—and cold seeps and their “deep-sea”

counterparts at approximately 200 m (Tarasov et al., 2005; Dando, 2010)._One of possible
reasons for this boundary is the origin of organic matter: at depths <200 m photosynthetic

organic matter is more available for benthic consumers due to stronger bentho-pelagic coupling.

However, at greater depth the amount of photosynthetic organic matter decreases and

chemosynthesis starts to play a significant role for local organic matter production. Therefore,

despite the presence of methane and sulfides (unfavorable for most organisms), unigue and

diverse ecosystems develop most noticeably at deep-sea cold seeps (summarized by Dando,

2010).

Fauna associated with cold seeps in the Arctic includes symbiotrophic siboglinid

polychaetes and thyasirid bivalves, but mainly consists of species not unique tote methane seeps
but-aggregating. Widespread Arctic species tend to aggregate in sueh-habitats around methane
seepage sites (Gebruk et al., 2003; Astrom et al., 2016; Astrém, Oliver & Carroll, 2017).




75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108

Common—features—of—all—known—Arctic high-latitude—methanecold seep assemblages are
characterized by the dominance of frenulate siboglinid worms—and—ack—ef, while large
chemosymbiotrophic methane seep taxa—sueh-as- (vestimentiferan worms, bathymodioline and
vesicomyid bivalves) are absent (Sen et al. 2018). A cAmoeng-common-effectsommon effect of
methane seeps on marine benthic communities are-is an increased abundance;_and biomass and
diversity-of regular allochthonous taxa eemparingcompared to the background (Gebruk, 2002;
Levin, 2005). Species richnessat cold seeps is not higher than in the background, though recent

results obtained from the southwestern Barents Sea showed increased taxonomic richness within

the seepage sites (Sen et al., 2019b).

In the Siberian Arctic, areas of intense-bubble methane discharge (methane seeps) were
discovered on the outer shelf of the Laptev Sea in 2008 (Yusupov et al. 2010). Further research
revealed numerous gas flares enin the northern Laptev Sea shelf (Lobkovsky et al., 2015;

Shakhova 2015)._Within this area specific microbial communities based on methane oxidation

were discovered (Savvichev et al. 2018). Baranov et al. (2019) suggested {that methane seeps

Commented [MC5]: What measures ? species richness? Better
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occur through the fault system belonging to Laptev Sea Rift system and Khatanga-Lomonosov

Fracture Zone located between the Eurasian and North American Tectonic Plates. The faults may

conduit the gas from reservoirs deep in the sediment below the caprock formed by permafrost

and gas hydrates (Baranov et al., 2019). Within the seep area, multiple bacterial mats and

occasional methane bubbles and carbonate crusts were observed (Baranov et al., 2019). Notably,

the methane associated fauna was recorded on the Laptev Sea shelf and slope much earlier:
during expeditions of RV Polarstern in 1993 and 1995 five species of siboglinids were found in
this area in the depth range 50-2000 m (Sirenko et al., 2004), which is more ??species?? than
anywhere else in the high Arctic.

We examined benthic communities associated with methane seeps in the Laptev Sea at two
fieldssites: C15, centred around 76°47.4'N and 125°49.5'E with depths 70-73 m and Oden,
centred around 76.894°N and 127.798°E, with depths 63-67 m. LA preliminary resuls—on
bettemdescription of benthic fauna with—the—foecusobserved on megafaunal-video data—are

deseribedwas published by Baranov et al. (2019). The aim of this study is to describe further the
biological peculiarities of the methane seep fauna and to reveal the differences in either integral

community characteristics or distribution of certain species between the methane seep and
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background areas._ We hypothesized that the seep sites are different from the non-seep in terms

of general community characteristics and certain species distribution. |

Materials & Methods
Samples_of macrofauna were taken during three expeditions of RV Akademik Mstislav Keldysh

in 2015 (AMK-63), 2017 (AMK-69) and 2018 (AMK-72) on the northern Laptev Sea shelf, in an
area of active methane discharge. Materialwas-ebtained-usingThe gears used for sampling were
the Okean (in 2015) and Van Veen_(in 2017-2018) grabs (0.1 m? sampling area) and the Sigsbee
trawl (2 m frame width) (Eleftheriou & Mclntyre, 2005). There were 21 grab and 2 trawl stations
at three sites: on )two methane seep fields (12 grabs and 1 trawl at C15; and 6 grabs and 1 trawl at
Oden) and at the control site with no methane seeping methane—(3 grabs).) (Fig. 1). A single

Commented [MC7]: It seems that the answer to this question is
already known from previous publications. That does not prohibit
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trawl was taken at each seep site to minimize the possible ecosystem damage from this gear. In
2015 al-thethree seep stations were selected above the present [gas flares Msible on echo-

sounder. Three more grabs were taken ~200 m away from the nearest gas flare to catch

background community. In 2017 and 2018 station selection was based largely on the previously

mapped methane flares. All the 2017 and 2018 grabs were taken above the gas flares (Fig. 1).

