
Submitted 22 January 2020
Accepted 28 March 2020
Published 22 April 2020

Corresponding author
Cecilia Conaco,
cconaco@msi.upd.edu.ph

Academic editor
Joseph Pawlik

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.9017

Copyright
2020 Baquiran et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Population structure and microbial
community diversity of two common
tetillid sponges in a tropical reef lagoon
Jake Ivan P. Baquiran, Michael Angelou L. Nada, Niño Posadas,
Dana P. Manogan, Patrick C. Cabaitan and Cecilia Conaco
Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines

ABSTRACT
Sponges are predicted to dominate future reef ecosystems influenced by anthropogenic
stressors and global climate change. The ecological success of sponges is attributed
to their complex physiology, which is in part due to the diversity of their associated
prokaryotic microbiome. However, the lack of information on the microbial commu-
nity of many sponge species makes it difficult to gauge their interactions and functional
contributions to the ecosystem. Here, we investigated the population dynamics and
microbial community composition of two tetillid sponges identified as Cinachyrella sp.
and Paratetilla sp., which are common on coral bommies in a reef lagoon in Bolinao,
northwestern Philippines. The sponges ranged in size from 2.75 ± 2.11 to 6.33 ± 3.98
cm (mean ± standard deviation) and were found at an average density of 1.57 ± 0.79
to 4.46 ± 3.60 individuals per sq. m. on the bommies. The tetillid sponge population
structure remained stable over the course of four years of monitoring. Prokaryotic
communities associated with the sponges were distinct but had overlapping functions
based on PICRUSt2 predictions. This convergence of functions may reflect enrichment
of metabolic processes that are crucial for the survival of the tetillid sponges under
prevailing conditions in the reef lagoon. Differentially enriched functions related to
carbon, sulfur, fatty acid, and amino acid metabolism, cellular defense, and stress
response, may influence the interactions of tetillid sponges with other biota on the
bommies.

Subjects Ecology, Marine Biology, Microbiology
Keywords 16S rRNA, Sponge-associated microbes, Moon sponge, Coral bommies, Cinachyrella,
Paratetilla

INTRODUCTION
Sponges (phylumPorifera) are a diverse group of sessile, filter-feeding invertebrate animals.
They are a major component of benthic ecosystems and are responsible for many ecological
processes, such as ecosystem structuring via reef consolidation and bio-erosion (Bell, 2008).
Sponges link the whole reef system through the ‘sponge loop’ whereby dissolved organic
matter released by benthic primary producers is made available to higher trophic levels in
the formof particulate detritus (De Goeij et al., 2013). Sponges are also consumed as food by
some spongivores (e.g., parrotfishes, angelfishes) (Wooster, Marty & Pawlik, 2016) and they
offer refuge for juvenile commensal invertebrates (Ribeiro, Omena & Muricy, 2003), reef
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fish recruits (Cabaitan, Gomez & Yap, 2016), and othermacroflora (Di Camillo et al., 2017).
Sponges are predicted to be winners under future ocean conditions brought about by

the changing climate (Bell et al., 2013). Although studies to date are limited to a few species,
some sponges have been shown to have lower sensitivity to elevated seawater temperature
and ocean acidification, while others appear to benefit from the combined effects of these
stressors (Bell et al., 2018). For example, sponge populations in Brazil remained stable
even under elevated seawater temperatures brought by the El Niño Southern Oscillation
event (Kelmo, Bell & Attrill, 2013). Exposure of other sponge species to combined ocean
warming and acidification showed no effect on growth, survival, or secondary metabolite
production (Duckworth et al., 2012). In fact, the bioeroding sponge, Cliona orientalis, even
exhibited increased biomass and faster bioerosion rates under these conditions (Fang et
al., 2013). The tolerance of sponges to environmental adversities might be attributed to the
host, as well as to their associated prokaryotic symbionts.

Sponges are holobionts that are associated with a diverse array of microorganisms
(Thomas et al., 2016). These symbionts are essential for nutrition, immunity, defense,
and reproduction of the sponge host (Reiswig, 1975; Pita et al., 2018). Sponge-associated
prokaryotes are predicted to have the capability for a wide range of metabolic processes,
including photosynthesis, nitrogen fixation, ammonium oxidation, sulfate reduction,
and sulfur oxidation (Hoffman et al., 2005; Pita et al., 2018; Feng & Li, 2019). The diverse
microbial community in spongesmay contribute to the ecological adaptability and plasticity
of the holobiont, allowing it to thrive even in perturbed environments (Erpenbeck et al.,
2016; Bang et al., 2018). However, the stability of sponge microbial communities can
vary among host species and under different environmental conditions. For example,
the microbiomes of Cymbastela stipitata and Gelliodes obtusa remained stable even under
eutrophication stress (Luter, Gibb & Webster, 2014; Baquiran & Conaco, 2018). Similarly,
the microbiome of the Great Barrier Reef sponge, Rhopaloeides odorabile, did not change
under eutrophication and elevated temperature conditions (Simister et al., 2012). On
the other hand, raising seawater temperature past its tolerance threshold disrupted
the microbiome of C. orientalis (Ramsby et al., 2018). Light attenuation treatments
mimicking the effect of dredging activities also caused a shift in the bacterial community
of phototrophic sponges but did not affect heterotrophic sponges (Pineda et al., 2016).

