Style Definition: Comment Text

Fauna associated with shallow-water methane seeps in the Laptev Sea

Andrey A. Vedenin¹, Sergey V. Galkin¹, Valentin N. Kokarev^{1,2}, Margarita V. Chikina¹, 3

Alexander B. Basin¹, Andrey V. Gebruk¹ 4

5 6

1 2

¹ - P.P. Shirshov Institute of Oceanology, Moscow, Russia

² – Nord University, Faculty of Biosciences and Aquaculture, Bodø, Norway

7 8 9

Corresponding Author:

10 Andrey A. Vedenin1

Nahimovskiy Prospekt 36, Moscow, 117997, Moscow, Russia 11

Email address: urasterias@gmail.com 12

13

14

24

25

28

29

33

34

39

Abstract

15 Background. Methane seeps create unique benthic ecosystems in the deep-sea dependent on 16 chemosynthetic (methane derived) organic matter. In the present study we focused on the

17 recently described shallow-depth methane discharge area onat the northern Laptev Sea shelf. The

18 aim of this work was to understanddescribe the effect of seepingshallow-water methane on

benthic macrofauna at depths 60-70 mseep fauna and to understand whether there are differences 19

20 in community structure between the methane seep and background areas.

21 Methods. Samples of macrofauna were taken during three expeditions of RV Akademik Mstislav 22

Keldysh in 2015, 2017 and 2018 using 0.1 m² grabs and the Sigsbee trawl. In total, 21 grabs and

23 two trawls were taken at two methane seep sites named Oden and C15-, located at depths of 60-

70 m. For control, sixthree 0.1 m² grabs were taken in an areas area without methane seepage.

Results. The abundance of macrofauna was higher at methane seep stations, also at *Oden* the

26 biomass and diversity were higher compared to other areas, non-seep. Cluster analysis revealed 27

five station groups corresponding to the control area, Oden site and three at the C15 site. The

taxa responsible for differences between the station groups were mostly common and widespread

Arctic species, that were more abundant in samples from methane seep sites. However, large

30 densities of symbiotrophic siboglinids *Oligobrachia* sp. were found exclusively at all-methane

31 seep stations. In addition, several species presumably new to science were found enly at several 32

methane seep stations, including the gastropod Frigidalvania sp. and the polychaete

Ophryotrocha sp. The fauna at control stations was represented exclusively only by well-known

and widespread Arctic taxa. The number of station groups revealed from C15 stations and high

species richness in C15 trawl samples compared to Oden indicated higher diversity of micro-

35 36 niches within the C15 site. The development of specific methane seep communities at such a

37 shallow depth apparently isdepths can be related to pronounced oligotrophic environment on the

northern Siberian shelf. 38

Formatted: Line spacing: Multiple 1.15 li

Commented [MC1]: 'the' means they do, also previous sentences say they do, suggest shortening as I have edited

Commented [MC2]: Possibly?

Introduction

40 41

42

43

44 45

46

47 48

49

50

51

52 53

54 55

56

57 58

59

60 61

62

63

64

65

66

67

68 69

70 71

72

73

74

Methane gas seeping from the seafloor provides environment and habitatscan provide environmental conditions for unique fauna largely independent of photosynthetic primary production as occurs at hydrothermal vents (Van Dover, 2000). Distinct faunal response at methane seeps (also known as "cold seeps") expressed in sharpis associated with an increase in their total abundance and biomass, and presence of unique taxa absent in background areas. This pattern has been described from many areas of the Ocean (Baker & German, 2004; Levin, 2005). These taxa either develop symbiotic relationships with methanotrophic or sulphide-oxidizing bacteria or feed directly on benthic or suspended bacterial matter. At a higher trophic level, predators feeding exclusively on such taxa may be present (Gebruk, 2002; Dando, 2010).

In the Arctic Ocean, only fewseveral methane seep ecosystems have been discovered and investigated. The most studied include the Håkon Mosby mud volcano in the Norwegian Sea (Gebruk et al., 2003) and several sites around Svalbard and at Vestnesa Ridge (Åström et al., 2016). These areas; Åström et al., 2018). Other described cold seeps include the Lofoten-Vesterålen continental margin area (Sen et al., 2019a) and mud volcanoes in the Beaufort Sea (Paull et al., 2015). The cold seeps inhabited by specific benthic macrofauna different from that in the surrounding ecosystems are mostly located below the photic zone (> (depth > 200 m in theboth around Svalbard area and 1200 m at Håkon Mosby) (Gebruk et al., 2003; Åström et al., 2016). At the same time, in-areas with extensive methane discharged ischarge located at shallow depths in coastal zones (for example(e.g. in the Norwegian and White Seas at depths <100 m) have been reported to have little or no reactionresponse of macrofauna is observed (Savvichev et al., 2004; Levin, 2005). In general, it was shown that there is a global trend of the depth boundary is observed between shallow-water-vents and cold seeps and their "deep-sea" counterparts at approximately 200 m (Tarasov et al., 2005; Dando, 2010). One of possible reasons for this boundary is the origin of organic matter: at depths <200 m photosynthetic organic matter is more available for benthic consumers due to stronger bentho-pelagic coupling. However, at greater depth the amount of photosynthetic organic matter decreases and chemosynthesis starts to play a significant role for local organic matter production. Therefore, despite the presence of methane and sulfides (unfavorable for most organisms), unique and diverse ecosystems develop most noticeably at deep-sea cold seeps (summarized by Dando, 2010).

Fauna associated with cold seeps in the Arctic includes symbiotrophic siboglinid polychaetes and thyasirid bivalves, <u>but mainly consists of species not unique toto methane seeps but aggregating. Widespread Arctic species tend to aggregate in such habitats around methane seepage sites (Gebruk et al., 2003; Åström et al., 2016; Åström, Oliver & Carroll, 2017).</u>

Commented [MC3]: Or and/or (/ alone is ambiguous)

Commented [MC4]: ocean?

Common features of all known Arctic high latitude methanecold seep assemblages are characterized by the dominance of frenulate siboglinid worms—and lack of, while large chemosymbiotrophic methane seep taxa, such as—(vestimentiferan worms, bathymodioline and vesicomyid bivalves) are absent (Sen et al. 2018). A cAmong common effectsommon effect of methane seeps on marine benthic communities are—is an increased abundance, and biomass and diversity—of regular allochthonous taxa comparingcompared to the background (Gebruk, 2002; Levin, 2005). Species richness at cold seeps is not higher than in the background, though recent results obtained from the southwestern Barents Sea showed increased taxonomic richness within the seepage sites (Sen et al., 2019b).

Commented [MC5]: What measures ? species richness? Better

to be specific

In the Siberian Arctic, areas of intense—bubble methane discharge (methane seeps) were discovered on the outer shelf of the Laptev Sea in 2008 (Yusupov et al. 2010). Further research revealed numerous gas flares onin the northern Laptev Sea shelf (Lobkovsky et al., 2015; Shakhova 2015). Within this area specific microbial communities based on methane oxidation were discovered (Savvichev et al. 2018). Baranov et al. (2019) suggested that methane seeps occur through the fault system belonging to Laptev Sea Rift system and Khatanga-Lomonosov Fracture Zone located between the Eurasian and North American Tectonic Plates. The faults may conduit the gas from reservoirs deep in the sediment below the caprock formed by permafrost and gas hydrates (Baranov et al., 2019). Within the seep area, multiple bacterial mats and occasional methane bubbles and carbonate crusts were observed (Baranov et al., 2019). Notably, the methane associated fauna was recorded on the Laptev Sea shelf and slope much earlier: during expeditions of RV *Polarstern* in 1993 and 1995 five species of siboglinids were found in this area in the depth range 50-2000 m (Sirenko et al., 2004), which is more ???species?? than anywhere else in the high Arctic.