Station data with coordinates and depthdepths are shown in Table 1.-Fhe-study-area-and-location
of stations-are-givenn-Fig—L For additional information on methane seep fields see Flint et al.
(2018) and Baranov et al. (2019).

Table 1. Data on stations used in the present study. For trawl stations coordinates and depth of start and
end are given.

Fig. 1. Study area.

Enlarged maps show sampling sites and corresponding stations. Detailed bathymetry is only available for
C15 and Oden sites; white circles indicate previously recorded gas flares (Baranov et al., 2019). Dotted
line at Oden site enclosed map shows the approximate perimeter of seeping area.

Sediment from mest-grab samples was washed by hand through the 0.5 mm mesh size
sieve, and then-transterred-toneutrahizedfixed with buffered 4% formalin-_solution afterwards.
Two grab samples from the expedition in 2018 (Sts. 5947-3 at C15 and 5953-2_at Oden site)
were fixed with 96% ethanol. A 10-litre subsample of sediment taken from each trawl catch was

washed through the 1 mm mesh size sieve and then fixed with neutralized 4% formalin. The
material obtained was analyzed in the laboratory; all macrofaunal organisms were identified to
the lowest possible taxonomical level with the help of taxonomic experts (see
Acknowledgements) and counted. Species from grab samples were weightedweighed (wet
weight, all specimens of each species at a time). Molluscs were weighted-togetherweighed with

{
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shells, polychaetes with calcareous (spirorbids) or mucous tubes (Spiochaetopterus typicus and
siboglinids) were weighted-togetherweighed with tubes. Density and biomass were calculated
per square metre in case of grabs. Dominant species were distinguished by biomass. For trawl
samples we calculated the contribution (in %) of each species to abundance. Biomass was not
measured for trawl samples due to poor state of preservation. For ethanol fixed samples from &ts. [
5947-3 and 5053-2, the biomass loss was corrected using taxa-specific coefficients after
Brotskaya & Zenkevich (1939).

FotalFor grab samples total abundance, biomass, species richness (species number;),
\Pielou evenness, Hurlbert rarefaction index and Shannon-Wiener diversity index (H’ In) Mere

- Abundance and biomass data from grab samples were [square root

transformed to increase the role of rare taxa. The similarity between grab samples and species

was estimated using the Bray-Curtis similarity coefficient. Clusters were built based on
similarity matrices using the unconstrained tree routine (UNCTREE); and SIMPROF used to
distinguish station groups with significant differences in species composition. The results from
cluster analysis were verified by non-metric multidimensional scaling (n-MDS). Clusters

revealed by these methods were defined as separate station groups in terms of taxonomical

similarity. Shade plots were built to visualize the species abundance and biomass differences
between the stations and species in clusters. The Kruskal-Wallis test was used to verify
differences in certain taxa occurrences between station groups. Results were corrected using the
Tukey’s pairwise post-hoc test. Species-individuals accumulation curves were plotted for each
station group (McCune, Grace & Urban, 2002; Clarke & Gorley, 2015).

For all species present in any station group, an algorithm estimating the likelihood of
accidental catch was applied. If a uniform distribution of species between two sampling efforts A
and B is assumed, the probability of species absence at each station of B-sampling would be (1-
PA)N®), where N(B) is the number of stations in B-sampling and Pa is the species occurrence
(the proportion of stations where the species was present) in A-sampling. Using this equation,
the likelihood of accidental absence of any species in either station group can be estimated. The
number of grabs required for species catch in B-sampling can be calculated by the equation: n =
lg(ao) 1g(1-Pa)?, where a is the likelihood of species finding in B-sampling taken as 0.99
(Azovsky, 2018; Vedenin et al., 2019).

For trawl samples, the species rank distributions were plotted. Species richness, Pielou
evenness, Hurlbert rarefaction index and Shannon-Wiener diversity index were calculated using
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the taxa-percentage values. Differences between trawl catches were estimated by similarity
percentage routine (SIMPER).