While next-generation sequencing approaches have begun to uncover the diversity
of sponge associated prokaryotes, the lack of baseline data on the microbial community
composition of most sponge species makes it difficult to assess the interactions between
microbes and their hosts, as well as the functional contributions of marine sponges at larger
ecological scales. This emphasizes the need to better understand the diversity of sponges
and sponge-associated microbes and to identify microbially-driven functions in sponges
to gain a more comprehensive understanding of the processes within the sponge holobiont
that bear implications on ecosystem functions and biogeochemical cycles.

Tetillid sponges are classified under family Tetillidae of order Tetractinellida, class
Demospongiae. They generally possess a globular morphology with crater-like depressions
(Rützler & Smith, 1992) and are commonly referred to as ‘‘moon sponges’’ (Chambers et
al., 2013; Santodomingo & Becking, 2018). The pronounced circular configuration of their
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megascleres, minimal basal attachment, and almost solid spicule core allow tetillid sponges
to inhabit environments that are influenced by frequent disturbances (Byrne, 1987).
Tetillids serve as important structural constituents of reef systems where they provide
habitats and other functions for many organisms (McDonald, Hooper & McGuinness,
2002; Van Soest & Rutzler, 2002). Tetillid sponges are a challenge to identify visually in
the field, particularly for individuals from closely related taxa or from cryptic sympatric
populations (Szitenberg et al., 2013). However, studies have shown that these sponges may
be differentiated based on their distinct microbial community compositions (Chambers et
al., 2013; Cuvelier et al., 2014).

This present work aims to elucidate the population density, size frequency distribution,
and prokaryotic microbial community composition of common tetillid sponges on coral
bommies in a tropical reef lagoon in Bolinao, northwestern Philippines. This site is
influenced by multiple stressors, including rising sea surface temperatures, increased
precipitation, and frequent typhoons (Dado & Takahashi, 2017; Fang et al., 2006; Peñaflor
et al., 2009). Nutrient loading due to submarine groundwater discharge and nutrient
plumes extending from a nearby mariculture zone is also a persistent condition (San
Diego-McGlone et al., 2008; Senal et al., 2011; Udarbe-Walker & Magdaong, 2003). The
combined effect of these stressors has resulted in several bleaching events that has led to
reduced live coral cover (Cabaitan, Gomez & Yap, 2016; Gurney et al., 2013), yet sponges
like the tetillids are prevalent in the area.

MATERIAL AND METHODS
Study site
The study was conducted on five coral bommies (Fig. S1) within the lagoon of the Santiago
reef flat in Bolinao, northwestern Philippines (B15: 16◦25′50.7′′N, 119◦55′02.1′′E; B16:
16◦25′50.6′′N, 119◦55′07.9′′E; B19: 16◦25′47.8′′N, 119◦55′14.1′′E; B21: 16◦25′48.6′′N,
119◦55′21.0′′E; B22: 16◦25′50.2′′N, 119◦55′24.5′′E). The bommies range from 20 to 60 m
in diameter and are distributed across a distance of about 500 m. The bommies are located
about 200 m north from a populated area on Santiago Island and about 400 m south of
the unpopulated side of Silaqui Island. To the west of the bommies is the South China Sea
or West Philippine Sea while to the east is the Lingayen Gulf. The bommies are 7–10 km
from the mariculture zone in the Guiguiwanen channel to the south of Santiago Island.
The organic matter and nutrient-enriched plume from this zone can be driven by currents
around Santiago Island towards the lagoon where the bommies are located (Udarbe-Walker
& Magdaong, 2003). In addition, submarine groundwater discharge may be a significant
source of nutrients in the reef flat (Senal et al., 2011).

Field surveys
A transect was laid at the base around each bommie about ameter above the sandy substrate.
A 1 sq. m. quadrat was placed every 2 m along each transect. All tetillid individuals found
inside each quadrat were counted and photographed. Sponge sizes were determined from
the images using Coral Point Count with Excel extensions or CPCe (Kohler & Gill, 2006).
Field surveys were conducted in May 2016, August 2017, September 2018, and July 2019.
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A separate field survey was conducted in September 2019 where small tissue cores were
taken from all tetillid sponges within each quadrat to estimate the abundance of species
based on their characteristic internal tissue color.