Commented [MC6]: Is implies present authors, was would imply other authors, please clarify and if others cite who

The Laptev Sea outer shelf was recently investigated in frames of the P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences program "Ecosystems of the Siberian Arctic Seas" in three expeditions of the RV Akademik Mstislav Keldysh in 2015, 2017 and 2018 (Flint et al. 2018; 2019).

We examined benthic communities associated with methane seeps in the Laptev Sea at two fieldssites: C15, centred around 76°47.4′N and 125°49.5′E with depths 70-73 m and Oden, centred around 76.894°N and 127.798°E, with depths 63-67 m. A preliminary results on bottomdescription of benthic fauna with the focusobserved on megafaunal video data are described was published by Baranov et al. (2019). The aim of this study is to describe further the biological peculiarities of the methane seep fauna and to reveal the differences in either integral community characteristics or distribution of certain species between the methane seep and

background areas. We hypothesized that the seep sites are different from the non-seep in terms of general community characteristics and certain species distribution.

Commented [MC7]: It seems that the answer to this question is already known from previous publications. That does not prohibit publication in PeerJ if this paper provides new data and/or analyses,

but could the novelty be clarified please?

Materials & Methods

113 Samples of macrofauna were taken during three expeditions of RV Akademik Mstislav Keldysh in 2015 (AMK-63), 2017 (AMK-69) and 2018 (AMK-72) on the northern Laptev Sea shelf, in an 114 115 area of active methane discharge. Material was obtained using The gears used for sampling were 116 the Okean (in 2015) and Van Veen (in 2017-2018) grabs (0.1 m² sampling area) and the Sigsbee trawl (2 m frame width) (Eleftheriou & McIntyre, 2005). There were 21 grab and 2 trawl stations 117 at three sites: on two methane seep fields (12 grabs and 1 trawl at C15; and 6 grabs and 1 trawl at 118 119 Oden) and at the control site with no methane seeping methane (3 grabs).) (Fig. 1). A single 120 trawl was taken at each seep site to minimize the possible ecosystem damage from this gear. In 121 2015 all thethree seep stations were selected above the present gas flares visible on echosounder. Three more grabs were taken ~200 m away from the nearest gas flare to catch 122 background community. In 2017 and 2018 station selection was based largely on the previously 123 mapped methane flares. All the 2017 and 2018 grabs were taken above the gas flares (Fig. 1). 124 125 Station data with coordinates and depthdepths are shown in Table 1. The study area and location of stations are given in Fig. 1. For additional information on methane seep fields see Flint et al. 126 127 (2018) and Baranov et al. (2019).

128 129

130

131

133

134

109

110

111

112

Table 1. Data on stations used in the present study. For trawl stations coordinates and depth of start and end are given.

132 Fig. 1. Study area.

Enlarged maps show sampling sites and corresponding stations. <u>Detailed bathymetry is only available for C15 and Oden sites</u>; white circles indicate previously recorded gas flares (Baranov et al., 2019). <u>Dotted line at Oden site enclosed map shows the approximate perimeter of seeping area.</u>

135 136 137

138

139

140

141

142

143 144

145

Sediment from most grab samples was washed by hand through the 0.5 mm mesh size sieve, and then transferred to neutralized fixed with buffered 4% formalin solution afterwards. Two grab samples from the expedition in 2018 (Sts. 5947-3 at C15 and 5953-2 at Oden site) were fixed with 96% ethanol. A 10-litre subsample of sediment taken from each trawl catch was washed through the 1 mm mesh size sieve and then fixed with neutralized 4% formalin. The material obtained was analyzed in the laboratory; all macrofaunal organisms were identified to the lowest possible taxonomical level with the help of taxonomic experts (see Acknowledgements) and counted. Species from grab samples were weighted weighted (wet weight, all specimens of each species at a time). Molluscs were weighted togetherweighted with

Commented [MC8]: What were site depth ranges?

Commented [MC9]: Flare implies burning (on fire) – is that correct or were they bubbling gas? Or gas releases?

shells, polychaetes with calcareous (spirorbids) or mucous tubes (*Spiochaetopterus typicus* and siboglinids) were weighted togetherweighed with tubes. Density and biomass were calculated per square metre in case of grabs. Dominant species were distinguished by biomass. For trawl samples we calculated the contribution (in %) of each species to abundance. Biomass was not measured for trawl samples due to poor state of preservation. For ethanol fixed samples from Sts. 5947-3 and 5053-2, the biomass loss was corrected using taxa-specific coefficients after Brotskaya & Zenkevich (1939).

146 147

148 149

150

151 152

153

154

155

156

157

158

159

160

161

162 163

164

165166

167

168

169

170

171

172

173174

175

176177

178

179

Total For grab samples total abundance, biomass, species richness (species number,), Pielou evenness, Hurlbert rarefaction index and Shannon-Wiener diversity index (H' ln) were calculated to get integral community characteristics. For trawl samples, the species rank distributions were plotted. Differences between trawl catches were estimated by similarity centage routine (SIMPER). Abundance and biomass data from grab samples were square root transformed to increase the role of rare taxa. The similarity between grab samples and species was estimated using the Bray-Curtis similarity coefficient. Clusters were built based on similarity matrices using the unconstrained tree routine (UNCTREE); and SIMPROF used to distinguish station groups with significant differences in species composition. The results from cluster analysis were verified by non-metric multidimensional scaling (n-MDS). Clusters revealed by these methods were defined as separate station groups in terms of taxonomical similarity. Shade plots were built to visualize the species abundance and biomass differences between the stations and species in clusters. The Kruskal-Wallis test was used to verify differences in certain taxa occurrences between station groups. Results were corrected using the Tukey's pairwise post-hoc test. Species-individuals accumulation curves were plotted for each station group (McCune, Grace & Urban, 2002; Clarke & Gorley, 2015).

For all species present in any station group, an algorithm estimating the likelihood of accidental catch was applied. If a uniform distribution of species between two sampling efforts A and B is assumed, the probability of species absence at each station of B-sampling would be $(1-P_A)^{N(B)}$, where N(B) is the number of stations in B-sampling and P_A is the species occurrence (the proportion of stations where the species was present) in A-sampling. Using this equation, the likelihood of accidental absence of any species in either station group can be estimated. The number of grabs required for species catch in B-sampling can be calculated by the equation: $n = \lg(\alpha) \lg(1-P_A)^{-1}$, where α is the likelihood of species finding in B-sampling taken as 0.99 (Azovsky, 2018; Vedenin et al., 2019).

For trawl samples, the species rank distributions were plotted. Species richness, Pielou evenness, Hurlbert rarefaction index and Shannon-Wiener diversity index were calculated using

Commented [MC10]: Stat. or Sts I think (as latter is not an abbreviation but former is)

Commented [MC11]: Why use Shannon and Pielou's when the data are more transparently communicated using relative abundance, blomass and richness? What this indices means is never very clear but abundance, blomass and richness are.

Commented [MC12]: Why? Using presence-only is a more transparent and simpler transformation? And actual abundance (or biomass) valuable to compare it with.