Statistical analyses were performed in Primer V6, V7 and Past 3.0 software (Clarke &
Warwick, 2001; Hammer, 2013; Clarke & Gorley, 2015).

Results
A total of 289 taxa of benthic macrofauna were identified in grab and trawl samples. In grab

samples, density varied in the wide range from 580 ind. m (St. 5624-3, Control site) to 9880
ind. m2 (St. seep-3, C15 site). Biomass ranged from 16.28 g ww m (St. seep-1, C15 site) to
405.79 g ww m2 (St. 5623-3, Oden site). The \Iist of all identified taxa from trawl and grab

samples, with values of abundance and biomass is given in the Supplementary 1.

\Flg 2. \UNCTREE analysis with SIMPROF results (A) and non-metric multidimensional scaling plot (B)

of grab stations using the Bray-Curtis similarity index-(square-root-transformed-biomass-data)..
Square root transformed biomass data are used. Dashed lines connect btatlstlcally unreliable groupings KIL
> 0.05). Green lines indicate SIMPROF groups.

Grab samples
Unconstrained tree with SIMPROF analysis revealed five significantly distinct groups of

samples at the similarity level of 50 (Fig. 2). The UNCTREE parameters are shown in

Supplementary 2. The groups partly corresponded with the station locations and
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presence/absence of methane seeps (Control, C15 and Oden sites). To avoid a mix-up between _—{ Formatted: Font: Italic )
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\Fig. 3. [The species-individuals accumulation curves for the station groups. Colors are the same as in [Commented [MC16]: Not cited in text? ]

Figure 2.

Characteristics of station groups A Formatted: Font: 12 pt )

The Control station group “Centret~included three stations located between methane seep sites-
At-al-three-stations—the (Fig. 1). The bivalve Portlandia arctica was the-dominant speeies-by
biomass,—with_at all three stations; the starfish Ctenodiscus crispatus and the bivalve Macoma

calcarea alse-playing-an-impertantplayed a secondary role. Due to the low number of samples,
the species-individuals accumulation curve did not reach an asymptote (Fig. 3). Compared to

other groups, the values of density and species aumberrichness were the lowest at Control,

whereas the evenness was the highest (Fig. 4).
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The C15-seep a station group included five stations, all within the C15 methane-seep site.
In this group, biomass and diversity values were relatively low. Dominant species in this group
were the bivalve Nuculana pernula, the siboglinid Oligobrachia sp. and the polychaete
Cistenides hyperborea. Species-individuals accumulation curve in this group reached saturation
due to the largest number of samples (Fig. 3).

The C15-seep, b station group consisted of only two stations—was-characterized-by from

////{ Formatted: Font: Italic

C15 site. This group demonstrated the highest abundance values and the lowest biomass values

owing to high densityabundance of small polychaetes Cossura longocirrata, Micronephthys
minuta and Ophryotrocha sp. at some stations (Fig. 4, Supplementary 1).

The Oden station group included six stations, all located within the Oden methare-seep

////{ Formatted: Font: Italic

site. Values of biomass, species aumberrichness and diversity indices in this group were the
highest among all station groups (Fig. 4). The most dominant species were the siboglinid

Oligobrachia sp. and the other? polychaetes Myriochele heeri and Nephtys ciliata.

Fig. 4. Univariative characteristics of identified clusters.
Mean values of total density, biomass, species numberrichness, Pielou evenness, Hurlbert
rarefaction index and Shannon-Wiener index with standard deviation lare shown. Exact values of

these characteristics are shown in Supplementary 3.

In—theThe last group “Seep—Background”—there—wereC15 background contained five
stations taken within the C15 site-away-from-methane-discharges. Three of these stations (Sts.

background-1, 2 and 3) were taken several hundred metres away from active methane seeps.
Two stations (5947-1 and 5947-3) were planned as active seep stations—but—accidentally.

Accidentally, they were taken in the seep background area according to taxa composition and

elusterfollowing analysis. Taxonomical composition at these stations was similar to that in the

Control group, with the bivalve Portlandia arctica being the dominant species. Bivalves
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Yoldiella lenticula and Y. solidula were subdominant. In this station group, the biomass values
were the lowest, other general community characteristics were intermediate (Fig. 4). As with the
“Control* group, “Seep—Backgreund”C15 background did not reach the saturation point at

////{ Formatted: Font: Italic

species-individuals accumulation plot (Fig. 3).