Measurement of environmental parameters
Environmental parameters were collected at set points around the bommies during each
field survey event. A multi-parameter meter (YSI Pro2030) was used to collect information
on temperature, dissolved oxygen (DO), and salinity, while a pH meter (SevenGo Mettler
Toledo)was used tomeasure pH.Total suspended solids (TSS)was determined by collecting
500 ml of seawater from the sites, which were filtered through cellulose nitrate membrane
filters (0.45 µm pore size, Whatman) that were then oven dried at 70 ◦C. The initial mass
of the filter was subtracted from the mass after oven drying to obtain an estimate of the
TSS among sites. Sedimentation rates were determined using sediment traps. The traps
were deployed at the bommies at a depth of around 2 m. After 24 h, the contents of each
trap were collected onto combusted, pre-weighed Whatman GF/F filters. Filters were dried
at 60 ◦C to constant weight. Sedimentation rates were computed following the methods
of English, Wilkinson & Baker (1997). To determine water turbulence, 8 pre-weighed clod
cards were placed at each bommie for 24 h and the percent difference in the dry weight of
the clod cards before and after deployment was computed (Doty, 1971).

Tetillid sponge characterization
The sponges were characterized in terms of external morphology. Spicule types were
determined by bleach digestion followed by microscopic examination (Hooper, 2003).
Tissue sections were prepared to examine the sponge skeleton structure. Diagnostic
characters were matched to descriptions in the Thesaurus of Sponge Morphology (Boury-
Esnault & Rützler, 1997), Systema Porifera (Hooper & Van Soest, 2002) and the work of
Santodomingo & Becking (2018) to verify sponge identities.

Mitochondrial cytochrome oxidase 1 (CO1) gene sequencing was conducted to
complement traditional morphological characters and to facilitate species identification.
Genomic DNA was extracted using the PowerSoil DNA Extraction Kit (MO BIO)
following the manufacturer’s protocol. Amplification of the CO1 gene was done using
the primers LCO1490 (Folmer et al., 1994) and COX1 R1 (Rot et al., 2006). The 25 µl PCR
mix consisted of 1x PCR buffer (20 mM Tris-HCl pH 8.4, 50 mM KCl), 3 mM MgCl2, 0.2
mM dNTPs, 0.4 µM each of forward and reverse primers, 1 unit Taq DNA polymerase
(Invitrogen), and 30 ng of DNA. PCR amplification was conducted on a T100 Thermal
Cycler (Bio-Rad, Munich, Germany) with an initial denaturation phase of 5 min at 94 ◦C,
followed by 40 cycles of denaturation for 1 min at 94 ◦C, annealing for 1.5 min at 50 ◦C,
elongation for 1.5 min at 72 ◦C, and a final elongation for 10 min at 72 ◦C (Schuster et
al., 2017). Amplicons of ∼1,500 bp or ∼2,000 bp were gel-purified using the PureLink
Quick Gel Extraction Kit (Invitrogen). Purified PCR products were sent to Macrogen Inc.,
South Korea, for direct sequencing. Sequences were aligned using ClustalW (Thompson,
Higgins & Gibson, 1994) and trimmed using Gblocks (Castresana, 2000). Phylogenetic tree
rendering using Bayesian inference was done using MrBayes v3.2.7a (Ronquist et al., 2012).
Other CO1 sequences were obtained from Szitenberg et al. (2013).
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Tissue sampling and DNA extraction
Six individuals each of Cinachyrella sp. and Paratetilla sp. were collected from the
easternmost (bommie 22) and westernmost (bommie 15) bommies in December 2016
and April 2017. These bommies were selected because they were farthest away from each
other. Sponge sampling was conducted with permission from the Philippines Department
of Agriculture Bureau of Fisheries and Aquatic Resources under Gratuitous Permit No.
0125-17 and 0169-19. Sponges were sliced and fragments were washed with sterile seawater
to remove any foreign macroscopic debris. To eliminate planktonic or loosely attached
microorganisms and detritus, the cleaned fragments were rinsed with sterile calcium
magnesium-free seawater (CMFSW) on a platform shaker at maximum speed for 10 min.
After washing, fragments were further cut into ∼0.5 g pieces and total DNA was extracted
using PowerSoil DNA Extraction kit (MO BIO) following the manufacturer’s protocol.
Quality of extracted DNA was checked by agarose gel electrophoresis and concentration
was determined using a Nanodrop spectrophotometer prior to 16S rRNA gene sequencing.