180 the taxa-percentage values. Differences between trawl catches were estimated by similarity 181 percentage routine (SIMPER). Statistical analyses were performed in Primer V6, V7 and Past 3.0 software (Clarke & 182 Warwick, 2001; Hammer, 2013; Clarke & Gorley, 2015). 183 184 185 **Results** A total of 289 taxa of benthic macrofauna were identified in grab and trawl samples. In grab 186 samples, density varied in the wide range from 580 ind. m⁻² (St. 5624-3, Control site) to 9880 187 ind. m⁻² (St. seep-3, C15 site). Biomass ranged from 16.28 g ww m⁻² (St. seep-1, C15 site) to 188 405.79 g ww m⁻² (St. 5623-3, *Oden site*). The list of all identified taxa from trawl and grab 189 Commented [MC13]: The list of species seems to be a key finding and thus should be included as a table in the paper samples, with values of abundance and biomass is given in the Supplementary 1. 190 191 Fig. 2. UNCTREE analysis with SIMPROF results (A) and non-metric multidimensional scaling plot (B) 192 Commented [MC14]: All figs and tables should be cited before placed within text 193 of grab stations using the Bray-Curtis similarity index (square root transformed biomass data). Square root transformed biomass data are used. Dashed lines connect statistically unreliable groupings (p 194 **Commented [MC15]:** Perhaps you mean 'samples that were not significantly different at P < 0.05 in species composition'? 195 > 0.05). Green lines indicate SIMPROF groups. 196 **Grab** samples 197 Unconstrained tree with SIMPROF analysis revealed five significantly distinct groups of 198 samples at the similarity level of 50 (Fig. 2). The UNCTREE parameters are shown in 199 Supplementary 2. The groups partly corresponded with the station locations and 200 201 presence/absence of methane seeps (Control, C15 and Oden sites). To avoid a mix-up between Formatted: Font: Italic Formatted: Font: Italic 202 the station groups and seeping sites hereinafter the corresponding names are used with either -Formatted: Font: Italic 203 station group or -site ending. 204 Fig. 3. The species-individuals accumulation curves for the station groups. Colors are the same as in 205 Commented [MC16]: Not cited in text? 206 Figure 2. 207 208 Characteristics of station groups Formatted: Font: 12 pt 209 The Control station group "Control" included three stations located between methane seep sites-210 At all three stations, the (Fig. 1). The bivalve Portlandia arctica was the dominant species by biomass, with at all three stations; the starfish Ctenodiscus crispatus and the bivalve Macoma 211

calcarea also playing an important played a secondary role. Due to the low number of samples,

the species-individuals accumulation curve did not reach an asymptote (Fig. 3). Compared to

other groups, the values of density and species number richness were the lowest at Control,

whereas the evenness was the highest (Fig. 4).

212

213

The C15-seep a station group included five stations, all within the C15 methane seep site. In this group, biomass and diversity values were relatively low. Dominant species in this group were the bivalve Nuculana pernula, the siboglinid Oligobrachia sp. and the polychaete Cistenides hyperborea. Species-individuals accumulation curve in this group reached saturation due to the largest number of samples (Fig. 3).

The C15-seep b station group consisted of only two stations, was characterized by from C15 site. This group demonstrated the highest abundance values and the lowest biomass values owing to high densityabundance of small polychaetes Cossura longocirrata, Micronephthys minuta and Ophryotrocha sp. at some stations (Fig. 4, Supplementary 1).

The *Oden* station group included six stations, all located within the *Oden* methane-seep site. Values of biomass, species number ichness and diversity indices in this group were the highest among all station groups (Fig. 4). The most dominant species were the siboglinid *Oligobrachia* sp. and the other? polychaetes *Myriochele heeri* and *Nephtys ciliata*.

Fig. 4. Univariative characteristics of identified clusters.

Mean values of total density, biomass, species number<u>richness</u>, Pielou evenness, Hurlbert rarefaction index and Shannon-Wiener index with standard deviation are shown. <u>Exact values of these characteristics are shown in Supplementary 3.</u>

In the The last group "Seep Background" there were C15 background contained five stations taken within the C15 site away from methane discharges. Three of these stations (Sts. background-1, 2 and 3) were taken several hundred metres away from active methane seeps. Two stations (5947-1 and 5947-3) were planned as active seep stations but accidentally. Accidentally, they were taken in the seep background area according to taxa composition and elusterfollowing analysis. Taxonomical composition at these stations was similar to that in the Control group, with the bivalve Portlandia arctica being the dominant species. Bivalves Yoldiella lenticula and Y. solidula were subdominant. In this station group, the biomass values were the lowest, other general community characteristics were intermediate (Fig. 4). As with the "Control" group, "Seep Background" C15 background did not reach the saturation point at species-individuals accumulation plot (Fig. 3).

Comparison of seep and non-seep stations station groups

General community characteristics in the station groups appeared different in abundance, biomass and diversity (Fig. 4, Supplementary 3). The abundance of several taxa was significantly different in four station groups (Fig. 5). The Kruskal-Wallis test showed that differences in abundance of at least ten species are statistically reliable (Table 2). Thus, the

Formatted: Font: Italic

Formatted: Font: Italic

Commented [MC17]: SD is biased by the mean, please use 95% CL (ideally) or if not, at least Standard Error

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: 12 pt

Formatted: Font: 12 pt

methaneThe seep sites were characterized by higher density of the polychaetes *Tharyx* sp. and *Cistenides hyperborea*, the bivalve *Macoma calcarea* and the ophiuroid *Ophiocten sericeum*. On the contrary, the bivalve *Portlandia arctica* was markedly more abundant in the *Control* and *Seep*, to a lesser extent, in *C15* background areasstation groups (Fig. 5). Notable arewere extreme densities of small polychaetes at some seep stations, including *Cossura longocirrata* and *Ophtyotrocha* sp. (Fig. 5A)-) at *C15 seep b*.

Fig. 5. Shade plot of species square root transformed abundance (A) and biomass (B) at stations arranged by clusters.

The species list is reduced to 20 most important taxa. Order of stations and colors the same as in Figure 2. Taxa grouped in clusters using UPGMA algorithm based on index of association.

Certain species present at some methane seep sites were completely absent at the non-seep sites (Fig. 5). Among them, at least four species (the polychaete *Spiochaetopterus typicus*, the siboglinid *Oligobrachia* sp., the bivalve *Axinopsida orbiculata* and the amphipod *Pleusymtes pulchellus*) were foundpresent only at *C15* and *Oden sites*. At least one species, the undescribed gastropod *Frigidalvania* sp., was present only at *Oden station group* and absent at *C15*elsewhere (Table 3). The estimated number of grabs required to catch the latter species was slightly lower than the number of grabs taken.

Table 2. Results of the Kruskal-Wallis and Tukey's post-hoc tests for taxa with different abundance values in five station groups. Mean abundance in each station group is shown. Taxa are arranged according to p-value. Taxa with p values lower than 0.05 are marked with plus. Pairs in post-hoc column indicate significant comparisons (Tukey's p < 0.05).

<u>1 – Control</u> group; <u>2 – C15 background</u> group; <u>3 – Oden</u> group; <u>4 – C15-seep a</u> group; <u>5 – C15-seep-b</u> group.

Table 3. Likelihood of not finding a species calculated for species present only at methane seep sites and only at the *Oden* site.