Comparison of seep and non-seep stationsstation groups,

Formatted: Font: 12 pt

General community characteristics in the station groups appeared different in abundance,

biomass and diversity (Fig. 4, Supplementary 3). The abundance of several taxa was

significantly different in four station groups (Fig. 5). The Kruskal-Wallis test showed that

differences in abundance of at least ten species are statistically reliable (Table 2). Fhus—the

\ﬂ Formatted: Font: 12 pt
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methaneThe seep sites were characterized by higher density of the polychaetes Tharyx sp. and
Cistenides hyperborea, the bivalve Macoma calcarea and the ophiuroid Ophiocten sericeum. On
the contrary, the bivalve Portlandia arctica was markedly more abundant in the-Control and

Seep, to a lesser extent, in C15 background areasstation groups (Fig. 5). Notable arewere

extreme densities of small polychaetes at some seep stations, including Cossura longocirrata and
Ophtyotrocha sp. (Fig. 5A):) at C15 seep b.

Fig. 5. Shade plot of species square root transformed abundance (A) and biomass (B) at stations arranged
by clusters.

The species list is reduced to 20 most important taxa. Order of stations and colors the same as in Figure 2.
Taxa grouped in clusters using UPGMA algorithm based on index of association.

Certain species present at some methane seep sites were completely absent at the non-seep
sites (Fig. 5). Among them, at least four species (the polychaete Spiochaetopterus typicus, the
siboglinid Oligobrachia sp., the bivalve Axinopsida orbiculata and the amphipod Pleusymtes
pulchellus) were foundpresent only at C15 and Oden sites. At least one species, the undescribed

Commented [MC18]: | do not know what this is suggesting?

gastropod Frigidalvania sp., was present only atin Oden station group and absent at
Gi5elsewhere (Table 3). The estimated number of grabs required to catch the latter species was

slightly lower than the number of grabs taken.

Table 2. Results of the Kruskal-Wallis and Tukey’s post-hoc tests for taxa with different abundance

values in five station groups. Mean abundance in each station group is shown. Taxa are arranged

according to p-value. Faxa-with-p-vatues-lower-than-0.05-are-marked-with-plus—Pairs in post-hoc column

indicate significant comparisons (Tukey’s p <0.05).

1 — Control group; 2 — C15 background group; 3 — Oden group; 4 — C15-seep a group; 5 — C15-seep-b
roup.

Table 3. Likelihood of not finding a species calculated for species present only at methane seep sites and
only at the Oden site.

Trawl samples
The overall Bray-Curtis similarity between the two trawls was 66%. Species ranking graphs

showed high level of dominance by abundance for both trawl stations (Fig. 6). The mest
abundantdominant species in both trawls was the ophiuroid Ophiocten sericeum: 37% of the total
abundance at C15 and 46% at Oden. The second most abundant species at C15 was the
gastropod Frigidalvania sp. (12%) and at Oden the bivalve Yoldiella solidula (11%). Ten most
abundant species accounted for >70% of the total abundance urin both trawls (Fig. 6).
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Fig. 6. Species ranking for C15 and Oden trawl samples.
The most numerous species are indicated. X-axis is logarithmic.

Species numberrichness, Pielou evenness, Hurlbert rarefaction for 100 individuals and
Shannon-Wiener index are shown in Table 4. \DiversiM appearedwas higher in the Oden-trawl

than in the C15-trawl, similarly as in the grab samples. However, the species rumberrichness (as
well as the total amount of individuals) in the C15-trawl was higher than in the Oden-trawl
(Table 4, Supplementary 1).

Species responsible for taxonomical difference between the two trawl samples are shown

in Table 5. Most notable was a high dmount of the gastropod Frigidalvania sp. at C15. At Oden

Commented [MC21]: Which of the at least 4 measures used is
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Frigidalvania sp. was also present, but in much smaller densities (only 2.3 % of the total

abundance). In addition, C15-sample differs from Oden by high amount of various filter-feeders

including 6 species of sponges (with Craniella polyura being most numerous), at least 6 species

of cnidarians, 17 species of bryozoans and 3 species of tunicates (Supplementary 1).
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At C15 trawl sample, a large piece of carbonate crust was found. Cavities of its pores were

inhabited by numerous polychaetes, typical also for the soft sediments around the seepage area

(e.g. members of families Nephthyidae, Nereididae, Oweniidae and Terebellidae, see

Supplementary 1), and by several filter-feeders (Hydrozoa).