Sequencing and microbial community analysis
Total genomic DNA extracted from 12 tetillid sponge samples (3 biological replicates
per species per timepoint) were sent to Macrogen Inc., South Korea, for sequencing
on the Illumina MiSeq platform. The V3–V4 region of the prokaryotic 16S rRNA
gene was amplified using the primers Bakt_341F (5′-CCTACGGGNGGCWGCAG-3′)
and Bakt_805R (5′-GACTACHVGGGTATCTAATCC-3′) (Herlemann et al., 2011). Raw
sequence data were deposited in the NCBI Sequence Read Archive and can be accessed
under BioProject accession number PRJNA596898. Demultiplexed paired end reads were
analyzed using QIIME2 version 2018.11 (Bolyen et al., 2019; https://docs.qiime2.org). Raw
data were imported and renamed according to QIIME2 sample data format Casava 1.8
paired-end demultiplexed fastq. Sequences were denoised by removing chimeric sequences
and correcting amplicon errors using the DADA2 package (Callahan et al., 2016). Based
on quality plots, reads were trimmed using the following parameters: -p-trim-left-f =
17; -p-trim-left-r = 21; -p-trunc-len-f = 290; and -p-trunc-len-r = 250. For taxonomic
assignment, a naïve Bayes classifier was trained on SILVA version 132 (Quast et al.,
2012; https://arb-silva.de) with reference sequences trimmed to the V3–V4 region. The
trained classifier was applied to the representative sequences to assign taxonomy at 97%
sequence identity. Sequence reads classified as chloroplast and mitochondria, as well
as singletons, were removed using the commands ‘‘qiime taxa filter-table’’ and ‘‘qiime
taxa filter-seqs.’’ Amplicon sequence variant (ASV) counts were rarefied to the smallest
sample size (20,818 sequences) prior to computation of alpha diversity metrics, such as
Observed ASVs, Shannon, and Inverse Simpson. Alpha diversity metrics were computed
using phyloseq (McMurdie & Holmes, 2013), Companion to Applied Regression (car)
(Fox & Weisberg, 2019), and Ryan miscellaneous (Rmisc) (Hope, 2013). The Bray-Curtis
community distance matrix was visualized using non-metric multidimensional scaling
(NMDS) in vegan (Oksanen et al., 2017). Unrarefied ASV counts were used to calculate
nonparametric Permutational Multivariate Analysis of Variance (PERMANOVA) using
the Adonis method and Analysis of Similarity (ANOSIM) using 999 permutations for the
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comparison of communities. Differentially abundant ASVs were identified using ANOVA-
like differential expression (ALDEx2) analysis (Fernandes et al., 2013) with Welch’s t test.
All R packages were implemented in RStudio version 1.2.1335 (RStudio Team, 2018).

Prediction of functional genes
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States or
PICRUSt2 (Langille et al., 2013) was used to predict functional gene abundance based on
ASV taxon affiliations. The software was installed as a QIIME2 plugin. The commands
‘‘qiime fragment-insertion sepp’’ and ‘‘qiime picrust2 custom-tree-pipeline’’ setting the
–p-max-nsti to 2 were used to generate functional prediction. The relative abundance
profiles of predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog (KO)
genes were visualized using metaMDS. Linear discriminant analysis (LDA) of effect size or
LEfSe was used to identify KOs that distinguish between the two species (Segata et al., 2011).
KO terms with an absolute LDA >2.0 and alpha < 0.05 were considered discriminative
features.

Statistics
All data were tested for normality using Shapiro–Wilk test and homogeneity of variances
using Levene’s test. General Linear Models (GLM) implemented in Statistica v7 were
used to examine the differences in mean density of tetillid sponges among bommies
and across sampling periods, differences in mean density of the two species of tetillid
sponge among bommies, and differences in environmental conditions among bommies.
Results from GLM were further tested with Tukey’s HSD post hoc test to see which
bommies and sampling periods had significant differences. Kolmogorov–Smirnov tests
were conducted to examine the differences in size frequency distributions of tetillid sponges
across sampling periods per bommie. Statistical difference in alpha diversity between the
microbial community of the two sponge groups was calculated using Welch’s t test. A
p-value <0.05 was considered significant. Data visualizations were produced using ggplot2
(Wickham, 2016), pheatmap (Kolde, 2018), and RColorBrewer (Neuwirth, 2014) in RStudio
version 1.2.1335 (RStudio Team, 2018).

RESULTS
Distribution and size frequency of tetillid sponges on the reef
bommies
Tetillid sponges were observed on all the bommies. The sponges were typically found
covered in sediments and overgrown by turf algae, or in close interaction with other types
of macroalgae, sponges, and corals (Fig. S2). The average density recorded over four years
of monitoring ranged from 1.57 ± 0.79 to 4.46 ± 3.60 individuals per sq. m. per bommie.
Sponge density was significantly greater on bommies 21 and 22 than on bommies 15, 16,
and 19 (Fig. 1A; Tukey’s HSD post hoc tests: p < 0.05). There was no change in sponge
density over time (GLM: F = 2.38, p= 0.09) (Fig. 1A; Table S1). The average size of the
tetillid sponges ranged from 2.75± 2.11 to 6.33± 3.98 cm, with very few sponges growing
larger than 10 cm (Fig. 1B). A significant increase in sponge size frequency distribution was
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Figure 1 Sponge population dynamics. (A) Tetillid sponge population density on the coral bommies
from 2016 to 2019. (B) Size frequency distribution of tetillids on the bommies. Bommie 16 was not in-
cluded in the May 2016 survey. (C) Distribution of Cinachyrella sp. and Paratetilla sp. on the bommies
based on a survey conducted in September 2019.