Trawl samples

The overall Bray-Curtis similarity between the two trawls was 66%. Species ranking graphs showed high level of dominance by abundance for both trawl stations (Fig. 6). The most abundant dominant species in both trawls was the ophiuroid *Ophiocten sericeum*: 37% of the total abundance at *C15* and 46% at *Oden*. The second most abundant species at *C15* was the gastropod *Frigidalvania* sp. (12%) and at *Oden* the bivalve *Yoldiella solidula* (11%). Ten most abundant species accounted for >70% of the total abundance unin both trawls (Fig. 6).

 Commented [MC18]: I do not know what this is suggesting?

Commented [MC19]: Was this some statistical test – the wording does not make sense to me

Commented [MC20]: Where is this shown?

Fig. 6. Species ranking for C15 and Oden trawl samples.

The most numerous species are indicated. X-axis is logarithmic.

Species <u>numberrichness</u>. Pielou evenness, Hurlbert rarefaction for 100 individuals and Shannon-Wiener index are shown in Table 4. Diversity <u>appearedwas</u> higher in the *Oden*-trawl than in the *C15*-trawl, similarly as in the grab samples. However, the species <u>numberrichness</u> (as well as the total amount of individuals) in the *C15*-trawl was higher than in the *Oden*-trawl (Table 4, Supplementary 1).

Species responsible for taxonomical difference between the two trawl samples are shown in Table 5. Most notable was a high amount of the gastropod *Frigidalvania* sp. at *C15*. At *Oden Frigidalvania* sp. was also present, but in much smaller densities (only 2.3 % of the total abundance). In addition, *C15*-sample differs from *Oden* by high amount of various filter-feeders including 6 species of sponges (with *Craniella polyura* being most numerous), at least 6 species of cnidarians, 17 species of bryozoans and 3 species of tunicates (Supplementary 1).

At C15 trawl sample, a large piece of carbonate crust was found. Cavities of its pores were inhabited by numerous polychaetes, typical also for the soft sediments around the seepage area (e.g. members of families Nephthyidae, Nereididae, Oweniidae and Terebellidae, see Supplementary 1), and by several filter-feeders (Hydrozoa).

Table 4. Species <u>number ichness</u>, Pielou evenness, Hurlbert rarefaction for 100 individuals and Shannon-Wiener index calculated for trawl samples.

Table 5. Similarity percentage routine for trawl samples.

Species with contribution >0.5% are shown. Species more abundant at C15 are marked with bold.

Comparison of grabC15 and trawl dataOden sites

All gears showed significant differences between the C15 and Oden sites expressed in different taxonomical composition and quantitative characteristics. The Bray-Curtis similarity between the sites according to the grab samples and trawl samples was 26.2 and 65.6, respectively. The main differences werein species composition included the high abundance of the sponge Craniella polyura and the gastropod Frigidalvania sp. at C15 site and higher numbers of the ophiuroid Ophiocten sericeum at Oden site.

The grab data <u>indicateindicated</u> a high level of heterogeneity of benthic fauna on the scale of several meters <u>at both seep-sites</u>. Some species formed patches, for example *Oligobrachia* sp., *Cossura longocirrata* and *Ophryotrocha* sp., being extremely numerous at several grab stations. There were also species with rather uniform distribution based on combined data, for example

Commented [MC21]: Which of the at least 4 measures used is

Commented [MC22]: Biomass?

Commented [MC23]: Numbers for abundance, or is biomass meant?

Commented [MC24]: Key results should be in the paper

Formatted: Normal, Left

Ophiocten sericeum. According to the cluster analysis, the C15 site is more heterogenic forming at least three different species complexes within its area (Fig. 2). Dissimilarity within the C15 and Oden sites was 64.7 and 26, respectively (Supplementary 2).

Dominant species were different in grab and trawl samples. The main dominant species in trawls at both methane seep sites was the ophiuroid *Ophiocten sericeum*. Whereas based on grab data, the main dominants at seep sites were the siboglinid *Oligobrachia* sp., the bivalve *Nuculana pernula* and the polychaete *Myriochele heeri*. In non-seep areas, the main dominant was the bivalve *Portlandia arctica*, based on the only available grab data.

Discussion

Integral community parameters: methane seep vs. non-seep stations

The abundance of macrofauna was higher at the methane—seep stations compared to the background, also. In addition, at the *Oden* site the biomass and diversity werewas higher compared to non-seep sites. Increased values of abundance and biomass have been reported from both hydrothermal vents and cold seeps all over the world. In the Arctic, a twofold increase of biomass compared to control sites was observed at cold seeps south off Svalbard (mean values of 20.7 vs. 9.8 g ww m⁻²), the abundance increase was less prominent (770 vs. 590 ind. m⁻²) (Åström, 2016). For the Håkon Mosby mud volcano, the comparison of abundance and biomass with the background is not available. In our study, the abundance at the methane seep sites *C15* and *Oden* was more than four times higher than at the control. However, differences in biomass although pronounced were not statistically reliable. Among important controls of increased Increased biomass in seep habitats is commonly are discussed an explained by enhanced organic matter content, and habitat heterogeneity and the occurrence of hard substrates (Gebruk et al. 2003; Sen et al. 2018).

TaxaPielou's evenness was distinctly higher at the Control and C15 background station groups, which reflects the increased dominance of certain species at seep stations compared to non-seep. Many authors reported high abundance and biomass values of one to few dominant species at various cold seeps (Gebruk et al. 2003; Åström, 2016; Åström et al., 2018). This can be caused by conditions less favorable for some background species, but more favorable for symbiotrophs or grazers (summarized in Dando, 2010).

The cold seeps usually demonstrate lower diversity values compared to the background areas (Levin, 2005). However, combined species list from grab and trawl samples showed a high

Commented [MC25]: Seep?

Commented [MC26]: Exactly, so one already knows which are dominant and Pielous adds no additional information and is thus redundant; similarly Shannon index is a hybrid of richness and dominance and tells us nothing (despite its popularity)

Commented [MC27]: Clarify which of the many measures is meant

diversity although only two trawls were sampled. Our studies on the Siberian shelf using the same gear under the same conditions obtained less than 150 species per trawl (Galkin & Vedenin, 2015; Vedenin, Galkin & Kozlovsky, 2015), while a total of 203 species were found in a single C15 sample. The unusually high diversity may reflect a higher amount of microniches within the C15 site. This is indirectly confirmed by lower similarity values observed between all C15 grab samples. Higher habitat heterogeneity at seep sites can increase the overall diversity of benthic fauna (Gebruk et al. 2003; Levin, 2005). The scale of heterogeneity is hard to assess, but based on stations coordinates and the fact that stations 5947-1 and 5947-2 from C15-site were grouped in C15 background, while station 5947-2 was grouped as C15-seep a we can assume that the scale is less than 5 m (distance between these stations) (Fig. 1; Table 1).

 In addition, the diversity values at the *Oden* station group were significantly higher than at other sites. The reasons for this are unknown so far, since no environmental parameters measured directly at benthic stations are available. Interestingly, the peculiarly higher values of diversity within the cold seeps are known only for the seep areas in the Arctic, e.g. for the Vestnesa Ridge (Åström et al., 2018) and for the South-Western Barents Sea (Sen et al., 2019b).