Table 4. Species numberrichness, Pielou evenness, Hurlbert rarefaction for 100 individuals and Shannon-
Wiener index calculated for trawl samples.

Table 5. Similarity percentage routine for trawl samples.

Species with contribution >0.5% are shown. Species more abundant at C15 are marked with bold. <« Formatted: Normal, Left

Comparison of grabC15 and trawl-dataOden sites
All gears showed significant differences between the C15 and Oden sites expressed in different

taxonomical composition and quantitative characteristics. The Bray-Curtis similarity between the

sites according to the grab samples and trawl samples was 26.2 and 65.6, respectively. The main

differences werein species composition included the high abundance of the sponge Craniella

polyura and the gastropod Frigidalvania sp. at C15_site and higher numbers of the ophiuroid
Ophiocten sericeum at Oden site.

The grab data indicateindicated a high level of heterogeneity of benthic fauna on the scale
of several meters at both seep-sites. Some species formed patches, for example Oligobrachia sp.,
Cossura longocirrata and Ophryotrocha sp., being extremely numerous at several grab stations.

There were also species with rather uniform distribution based on combined data, for example
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Ophiocten sericeum._According to the cluster analysis, the C15 site is more heterogenic forming

at least three different species complexes within its area (Fig. 2). Dissimilarity within the C15

and Oden sites was 64.7 and 26, respectively (Supplementary 2).

Dominant species were different in grab and trawl samples. The-main dominant species in
trawls at both methane seep sites was the ophiuroid Ophiocten sericeum. Whereas based on grab

data, the main—dominants at seep sites were the siboglinid Oligobrachia sp., the bivalve

Nuculana pernula and the polychaete Myriochele heeri. r-ron-seep-areas,—the-main-dominant

Discussion

Integral community parameters: methane seep vs. non-seep stations
The abundance of macrofauna was higher at the methane—seep stations compared to the

background;—alse. In addition, at the Oden \gitg} the biomass and—diversity—werewas higher

(
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compared to non-seep sites. Increased values of abundance and biomass have been reported from
both hydrothermal vents and cold seeps all over the world. In the Arctic, a twofold increase of
biomass compared to control sites was observed at cold seeps south off Svalbard (mean values of
20.7 vs. 9.8 g ww m), the abundance increase was less prominent (770 vs. 590 ind. m?)
(Astrom, 2016). For the H&kon Mosby mud volcano, the comparison of abundance and biomass
with the background is not available. In our study, the abundance at the methane seep sites C15
and Oden was more than four times higher than at the control. However, differences in biomass
although pronounced were not statistically reliable. Among—important—econtrols—of
inereasedIncreased biomass in seep habitats is commonly are-diseussed-anexplained by enhanced
organic matter content;_and habitat heterogeneity and-the-occurrence-of-hard-substrates-(Gebruk
et al. 2003; Sen et al. 2018).

FaxaPielou’s evenness was distinctly higher at the Control and C15 background station

groups, which reflects the increased dominance lof certain species at seep stations compared to

non-seep. Many authors reported high abundance and biomass values of one to few dominant

species at various cold seeps (Gebruk et al. 2003; Astrém, 2016; Astrom et al., 2018). This can

be caused by conditions less favorable for some background species, but more favorable for

symbiotrophs or grazers (summarized in Dando, 2010).

The cold seeps usually demonstrate lower diversity values compared to the background

areas (Levin, 2005). However, combined species list from grab and trawl samples showed a high
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diversity lalthough_only two trawls were sampled. Our studies on the Siberian shelf using the

{ commented [mc28): ?

same gear under the same conditions obtained less than 150 species per trawl (Galkin &
Vedenin, 2015; Vedenin, Galkin & Kozlovsky, 2015), while a total of 203 species were found in

a single C15 sample. The unusually high diversity may reflect a higher amount of microniches -

[ Commented [MC29]: High if numbers, large if biomass

within the C15 site. This is indirectly confirmed by lower similarity values observed between all

C15 grab samples. Higher habitat heterogeneity at seep sites can increase the overall diversity of

benthic fauna (Gebruk et al. 2003; Levin, 2005). The scale of heterogeneity is hard to assess, but

based on stations coordinates and the fact that stations 5947-1 and 5947-2 from C15-site were

grouped in C15 background, while station 5947-2 was grouped as C15-seep a we can assume

that the scale is less than 5 m_(distance between these stations) (Fig. 1; Table 1).