Full-size DOI: 10.7717/peerj.9017/fig-1

noticeable in September 2018 on all the bommies, except for bommie 15 (Fig. 1B; Table
S2). Environmental parameters measured across the four bommies remained similar over
the monitoring period (Table S3).

Tetillid sponge morphology and sequencing
Tetillid sponges on the reef bommies were identified as Cinachyrella sp. and Paratetilla sp..
Cinachyrella sp. exhibited deeper hemi-spherical depressions called porocalices alternatively
perforated by a number of small pores, or some oscular tubes, and had yellowish inner
tissues (Fig. 2; Table S4). This sponge possessed spicules characterized as oxea, anatriaene,
protriaene, sigmaspires and microoxea. Paratetilla sp. also had narrow hemi-spherical
porocalices that were sometimes closed, and had brown internal tissues. This sponge
possessed oxea, anatriaene, protriaene, sigmaspires, and microoxea spicules, as well as
triradiate symmetrical rays. CO1 sequences from Cinachyrella sp. samples grouped with
sequences from other Cinachyrella sp. while Paratetilla sp. samples clustered closely with
sequences from Paratetilla bacca (Fig. S3).

Although the two species are difficult to distinguish based on their external morphology,
a survey that examined internal tissue color of the sponges revealed that Cinachyrella
sp. was distributed on all bommies at almost similar densities and was generally more
abundant than Paratetilla sp., which was found at greater density only on the easternmost
bommie (Fig. 1C).

Diversity of tetillid sponge microbiomes
Sequencing of the 16S rRNA gene V3–V4 region on the Illumina Miseq platform returned
a total of 2,068,178 reads. After sequence filtering, a total of 587,405 reads with an average
of 48,950 ± 14,495 (mean ± standard deviation) reads per library were obtained from
12 libraries (6 Cinachyrella sp. and 6 Paratetilla sp. samples). 1,459 amplicon sequence
variants (ASVs) were identified at 97% sequence similarity and classified into 35 phyla, 78
classes and 176 orders. Rarefaction curves reached a plateau at 20,818 sequences, indicating
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Figure 2 External morphology of Cinachyrella sp. (A) and Paratetilla sp. (B). Hand-cut sections (in-
sets) reveal the internal tissue color characteristic of each species. Spicules present in the tetillid sponges
include megacleres oxea (C), anatriaene (D), protriaene (E), triradiate symmetrical rays (F), microscleres
microxea (G), c-sigma (H), and s-sigma (I).

Full-size DOI: 10.7717/peerj.9017/fig-2

that the sequencing effort was sufficient to cover most ASVs in each sample (Fig. S4). No
significant difference was observed in terms of the number of observed ASVs per species
(Fig. 3A). However, Paratetilla sp. showed greater species richness and diversity compared
to Cinachyrella sp., as indicated by significantly greater alpha diversity values based on the
Shannon (Fig. 3B) and Inverse Simpson (Fig. 3C) indices.

The two sponge species possessed distinct prokaryotic microbial communities with
only 11% (160 ASVs) of ASVs shared by both tetillids (Fig. S5). The difference in
microbial community composition between the two species is apparent in the NMDS
plot (Fig. 3D) and is statistically supported (PERMANOVA: R2

= 0.84118, p= 0.001;
ANOSIM: R= 0.874, p-value = 0.001) (Table S5). In contrast, no statistical difference
was observed in the microbial communities of sponge individuals of the same species
collected at different times (Cinachyrella sp., December 2016: April 2017: PERMANOVA:
R2
= 0.35515, p= 0.1; ANOSIM: R= 0.4815, p-value = 0.1; Paratetilla sp., December

2016: April 2017: PERMANOVA: R2
= 0.51471, p= 0.1; ANOSIM: R= 0.814, p-value =

0.1) or from different bommies (Cinachyrella sp., Bommie 15: Bommie 22: PERMANOVA:
R2
= 0.28559, p= 0.3; ANOSIM: R= 0.2593, p-value = 0.3; Paratetilla sp., Bommie