Common shelf taxa responsible for differences in station groups

The station groups revealed by UNKTREE and n-MDS analysis largely corresponded to the geographical position of the C15, Oden and control sites. A number of common species widely distributed across the Siberian shelf (see Supplementary 1, Sirenko, 2001) were largely responsible for increased integral community parameters in our study. Most of these taxa are listed in Table 2. Among such species (based on grab samples) were the polychaetes Spiochaetopterus typicus, Cossura longocirrata and Tharyx sp., the bivalve Macoma calcarea, the amphipod Pleusymtes pulchella and the ophiuroid Ophiocten sericeum. In addition, based on trawl data, the sponge Craniella polyura was present in high densities at the C15 sites, together with other filter-feeders including enidarians and bryozoans. Apparently the same species aggregations were visible on the video reported by Baranov et al. (2019). All these species were previously reported from a wide range of areas of the Laptev Sea and adjacent regions (Sirenko et al., 2004).

The increased density of common taxa at deep-sea hydrothermal vents and cold seeps is a well-known phenomenon usually explained by increased availability of organic matter in these habitats (Hessler & Kaharl, 1995; Levin, 2005). In the Arctic, the increased biomass and abundance of common allochthonous species was reported for the Håkon Mosby mud volcano (Rybakova et al., 2013), Svalbard (Åström et al., 2016) and Vestnesa Ridge cold seeps (Åström

Commented [MC281: ?

Commented [MC29]: High if numbers, large if biomass

Commented [MC30]: ?

 $\begin{tabular}{ll} \textbf{Commented [MC31]:} Please be specific, this could be anything from 1 to 100 or more \end{tabular}$

et al., 2018). Also, a significant increase of abundance of filter feeders (especially sponges) was shown for the Aurora Seamount on the Gakkel Ridge, the only investigated hydrothermal vent in the Central Arctic Ocean (Boetius, 2015).

Fig. 7. Taxa found only at seep stations.

A – Oligobrachia sp. (left – tube with several fragments enlarged; center – complete specimen extracted from tube; right – anterior and posterior fragments of the specimen); B – Frigidalvania sp.; C – Ophryotrocha sp. (upper left – several specimens, total view; upper right – anterior fragment; lower – enlarged parapodia); D – Axinopsida orbiculata. Photos by A. Vedenin and V. Kokarev.

Taxa specific for methane seep sites

The most distinctive species of the methane seeps in our study was the siboglinid *Oligobrachia* sp. (Fig. 7a). This species was present at every seep station and absent at every background and control station. This species is morphologically very close to *Oligobrachia haakonmosbiensis* originally described from the Håkon Mosby mud volcano from the depth of ~1200 m (Smirnov, 2000). Colonies of *O. haakonmosbiensis* with the biomass reaching 350 g ww m⁻² were reported from this area (Gebruk et al., 2003). Recent phylogenetical analyses showed that the species from the Laptev Sea belongs to a separate, undescribed species of *Oligobrachia* (Sen et al., 2018). In the Laptev Sea, *Oligobrachia* sp. is known from different localities, seep and noon-seep, occurring in a wide depth range 100-2166 m (Buzhinskaja, 2010). Our record at 63 m is the shallowest for this species, with high population density and biomass: >1000 ind. m⁻² and 45 g ww m⁻² at Sts. 2623-1 and 5953-2- (*Oden* site). Several specimens from 2015-samples (erroneously identified as *O. haakonmosbiensis*) were investigated using transmission electron microscopy (Savvichev et al., 2018). Usually the endosymbionts of siboglinids are represented by sulphide-oxidizing bacteria (Rodrigues et al., 2011; Lee e al., 2019), but here methanotrophic bacteria were found inside its trophosome.

Some samples from the seep sites besides the siboglinids also were marked by several species of molluscs. The gastropod *Frigidalvania* sp. (Rissoidae) occurred in high density at *C15* site: up to 2340 ind. m⁻² and 25 g ww m⁻² at St. 5625-3 (Fig. 7b). According to trawl samples, this species occurs at the *Oden* site, but was low in number. This species is new to science. Large numbers of unknown rissoid gastropods were previously reported from the Håkon Mosby, referred to as *Alvania* sp. in Gebruk et al. (2003). Later, the stable isotope analysis has shown that the rissoids at Håkon Mosby are grazing on bacterial mats (Decker & Olu, 2012). Another rissoid gastropod, *Pseudosetia griegi*, was observed grazing on bacterial mats at the hot vent Loki Castle on the Mohn's Ridge (Sweetman et al., 2013). At the recently investigated Lofoten canyon seep site dense aggregations of unidentified rissoids were observed from ROV (Sen et

Formatted: Indent: First line: 0 cm

Commented [MC32]: By who?

Commented [MC33]: Please be more quantitative, this could be 2 or 100 depending on the context

al., 2019a). Based on the details available from the published photo, we suggest that the gastropods are very likely to belong to genus Frigidalvania, based on the shell shape and rustybrownish periostracum (Sen et al., 2019a, see Fig. 4b). Unfortunately, in our study we were not able to identify the behavior or lifestyle of Frigidalvania sp. This species remained unnoticed in the video data (Baranov et al., 2019). due to its small size (Baranov et al., 2019). However, multiple bacterial mats observed from video-transects and caught by box corer provide an opportunity for such species to graze on them (Savvichev et al., 2018; Baranov et al., 2019). Another species common at seep sites and lacking in the background was the thyasirid bivalve Axinopsida orbiculata- (Fig. 7d). Some species of thyasirids are known as symbiotrophic. However, the information on symbiotic bacteria in the gills of A. orbiculata is controversial: Zhukova, Kharlamenko & Gebruk (1991) have demonstrated the presence of bacteria in bivalve specimens from the Kraternaya Bight, the Kuril Islands, whereas according to Dufour (2005) this species lacks bacterial symbionts. It is possible that A. orbiculata is attracted by increased food availability at seep sites, as may another bivalve, Macoma calcarea, which is also common in seep background areas (Fig. 5). Overall, no bivalves restricted to cold seeps are known so far in the Arctic with the exception of two large thyasirids recently described by a few empty shells (Åström, Oliver & Carroll, 2017) and Pleistocene subfossils (e.g. Archivesica spp., Sirenko et al., 2004; Hansen et al., 2017). The subfossils suggest that previously the Arctic cold seeps (and possibly hydrothermal vents) were inhabited by richer fauna that became extinct after Quaternary glaciation.

431

432

433

434

435

436

437 438

439 440

441

442443

444

445

446

447

448

449 450

451

452

453

454

455

456

457 458

459

460

461

462

463

464

465

There was a notably high density (>3600 ind. m⁻²) of the dorvilleid polychaete *Ophryotrocha* sp. atin one grab stationsample at *C15-seep, b* station group (Supplementary 1 (Fig. 7c)). At least 15 species of *Ophtyotrocha* have been described from reducing habitats (Taboada et al., 2013; Salvo et al., 2014; Ravara et al., 2015), including two species considered as obligate for cold seeps in the Kagoshima Bay, Japan (Miura, 1997). On the other hand, many species of this genus are common in regular marine ecosystems including Arctic seas (Sirenko, 2001).