In addition, the diversity values at the Oden station group were significantly higher than

at other sites. The reasons for this are unknown so far, since no environmental parameters

measured directly at benthic stations are available. Interestingly, the peculiarly higher values of

diversity within the cold seeps are known only for the seep areas in the Arctic, e.q. for the

[ Commented [MC30]: ?

Vestnesa Ridge (Astrém et al., 2018) and for the South-Western Barents Sea (Sen et al., 2019b).

Common shelf taxa responsible for differences_in station groups
The station groups revealed by UNKTREE and n-MDS analysis largely corresponded to the

geographical position of the C15, Oden and control sites. /A number of common species widely

distributed across the Siberian shelf (see Supplementary 1, Sirenko, 2001) were largely

responsible for increased integral community parameters in our study. Most of these taxa are

listed in Table 2. Among such species (based on grab samples) were the polychaetes

Spiochaetopterus typicus, Cossura longocirrata and Tharyx sp., the bivalve Macoma calcarea,
the amphipod Pleusymtes pulchella and the ophiuroid Ophiocten sericeum. In addition, based on
trawl data, the sponge Craniella polyura was present in high densities at the C15 site:, together
with other filter-feeders including cnidarians and bryozoans. Apparently the same species

aggregations were visible on the video reported by Baranov et al. (2019). All these species were
previously reported from a wide range of areas of the Laptev Sea and adjacent regions (Sirenko
etal., 2004).

The increased density of common taxa at deep-sea hydrothermal vents and cold seeps is a
well-known phenomenon usually explained by increased availability of organic matter in these
habitats (Hessler & Kaharl, 1995; Levin, 2005). In the Arctic, the increased biomass and
abundance of common allochthonous species was reported for the Hakon Mosby mud volcano
(Rybakova et al., 2013), Svalbard (Astrém et al., 2016) and Vestnesa Ridge cold seeps (Astrém
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et al., 2018). Also, a significant increase of abundance of filter feeders (especially sponges) was
shown for the Aurora Seamount on the Gakkel Ridge, the only investigated hydrothermal vent in
the Central Arctic Ocean (Boetius, 2015).

%7*{ Formatted: Indent: First line: 0 cm

Fig. 7. Taxa found only at seep stations.

A — Oligobrachia sp. (left — tube with several fragments enlarged; center — complete specimen extracted
from tube; right — anterior and posterior fragments of the specimen); B — Frigidalvania sp.; C —
Ophryotrocha sp. (upper left — several specimens, total view; upper right — anterior fragment; lower —
enlarged parapodia); D — Axinopsida orbiculata. Photos by A. Vedenin and V. Kokarev.

Taxa specific for methane seep sites
The most distinctive species of the methane seeps in our study was the siboglinid Oligobrachia

sp. (Fig. 7a). This species was present at every seep station and absent at every background and
control station. This species is morphologically very close to Oligobrachia haakonmosbiensis
originally described from the Hakon Mosby mud volcano from the depth of ~1200 m (Smirnov,
2000). Colonies of O. haakonmosbiensis with the biomass reaching 350 g ww m-2 were reported
from this area (Gebruk et al., 2003). Recent phylogenetical analyses showed that the species
from the Laptev Sea belongs to a separate, undescribed species of Oligobrachia (Sen et al.,
2018). In the Laptev Sea, Oligobrachia sp. is known from different localities, seep and noon-
seep, occurring in a wide depth range 100-2166 m (Buzhinskaja, 2010). Our record at 63 m is the
shallowest for this species, with high population density and biomass: >1000 ind. m? and 45 g

ww m? at Sts. 2623-1 and 5953-2: (Oden site). Several specimens from 2015-samples

(erroneously identified as O. haakonmosbiensis) were investigated using transmission electron

microscopy (Savvichev et al., 2018). Usually the endosymbionts of siboglinids are represented

by sulphide-oxidizing bacteria (Rodrigues et al., 2011; Lee e al., 2019), but heﬁem_ethanotrophic

bacteria were found inside its trophosome. |

(
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Some samples from the seep sites besides the siboglinids also were marked by several
species of molluscs. The gastropod Frigidalvania sp. (Rissoidae) occurred in high density at C15

site: up to 2340 ind. m? and 25 g ww m at St. 5625-3_(Fig. 7b). According to trawl samples,

this species occurs at the Oden site, but was low in number. This species is new to science. Large

numbers of unknown rissoid gastropods were previously reported from the Hakon Mosby,

referred to as Alvania sp. in Gebruk et al. (2003). Later, the stable isotope analysis has shown

that the rissoids at Hakon Mosby are grazing on bacterial mats (Decker & Olu, 2012). Another

rissoid gastropod, Pseudosetia griegi, was observed grazing on bacterial mats at the hot vent