15: Bommie 22: PERMANOVA: R2
= 0.287, p= 0.4; ANOSIM: R= 0.1852, p-value

= 0.4) (Table S5). This suggests that the microbiome associated with each sponge is
species-specific.
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Figure 3 Microbial community characteristics of the two tetillid sponges. Comparison of alpha diver-
sity indices including (A) observed ASVs, (B) Shannon and (C) Inverse Simpson between sponge micro-
bial communities in the two tetillid sponge species. (D) Non-metric multidimensional scaling (NMDS)
illustrating dissimilarity of microbial communities in Cinachyrella sp. and Paratetilla sp. individuals col-
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mie 15; unshaded, bommie 22). The dashed ovals represent the 95% confidence area for each species. (E)
Taxonomic assignments at order level showing the relative abundance of the 16S rRNA gene sequences of
microbes associated with the two sponge species collected at different times from different bommies. Or-
ders representing less than 0.4% of the total community are represented as ‘‘other microbial orders.’’ Col-
ored bars represent the relative abundance of microbial taxa in each replicate sample.

Full-size DOI: 10.7717/peerj.9017/fig-3

Differentially abundant prokaryotes in Cinachyrella sp. and Paratetilla
sp.
The Cinachyrella sp. microbiome was dominated by members of phylum Proteobacteria
(90.28%), followed by Bacteroidetes (2.30%) and Nitrospirae (1.86%) (Fig. S6A).
These included members of class Gammaproteobacteria (52.49%), Alphaproteobacteria
(37.02%), Bacteroidia (2.29%) and Nitrospira (1.86%) (Fig. S6B). Amongst ASVs
classifiable to the order level, the greatest proportion were affiliated with Rhodobacterales
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(18.68%), Nitrosoccocales (16.09%), Betaproteobacteriales (12.19%), Parvibaculales
(10.54%), KI89A clade (3.67%) and Nitrospirales (1.86%) (Fig. 3E).

On the other hand, the Paratetilla sp. microbiome was dominated by phylum
Proteobacteria (59.52%), followed by Chloroflexi (17.95%), Dadabacteria (6.68%),
Verrucomicrobia (5.32%), Actinobacteria (3.73%), Nitrospirae (2.20%), Patescibacteria
(1.69%) and Bacteroidetes (1.39%) (Fig. S6A). This included members of class
Gammaproteobacteria (29.53%), Alphaproteobacteria (18.26%), Dehalococcoidia
(17.84%), Deltaproteobacteria (10.97%), Dadabacteriia (6.68%), Verrucomicrobiae
(5.32%), Acidimicrobiia (3.68%), Nitrospira (2.20%), Parcubacteria (1.64%) and
Bacteroidia (1.37%) (Fig. S6B). Amongst ASVs classifiable to the order level, the
greatest proportion were affiliated with the SAR202 clade (17.84%), NB1-j (9.29%),
Betaproteobacteriales (7.46%), Dadabacteriales (6.68%), JTB23 (6.11%), Pedosphareales
(5.27%), Nitrosococcales (3.83%), Microtrichales (3.66%), and Nitrospirales (2.20%)
(Fig. 3E).

Forty eight ASVs differed significantly in relative abundance between the two sponge
species (Fig. 4) based on ALDEx2 analysis with Welch’s test (p-value < 0.05). These
differentially abundant ASVs showed no clear correlation with environmental variables
at the collection site (Fig. S7). Twenty ASVs affiliated with class Gammaproteobacteria
(10 ASVs), Alphaproteobacteria (6 ASVs), Dadabacteriia (1 ASV), Nitrospira (1 ASV),
class Nitrososphaeria under Thaumarchaeota (1 ASV), and one unclassified bacterial
ASV were found at relatively greater abundance in Cinachyrella sp. On the other hand,
28 ASVs belonging to class Gammaproteobacteria (8 ASVs), Alphaproteobacteria (7
ASVs), Nitrospira (3 ASVs), Deltaproteobacteria (2 ASVs), Acidimicrobiia (2 ASVs),
Parcubacteria (2 ASVs), Dehalococcoidia (1 ASV), Dadabacteriia (1 ASV), one unclassified
Proteobacteria ASV, and one unclassified bacterial ASV were found at higher relative
abundance in Paratetilla sp.. Different ASVs of Nitrospiraceae, Betaproteobacterales EC94,
Dadabacteriales, and Gammaproteobacteria KI89A clade were enriched in each sponge
species.

Predicted functional genes in tetillid-associated prokaryotes
Functional prediction was conducted using PICRUSt2, a software tool that predicts the
functional profile of a microbial community based on 16S rRNA sequences (Langille et al.,
2013). To improve accuracy of metagenome prediction, the weighted Nearest Sequenced
Taxon Index (NSTI) value for the analysis was set to < 2.0 (Langille et al., 2013). NSTI
reflects the relatedness of prokaryotic taxa in the sample to the closest available reference
genome. Lower NSTI values (<2.0) indicate greater similarity to the reference, which
results in a more precise prediction of functional genes (Douglas et al., 2019). However, it
is important to note that PICRUSt2 is predictive and does not completely substitute for
whole metagenome profiling (Langille et al., 2013; Weigel & Erwin, 2017). Nevertheless,
it provides a starting point for understanding functions potentially represented within a
microbial community.