Another taxon common in reducing habitats is Tanaidacea. In our material three species were present (Supplementary 1), all widely distributed in the Arctic (Sirenko, 2001). The density of tanaids in our samples was low, although this taxon was reported in high densitydensities from the Håkon Mosby (Gebruk et al., 2003) and the Vestnesa Ridge (Åström et al., 2018) with several species (described as new) restricted to the methane seep habitats (Błażewicz-Paszkowycz and Bamber, 2011). It seems likely that many species of tanaids remain unidentified and diversity in this taxon remains underestimated owing to difficulties of identification of these small crustaceans (summarized by Błażewicz-Paszkowycz & Bamber, 2011). The low number of

Commented [MC34]: Which is it, seep or background (previously used as synonymous with control)

Commented [MC35]: How can one assume from dead shells that a living species is associated with a site? Surely dead shells tell us very little except that one time in the past that the species existed in the region and could have lived or been transported there?

Commented [MC36]: Similarly how can it be known that a fossil was living ina cold seep?

Commented [MC37]: What is the logic here, needs more explanation and rationale or omit such speculation

Formatted: Font: Italic

tanaids in our samples could be a result of a too large sieve mesh size used onboard (see Materials & Methods). Tanaids commonly are < 0.5 mm in size and require a corresponding mesh size to be found (Pavithran et al., 2009).

Overall, considering grab and trawl data combined, all the seep-specific taxa were the same at both seep sites. The only exception is the polychaete *Ophryotrocha* sp., which could be missed from the *Oden* trawl sample due to the large sieve mesh size (Supplementary 1).

Presence of specific benthic communities at C15 and Oden

Up to now no distinct macrofaunal changes in response of macrofauna—to methane seeps waswere reported infrom the Arctic Ocean at depths < 80 m. In general, at depths < 200 m both hydrothermal vents and cold-seeps are usually are colonized by a subset of the local fauna (Tarasov et al., 2005; Dando, 2010). Some species notable at shallow-water methane seeps belong to opportunistic taxa common in various reducing habitats. These include siboglinid polychaetes and thyasirid bivalves reported from Skagerrak, Kattegat, coastal areas of Florida, Japan, New Zealand, New Guinea etc. (Southward & Culter, 1986; Schmaljohann & Flügel, 1987; Schmaljohann et al., 1990; Malakhov, Obzhirov & Tarasov, 1992; Gebruk, 2002). The isotope data suggest that food sources of macrofauna at shallow-water methane seeps are largely photosynthesis-based (Levin, 2005). It was suggested that the faunistic depth boundary between the deep-sea and shallow-water vents and seeps at approximately 200 m is controlled by the amount of POCorganic matter input from the photosynthetic production (decreasing below the photic zone) and the greater number of predators at shallow depths. Definite seep-obligate species were not reported from depths < 200 m (Tarasov et al., 2005; Dando, 2010).

At the same time, methane seep habitats even at shallow depths increase a number of microniches owing to increased organic matter availability, variety of substrates and repeated disturbance (Dando, 2010). Shallow cold-seeps thus may therefore support greater species diversity compared to the background or attract species specialists to reducing habitats. In our study at both methane seep sites, C15 and Oden, community characteristics were significantly different from those in non-seep areas, largelyamong other things owing to presence of obligate species to toreducing habitats. In addition, the communities found at C15 site formed several clusters station groups and were more scattered at the n-MDS plot (Fig. 2A, B) which could indicate a larger diversity of microniches within this site. Large numbers of filter-feeders (Hydrozoa and Bryozoa) found in C15-trawl indicated the presence of hard substrata (including carbonate crusts). The larger amount of microniches is partly supported by the video-data, where

Commented [MC38]: What is this sweeping general statement based on? One paper? One study site or location?

Commented [MC39]: By who?

Commented [MC40]: Food sources? Or sediments?

Commented [MC41]: Richness?

the landscape within the active seepages was more complex than in non-seep areas (Flint et al., 2018; Baranov et al., 2019).

WeUnfortunately, no environmental data except for the echo-sounding showing certain gas flares and CTD-measurements obtained from the area of the seeps from two points away from the benthic samples were available (Flint et al., 2018; Baranov et al., 2019). Nevertheless, we suggest that the observed reactionresponse of macrofauna to methane seeps at the shallow depths of 60-70 m iscan be related to very low primary productivity on the outer shelf of the Laptev Sea, dropping from ~15mgC720mg C m⁻³² per day at 400 km from the Lena river delta to 3.53<100 mg C m⁻³² per day at 600 km (Fahl & Stein, 1997; Sukhanova et al., 2017; Flint et al. 2018). Sorokin & Sorokin, 1996) during September. Outside the short Arctic summer months, these values tend to zero. In these extremely oligotrophic conditions, methane is a source of energy for the methane-oxidizing bacteria and stimulates the development of local patchy benthic communities at these depths. As a comparison, the specific communities with siboglinids around Svalbard located at similar latitude are developed only at depths >200 m (Åström et al., 2016). Unlike the Laptev Sea shelf, the primary production south and west off Svalbard reaches much higher values up to 1800 mg C m⁻² per day during May blooms (Wassman et al., 2006). Furthermore, the Barents Sea remains uncovered with ice during most of the year, while the <u>Laptev Sea shelf is ice-free during one to two months annually.</u>

Commented [MC42]: Emissions?

Commented [MC43]: What is a point in metres?

Formatted: English (United States)

Conclusions

499

500

501

502

503

504

505 506

507

508 509

510 511

512

513

514 515

516

517

518

519520

521 522

523

524 525

526

527 528 Our study is the first description of shallow-water (< 100 m) methane seep communities in the Siberian Arctic. On the northern Laptev Sea shelf, significant differences were found between two methane seep sites (C15 and Oden, located at depths of 63-73 m) and the background areas. The differences included integral community parameters and presence at seep sites of species specialists totypical for reducing habitats, such as siboglinids Oligobrachia sp. and thyasirid bivalves.- Several species at methane seeps are presumably new to science, including the gastropod Frigidalvania sp. and the polychaete Ophryotrocha sp., found in large quantities at C15 site. We suggest that the reaction of macrofauna to methane seeps at shallow depths is related to very low primary productivity on the outer shelf of the Laptev Sea.

529 Acknowledgements

The authors would like to thank the Captain, crew members and shipboard parties of the RV Akademik Mstislav Keldysh for multiple help with the work onboard during the 63, 69 and 72

expeditions. Our special thanks to Dr. Michael Flint for organizing the expeditions and for informative discussions. We also thank Dr. Alexander Basin, Dr. Alexey Udalov and Dr. Elena Krylova for help in identifying molluscs and crustaceans. This work was partly funded by RFBR Grants <u>1518</u>-04-0187000206, 18-05-60053, 18-05-60228 and the State assignment of IORAS (theme No 0149-2019-0009).