Loki Castle on the Mohn’s Ridge (Sweetman et al., 2013). At the recently investigated Lofoten

canyon seep site dense aggregations of unidentified rissoids were observed from ROV (Sen et

12
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al., 2019a). Based on the details available from the published photo, we suggest that the

gastropods are very likely to belong to genus Frigidalvania, based on the shell shape and rusty-

brownish periostracum (Sen et al., 2019a, see Fig. 4b). Unfortunately, in our study we were not

able to identify the behavior or lifestyle of Frigidalvania sp. This species remained unnoticed in
the video data {Baranev—et-al—2019).due to its small size (Baranov et al., 2019). However,
multiple bacterial mats observed from video-transects and caught by box corer provide an

opportunity for such species to graze on them (Savvichev et al., 2018; Baranov et al., 2019).

Another species common at seep sites and lacking in the background was the thyasirid bivalve
Axinopsida orbiculata-_(Fig. 7d). Some species of thyasirids are known as symbiotrophic.
However, the information on symbiotic bacteria in the gills of A. orbiculata is controversial:
Zhukova, Kharlamenko & Gebruk (1991) have demonstrated the presence of bacteria in bivalve
specimens from the Kraternaya Bight, the Kuril Islands, whereas according to Dufour (2005) this
species lacks bacterial symbionts. It is possible that A. orbiculata is attracted by increased food

availability at seep sites, as may another bivalve, Macoma calcarea, which is also common in

seep background areas (Fig. 5). Overall, no jpivalves restricted to cold seeps are known so far in {cOmmented [MCB4]: Which is it, seep or background }

(previously used as synonymous with control)

the Arctic with the exception of two large thyasirids recently described by a few empty sheIIs[

Commented [MC35]: How can one assume from dead shells
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us very little except that one time in the past that the species existed
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(Astrém, Oliver & Carroll, 2017) and Pleistocene subfossils|(e.g. Archivesica spp., Sirenko et al.,

2004; Hansen et al., 2017). The subfossils suggest that previously the Arctic cold seeps (and {

was living ina cold seep?

possibly hydrothermal vents) were inhabited by richer fauna that became extinct after

Commented [MC36]: Similarly how can it be known that a fossil }

Ouatemarv qlaciation.‘ { Commented [MC37]: What is the logic here, needs more

explanation and rationale or omit such speculation

There was a notably high density (>3600 ind. m?) of the dorvilleid polychaete

Ophryotrocha sp. atin one grab stationsample at C15-seep, b station group (Supplementary 1 —{ Formatted: Font: talic )
(Fig. 7c). At least 15 species of Ophtyotrocha have been described from reducing habitats

(Taboada et al., 2013; Salvo et al., 2014; Ravara et al., 2015), including two species considered
as obligate for cold seeps in the Kagoshima Bay, Japan (Miura, 1997). On the other hand, many
species of this genus are common in regular marine ecosystems including Arctic seas (Sirenko,
2001).

Another taxon common in reducing habitats is Tanaidacea. In our material three species
were present (Supplementary 1), all widely distributed in the Arctic (Sirenko, 2001). The density
of tanaids in our samples was low, although this taxon was reported in high densitydensities
from the H&kon Mosby (Gebruk et al., 2003) and the Vestnesa Ridge (Astrom et al., 2018) with
several species (described as new) restricted to the methane seep habitats (Btazewicz-
Paszkowycz and Bamber, 2011). It seems likely that many species of tanaids remain unidentified
and diversity in this taxon remains underestimated owing to difficulties of identification of these

small crustaceans (summarized by Btazewicz-Paszkowycz & Bamber, 2011). The low number of

13
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tanaids in our samples could be a result of a too large sieve mesh size used onboard (see
Materials & Methods). Tanaids commonly are < 0.5 mm in size and require a corresponding
mesh size to be found (Pavithran et al., 2009).

Overall, considering grab and trawl data combined, all the seep-specific taxa were the

same at both seep sites. The only exception is the polychaete Ophryotrocha sp., which could be

missed from the Oden trawl sample due to the large sieve mesh size (Supplementary 1).