PICRUSt2 predicted a total of 6892 KEGG ortholog (KO) genes from the microbial
communities associated with the two sponge species. Of these, 6234 KOs (90.5%)

Baquiran et al. (2020), PeerJ, DOI 10.7717/peerj.9017 10/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.9017#supp-1
http://dx.doi.org/10.7717/peerj.9017#supp-1
http://dx.doi.org/10.7717/peerj.9017#supp-1
http://dx.doi.org/10.7717/peerj.9017


Species
Bommie

Date Paratetilla sp.
Cinachyrella sp.

Apr 2017
Dec 2016

Bommie 22
Bommie 15

-3 -2 -1 0 1 2 3
Row z-score

ASV980
ASV286
ASV392
ASV1240
ASV999
ASV69
ASV1015
ASV1194
ASV356
ASV1091
ASV950
ASV682
ASV1442
ASV518
ASV245
ASV168
ASV1453
ASV988
ASV587
ASV256
ASV583
ASV899
ASV565
ASV557
ASV1241
ASV835
ASV1030
ASV927
ASV162
ASV580
ASV496
ASV667
ASV526
ASV403
ASV956
ASV370
ASV900
ASV1459
ASV540
ASV1350
ASV1166
ASV274
ASV1373
ASV771
ASV671
ASV259
ASV33
ASV1229

Gammaproteobacteria
Nitrososphaeria; Nitrosopumilales; Nitrosopumilaceae

Gammaproteobacteria; Betaproteobacteriales; EC94
Alphaproteobacteria
Gammaproteobacteria
Gammaproteobacteria
Gammaproteobacteria; KI89A clade
Gammaproteobacteria; Nitrosococcales; AqS1
Gammaproteobacteria; Nitrosococcales; AqS1
Dadabacteria; Dadabacteriia; Dadabacteriales
Alphaproteobacteria; Parvibaculales; PS1 clade
Alphaproteobacteria; Parvibaculales; PS1 clade
Gammaproteobacteria; Betaproteobacteriales; EC94
Gammaproteobacteria
Nitrospirae; Nitrospira; Nitrospirales; Nitrospira
Gammaproteobacteria; KI89A clade
Alphaproteobacteria
Alphaproteobacteria
Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae
Alphaproteobacteria

Gammaproteobacteria; Betaproteobacteriales; EC94
Patescibacteria; Parcubacteria; Candidatus Spechtbacteria
Nitrospirae; Nitrospira; Nitrospirales; Nitrospira
Gammaproteobacteria; Oceanospirillales; Endozoicomonas
Patescibacteria; Parcubacteria
Nitrospirae; Nitrospira; Nitrospirales; Nitrospira
Alphaproteobacteria
Gammaproteobacteria
Dadabacteria; Dadabacteriia; Dadabacteriales
Acidimicrobiia; Microtrichales; Sva0996 marine group
Gammaproteobacteria
Deltaproteobacteria; Bdellovibrionales; Bdellovibrio
Nitrospirae; Nitrospira; Nitrospirales; Nitrospira
Gammaproteobacteria
Proteobacteria
Gammaproteobacteria; Betaproteobacteriales; EC94
Alphaproteobacteria
Alphaproteobacteria; Rhodospirillales; Magnetospira
Alphaproteobacteria
Deltaproteobacteria; NB1-j
Chloroflexi; Dehalococcoidia; SAR202 clade
Acidimicrobiia; Microtrichales; Sva0996 marine group
Alphaproteobacteria
Gammaproteobacteria; KI89A clade; uncultured bacterium
Gammaproteobacteria; Nitrosococcales; Nitrosococcaceae
Alphaproteobacteria

Bacteria

Bacteria

Figure 4 Scaled heatmap of 48 differentially abundant microbial ASVs based on ALDEx2 analysis (p-
value< 0.05). Colors represent row z-scores of each microbial taxon (red, high; blue, low).