References

538 539

- Åström, E. K., Carroll, M. L., Ambrose Jr, W. G., & Carroll, J. (2016). Arctic cold seeps in marine methane hydrate environments: impacts on shelf macrobenthic community structure offshore Svalbard. Marine Ecology Progress Series, 552, 1-18.
- Åström, E. K., Oliver, P. G., & Carroll, M. L. (2017). A new genus and two new species of
 Thyasiridae associated with methane seeps off Svalbard, Arctic Ocean. Marine Biology
 Research, 13(4), 402-416.
- Åström, E. K., Carroll, M. L., Ambrose Jr, W. G., Sen, A., Silyakova, A., & Carroll, J.
 (2018). Methane cold seeps as biological oases in the high-Arctic deep sea. Limnology and
 Oceanography, 63(S1), S209-S231.
- Azovsky, A.I. (2018) Analysis of long-term biological data series: methodological problems
 and possible solutions. J Gene Biol (Moscow) 79:329–341 [in Russian]
- 550 S. Baker, E. T., & German, C. R. (2004). On the global distribution of hydrothermal vent fields.
 551 Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans,
 552 Geophys. Monogr. Ser, 148, 245-266.
- 6. Baranov B., Galkin S., Vedenin A., Dozorova K., Gebruk A., Flint M. 2019. Methane seeps
 on the outer shelf of the Laptev Sea: characteristic features, benthic fauna and structural
 control. Geophysical Research Letters. [in press]
- Błażewicz-Paszkowycz, M., & Bamber, R. N. (2011). Tanaidomorph Tanaidacea (Crustacea:
 Peracarida) from mud-volcano and seep sites on the Norwegian Margin. Zootaxa, 3061, 1-35.
- 8. Boetius, A. (2015). The expedition PS86 of the Research Vessel POLARSTERN to the Arctic Ocean in 2014. Berichte zur Polar-und Meeresforschung = Reports on polar and marine research, 685, 1-132.
- 9. Brotskaya, V., Zenkevich, L., 1939. Quantitative account of the Barents Sea benthic fauna.
 Trudy VNIRO, 4, 55-120. [in Russian]
- 10. Buzhinskaja, G. N. (2010). Illustrated keys to free-living invertebrates of Eurasian Arctic seas
 and adjacent deep waters. Nemertea, Cephalorincha, Oligochaeta, Hirudinea, Pogonophora,
 Echiura, Sipuncula, Phoronida and Brachiopoda, 2. 186 p.
- 11. Clarke, K.R., Warwick, R.M., 2001. Changes in Marine Communities: An Approach to
 Statistical Analysis and Interpretation (2nd ed.). PRIMER-E, Plymouth
- 12. Clarke, K. R., Gorley, R. N. (2015). Getting started with PRIMER v7. PRIMER-E: Plymouth,
 Plymouth Marine Laboratory.
- 13. Dando, P.R., 2010. Biological communities at marine shallow-water vent and seep sites. In:
 Kiel S. (Ed.) The Vent and Seep Biota, Springer, Dordrecht, pp. 333-378.
- 572 14. Van Dover, C. (2000). The ecology of deep-sea hydrothermal vents. Princeton University 573 Press.
- 574 15. Decker C., & Olu K. (2012). Habitat heterogeneity influences cold-seep macrofaunal 575 communities within and among seeps along the Norwegian margin – Part 2: contribution of 576 chemosynthesis and nutritional patterns. Marine Ecology, 33(2), 231-245.
- 577 <u>15.16.</u> Dufour, S. C. (2005). Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. The Biological Bulletin, 208(3), 200-212.
- 579 16.17. Eleftheriou A., McIntyre A. (2005). Methods for the study of Marine benthos. 3rd edn.
 580 Blackwell Science, Oxford, UK. 418 p.
- 17. Fahl, K., & Stein, R. (1997). Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input. Organic Geochemistry, 26(5), 379-390.
- 18. Flint M., Arashkevich E., Artemyev V., Baranov B., Bezzubova E., Belevich T., ... &
 Shchuka S.A. Ecosystems of seas of Siberian Arctic. Materials of expeditionary research of

- 586 2015 and 2017. P.P. Shirshov Institute of oceanology, RAS. Moscow: 2018. 232 p. [in 587 Russianl
- 588 Galkin, S. V., & Vedenin, A. A. (Flint M.V., Poyarkov S.G., Rimsky Korsakov N.A. Miroshnikov A.Yu. (2019) Ecosystems of Siberian Arctic Seas 2018 (72 th cruise of 589 590 research vessel "Akademik Mstislav Keldish") Oceanology 59(3) [in press]
- 591 19. 2015). Macrobenthos of Yenisei Bay and the adjacent Kara Sea shelf. Oceanology, 55(4), 592 606-613.
- 593 20. Gebruk A.V. Biology of hydrothermal vents. Moscow, KMK-Press, 2002. 543 p. [in Russian]
- 594 21. Gebruk, A. V., Krylova, E. M., Lein, A. Y., Vinogradov, G. M., Anderson, E., Pimenov, N. V., ... & Crane, K. (2003). Methane seep community of the Håkon Mosby mud volcano (the 595 596 Norwegian Sea): composition and trophic aspects. Sarsia, 88(6), 394-403.
- 22. Hammer, Ø. 2013. PAST. Paleontological Statistics. Version 3.10. Reference manual. Natural 597 598 History Museum. University of Oslo.
- 599 Hansen, J., Hoff, U., Sztybor, K., & Rasmussen, T. L. (2017). Taxonomy and palaeoecology 600 of two Late Pleistocene species of vesicomyid bivalves from cold methane seeps at Svalbard 601 (79° N). Journal of Molluscan Studies, 83(3), 270-279.

- 23.24. Hessler, R.R., Kaharl, V.A., 1995. The deep-sea hydrothermal vent community: an 603 overview. Seafloor hydrothermal systems. In: Humphris, S.E., Zierenberg, R.A., Mullineaux, 604 L.S.., Thomson, R.E. (Eds.), Geophysical Monograph, vol. 91. American Geo-physical 605 Union, pp. 72–84.
- 606 25. Lee, D. H., Kim, J. H., Lee, Y. M., Jin, Y. K., Paull, C., Kim, D., & Shin, K. H. (2019). 607 Chemosynthetic bacterial signatures in Frenulata tubeworm Oligobrachia sp. in an active mud 608 volcano of the Canadian Beaufort Sea. Marine Ecology Progress Series, 628, 95-104.
- 609 Levin, L. A. (2005). Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In Oceanography and Marine Biology (pp. 11-56). CRC Press. 610
- Lobkovsky, L. I., Nikiforov, S. L., Ananiev, R. A., Khortov, A. V., Semiletov, I. P., 611 612 Jakobsson, M., & Dmitrievskiy, N. N. (2015). Recent geological-geomorphological processes on the east Arctic shelf: Results of the expedition of the icebreaker Oden in 2014. 613 614 Oceanology, 55(6), 926-929.
- 26.28. Malakhov, V. V., Obzhirov, A. I., & Tarasov, V. G. (1992). Pogonophoran genus 615 616 Siboglinum in relation to zones of high concentrations of methane. Doklady Akademii Nauk, 135, 195-197. [in Russian] 617
- 618 McCune, B., Grace, J.B., Urban, D.L., 2002. Analysis of Ecological Communities. Vol. 619 Mjm Software Design., Gleneden Beach, Oregon, p. 28.
- 28.30. Miura, T. (1997). Two new species of the genus *Ophryotrocha* (Polychaeta, Iphitimiidae) 620 621 from Kagoshima Bay. Bulletin of Marine Science, 60(2), 300-305.
- 622 Paull, C. K., Dallimore, S. R., Caress, D. W., Gwiazda, R., Melling, H., Riedel, M. 623 Sherman, A. (2015). Active mud volcanoes on the continental slope of the C anadian B 624 eaufort S ea. Geochemistry, Geophysics, Geosystems, 16(9), 3160-3181.
- 625 29.32. Pavithran, S., Ingole, B., Nanajkar, M., & Goltekar, R. (2009). Importance of sieve size 626 in deep-sea macrobenthic studies. Marine Biology Research, 5(4), 391-398.
- 30.33. Ravara, A., Marçal, A. R., Wiklund, H., & Hilário, A. (2015). First account on the 627 628 diversity of Ophryotrocha (Annelida, Dorvilleidae) from a mammal-fall in the deep-Atlantic Ocean with the description of three new species. Systematics and biodiversity, 13(6), 555-629 630
- 631 34. Rodrigues, C. F., Hilário, A., Cunha, M. R., Weightman, A. J., & Webster, G. (2011). 632 Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud volcanoes in the 633 Gulf of Cadiz (NE Atlantic). Antonie Van Leeuwenhoek, 100(1), 83-98
- 31.35. Rybakova, E., Galkin, S., Bergmann, M., Soltwedel, T., & Gebruk, A. (2013). Density 634 and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on 635 636 image analysis. Biogeosciences, 10, 3359-3374.