Presence of specific benthic communities at C15 and Oden
Up to now no distinct macrofaunal changes in response ef-macrofauna—to methane seeps

waswere reported #from the Arctic Ocean at depths < 80 m. In general, at depths <200 m both
hydrothermal vents and cold-seeps are usually are—colonized by a subset of the local fauna
(Tarasov et al., 2005; Dando, 2010). Some species notable at shallow-water methane seeps
belong to opportunistic taxa common in various reducing habitats. These include siboglinid
polychaetes and thyasirid bivalves reported from Skagerrak, Kattegat, coastal areas of Florida,
Japan, New Zealand, New Guinea etc. (Southward & Culter, 1986; Schmaljohann & Fliigel,
1987; Schmaljohann et al., 1990; Malakhov, Obzhirov & Tarasov, 1992; Gebruk, 2002). The
isotope data suggest that food sources of macrofauna at [shallow-water methane seeps are largely

photosynthesis-based (Levin, 2005). It was suggested that the faunistic depth boundary between _

the deep-sea and shallow-water vents and seeps at approximately 200 m is controlled by the
amount of POCorganic matter input from the photosynthetic production (decreasing below the
photic zone) and the greater number of predators at shallow depths. Definite seep-obligate
species were not reported from depths <200 m (Tarasov et al., 2005; Dando, 2010).

At the same time, methane seep habitats even at shallow depths increase a number of

microniches owing to increased organic matter availability, variety of bubstrates\ and repeated
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disturbance (Dando, 2010). Shallow cold-seeps thus—may_therefore support greater species
\diversity compared to the background-er-attract speciesspecialisis-to-reducing-habitats—. In our

[ Commented [MC41]: Richness?

study at both methane seep sites, C15 and Oden, community characteristics were significantly
different from those in non-seep areas, fargelramong other things owing to presence of obligate
species to tereducing habitats. In addition, the communities found at C15 site formed several
elustersstation groups and were more scattered at the n-MDS plot (Fig. 2A,_B) which could
indicate a larger diversity of microniches within this site._Large numbers of filter-feeders

(Hydrozoa and Bryozoa) found in C15-trawl indicated the presence of hard substrata (including

carbonate crusts). The larger amount of microniches is partly supported by the video-data, where
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the landscape within the active seepages was more complex than in non-seep areas (Flint et al.,
2018; Baranov et al., 2019).

WeUnfortunately, no environmental data except for the echo-sounding showing certain

gas flares and CTD-measurements obtained from the area of the seeps from two points away

[Commented [MC42]: Emissions?

from the benthic samples were available (Flint et al., 2018; Baranov et al., 2019). Nevertheless,

we suggest that the observed reactionresponse of macrofauna to methane seeps at the shallow
depths of 60-70 m iscan be related to very low primary productivity on the outer shelf of the
Laptev Sea, dropping from ~15mgGS720mg C m2 per day at 400-km-from-the-Lena river delta to
3.53<100 mg C m2 per day at 600 km (Fahl-& Stein 1997 Sukhaneova-et-al-2017: Flintet-al
2048).Sorokin & Sorokin, 1996) during September. Outside the short Arctic summer months,
these values tend to zero. In these extremely oligotrophic conditions, methane is a source of

energy for the methane-oxidizing bacteria and stimulates the development of local patchy

benthic communities at these depths._As a comparison, the specific communities with siboglinids

around Svalbard located at similar latitude are developed only at depths >200 m (Astrém et al.,

2016). Unlike the Laptev Sea shelf, the primary production south and west off Svalbard reaches

much higher values up to 1800 mg C m per day during May blooms (Wassman et al., 2006).

Furthermore, the Barents Sea remains uncovered with ice during most of the year, while the

Laptev Sea shelf is ice-free during one to two months annually.
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Conclusions
Our study is the first description of shallow-water (< 100 m) methane seep communities in the

Siberian Arctic. On the northern Laptev Sea shelf, significant differences were found between

two methane seep sites (C15 and Oden, located at depths of 63-73 m) and the background areas.

The differences ineludeincluded integral community parameters and presence at seep sites of
species speciakists—totypical for reducing habitats, such as siboglinids Oligobrachia sp. and
thyasirid bivalves.- Several species at methane seeps are presumably new to science, including

the gastropod Frigidalvania sp. and the polychaete Ophryotrocha sp-., found in large quantities

at C15 site. We suggest that the reactionresponse of macrofauna to methane seeps at shallow
depths is related to very low primary productivity on the outer shelf of the Laptev Sea.
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