- 637 32.36. Salvo, F., Wiklund, H., Dufour, S. C., Hamoutene, D., Pohle, G., & Worsaae, K. (2014).
 638 A new annelid species from whalebones in Greenland and aquaculture sites in Newfoundland:
 639 Ophryotrocha cyclops, sp. nov.(Eunicida: Dorvilleidae). Zootaxa, 3887(5), 555-568.
- 33.37. Savvichev A.S., Rusanov I.I., Yusupov S.K., Pimenov N.V., Lein A.Y., & Ivanov M.V.
 2004. The biogeochemical cycle of methane in the coastal zone and littoral of the
 Kandalaksha Bay of the White Sea. Microbiology, 73(4), 457-468.
- 38. Savvichev, A. S., Kadnikov, V. V., Kravchishina, M. D., Galkin, S. V., Novigatskii, A. N.,
 Sigalevich, P. A., ... & Flint, M. V. (2018). Methane as an organic matter source and the
 trophic basis of a Laptev Sea cold seep microbial community. Geomicrobiology journal,
 35(5), 411-423.
- 54.39. Schmaljohann, R., & Flügel, H. J. (1987). Methane-oxidizing bacteria in Pogonophora.
 Sarsia, 72(1), 91-98.
- 35.40. Schmaljohann, R., Faber, E., Whiticar, M. J., & Dando, P. R. (1990). Co-existence of
 methane-and sulphur-based endosymbioses between bacteria and invertebrates at a site in the
 Skagerrak. Marine Ecology Progress Series, 61, 119-124.

652

653 654

655

663

664

665

666

669

670

671 672

673

674

- 36.41. Sen A., Duperron S., Hourdez S., Piquet B., Le'ger N., Gebruk A., Le Port A.S., Svenning M.M., & Andersen A.C. (2018) Cryptic frenulates are the dominant chemosymbiotrophic fauna at Arctic and high latitude Atlantic cold seeps. PLoS ONE, 13(12): e0209273.
- 42. Sen A., Himmler T., Hong W.L., Chitkara C., Lee R.W., Ferré B., ... & Knies J. (2019a).
 Atypical biological features of a new cold seep site on the Lofoten-Vesterålen continental
 margin (northern Norway). Scientific reports, 9(1), 1762.
- 43. Sen, A., Chitkara, C., Hong, W. L., Lepland, A., Cochrane, S., di Primio, R., & Brunstad, H.
 (2019b). Image based quantitative comparisons indicate heightened megabenthos diversity
 and abundance at a site of weak hydrocarbon seepage in the southwestern Barents Sea. *PeerJ*,
 7, e7398.
 - 37.44. Shakhova, N., Semiletov, I., Sergienko, V., Lobkovsky, L., Yusupov, V., Salyuk, A., ... & Nicolsky, D. (2015). The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2052), 20140451.
- 38.45. Sirenko, B. I. (2001). List of species of free-living invertebrates of Eurasian Arctic seas
 and adjacent deep waters. Explorations of the fauna of the seas, 51(59), 5-131.
 - 39.46. Sirenko B., Denisenko S., Deubel H., & Rachor E. (2004). Deep water communities of the Laptev Sea and adjacent parts of the Arctic Ocean. Fauna and the ecosystems of the Laptev Sea and adjacent deep waters of the Arctic Ocean. Explorations of the fauna of sea, 54(62), 28-73.
 - 40.47. Smirnov, R. V. (2000). Two new species of Pogonophora from the arctic mud volcano off northwestern Norway. Sarsia, 85(2), 141-150.
- 48. Sorokin, Y. I., & Sorokin, P. Y. (1996). Plankton and primary production in the Lena River
 estuary and in the south-eastern Laptev Sea. *Estuarine*, *Coastal and Shelf Science*, 43(4), 399 418.
- 678 41.49. Southward, E. C., & Culter, J. K. (1986). Discovery of Pogonophora in warm shallow waters of the Florida Shelf. Marine Ecology Progress Series, 28, 287-89.
- 42. Sukhanova, J. N., Flint, M. V., Georgieva, E. J., Lange, E. K., Kravchishina, M. D., Demidov,
 A. B., ... & Polukhin, A. A. (2017). The structure of phytoplankton communities in the
 eastern part of the Laptev Sea. Oceanology, 57(1), 75-90.
- 43.50. Sweetman, A. K., Levin, L., Rapp, H. T., & Schander, C., 2013. Faunal trophic structure
 at hydrothermal vents on the southern Mohn's Ridge, Arctic Ocean. Marine Ecology Progress
 Series, 473, 115-131.
- Taboada, S., Wiklund, H., Glover, A. G., Dahlgren, T. G., Cristobo, J., & Avila, C.
 (2013). Two new Antarctic *Ophryotrocha* (Annelida: Dorvilleidae) described from shallow-water whale bones. Polar Biology, 36(7), 1031-1045.

Formatted: German (Germany)

Formatted: German (Germany)

- 45.52. Tarasov, V. G., Gebruk, A. V., Mironov, A. N., & Moskalev, L. I. (2005). Deep-sea and
 shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology,
 224(1-3), 5-39.
- 53. Vedenin, A. A., Galkin, S. V., & Kozlovskiy, V. V. (2015). Macrobenthos of the Ob Bay and
 adjacent Kara Sea shelf. Polar Biology, 38(6), 829-844.
- 46.54. Vedenin, A., Mokievsky, V., Soltwedel, T., & Budaeva, N. (2019). The temporal variability of the macrofauna at the deep-sea observatory HAUSGARTEN (Fram Strait, Arctic Ocean). Polar Biology, p. 1-14. doi.org/10.1007/s00300-018-02442-8.
- 55. Wassmann, P., Reigstad, M., Haug, T., Rudels, B., Carroll, M. L., Hop, H., ... & Slagstad, D.
 (2006). Food webs and carbon flux in the Barents Sea. Progress in Oceanography, 71(2-4),
 232-287.
- 47.56. Yusupov, V. I., Salyuk, A. N., Karnaukh, V. N., Semiletov, I. P., & Shakhova, N. E.
 (2010). Detection of methane ebullition in shelf waters of the Laptev Sea in the Eastern Arctic
 Region. In: Doklady Earth Sciences (Vol. 430, No. 2, pp. 261-264). MAIK
 Nauka/Interperiodica.
- 704 48.57. Zhukova, N.V., V.I. Kharlamenko & Gebruk A.V., 1991. Fatty acids of *Axinopsida orbiculata* potential for detection of symbiosis with chemoautotrophic bacteria. In, Shallow
 706 Water Vents and Ecosystem oJ Kraternaya Bight (Volcano Ushishir. Kurile Islands), Vol. 1,
 707 Functional Characteristics, Part 11, Vladivostok, in press. [In Russian].