Full-size DOI: 10.7717/peerj.9017/fig-4

were present in both microbial communities, while 405 (5.9%) were present only in
the Cinachyrella sp. microbiome and 253 (3.7%) were found only in the Paratetilla sp.
microbiome. The predicted KO profiles of the microbial community of each sponge could
be differentiated by NMDS (Fig. 5A) and these differences were statistically supported
(Cinachyrella sp.: Paratetilla sp., PERMANOVA: R2

= 0.79417, p= 0.003; ANOSIM: R= 1,
p-value = 0.002) (Table S6). LEfSe analysis revealed an enrichment of KOs associated
with ABC transporters, biosynthesis of secondary metabolites, fatty acid metabolism,
glutathione metabolism, microbial metabolism in diverse environments, quorum sensing,
sulfur metabolism, and terpenoid backbone biosynthesis in Cinachyrella sp.. KOs involved
in bacterial chemotaxis, biosynthesis of amino acids and antibiotics, carbon fixation, citrate
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Figure 5 Functional gene predictions. (A) Non-metric multidimensional scaling (NMDS) plot illustrat-
ing dissimilarity of the relative abundance profiles of PICRUSt2-predicted KEGG ortholog (KO) genes
in the microbial communities associated with Cinachyrella sp. and Paratetilla sp. individuals collected at
different times (circle, Dec 2016; triangle, Apr 2017) and from different bommies (shaded, bommie 15;
unshaded, bommie 22). The dashed ovals represent the 95% confidence area for each species. (B) Aver-
age sums of the relative abundance of KOs in selected pathways. Only differentially enriched KOs in either
species with LEfSe LDA > 2.0 and p-value < 0.05 were included.

Full-size DOI: 10.7717/peerj.9017/fig-5

cycle, galactose metabolism, glycolysis/gluconeogenesis, methane metabolism, and pentose
phosphate pathway were enriched in Paratetilla sp. (Fig. 5B).

DISCUSSION
Tetillid sponge population dynamics
Tetillid sponges were abundant on the coral bommies and populations were stable over
the course of 4 years of monitoring. The easternmost bommies (bommie 21 and 22) had
the highest density of sponges compared to the others. These bommies face the Lingayen
Gulf and are likely to be less exposed to strong wave action during typhoons. Most sponges
exhibited an average diameter of about 3 to 6 cm, with very few growing to larger size.
This further suggests that the sponges may be affected by various physical disturbances,
such as grazing or predation, strong wave action, and sedimentation, all of which can
limit growth or cause tissue loss or mortality. An increase in size frequency distribution
was observed in 2018 on all bommies, except on bommie 15, although the cause remains
unknown. The dynamics of the tetillid sponge population on these bommies are in contrast
to that of Xestospongia muta in Florida, which showed an increase in abundance over the
course of 6 years due to increased recruitment owing to suitable environmental conditions
(McMurray, Henkel & Pawlik, 2010).

The stable population of the tetillid sponges suggests that individuals are long-lived and
slow-growing. In fact, another tetillid sponge, C. cavernosa, has been found to increase
in mean diameter by just 0.1–0.2 cm per year, with specific growth rates decreasing as
sponge size increases (Singh & Thakur, 2015). Similarly, growth rate of settled buds of
Tethya citrina decreased with sponge age (Cardone, Gaino & Corriero, 2010). Growth rates
were affected by temperature, silicate concentration, dissolved oxygen, and the presence
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of competitors (Singh & Thakur, 2016). On the bommies, tetillids were typically found
interacting with or in close proximity to algae, corals, and other sponges. These organisms
are known to produce allelochemicals and may inhibit sponge growth, similar to the
reported growth-limiting effect of zoanthids on C. cavernosa (Singh & Thakur, 2016).
Further studies to test the impact of other benthic reef organisms on the growth of tetillid
sponges remain to be conducted.

Species specificity of tetillid sponge prokaryotic microbial
communities
The sponge-associated microbiota is host-specific (Reveillaud et al., 2014; Thomas et al.,
2016). The prokaryotic microbial community of Cinachyrella sp. can be distinguished
from that of Paratetilla sp., although these two sponges co-exist in the same biogeographic
location and experience similar environmental conditions. The Paratetilla sp. microbial
community composition reported here is similar to what has been reported for Paratetilla
in other biogeographic regions, with the dominance of Proteobacteria (Alpha- and
Gammaproteobacteria), Chloroflexi, and Actinobacterial taxa (Thomas et al., 2016;
De Voogd et al., 2018; Cleary et al., 2019). The Cinachyrella sp. microbiome from this
study also showed some common taxa with other Cinachyrella microbiomes, which are
dominated by Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria (Cleary et
al., 2013; Cuvelier et al., 2014; Cleary, Polónia & De Voogd, 2018). In addition, differentially
abundant bacterial taxa found in both tetillid sponges have previously been reported
as symbionts of other sponge species. For example, Nitrospiraceae was dominant in
Rhabdastrella globostellata (Steinert et al., 2016), Betaproteobacteria EC94 was abundant in
Callyspongia sp. (Steinert et al., 2016), and Gammaproteobacteria K189A was abundant in
Petrosia ficiformis (Burgsdorf et al., 2014).

The microbial community in each sponge species remained similar in samples taken
during different times and from different bommies. Moreover, no correlation was found
between differentially abundant prokaryotic taxa and measured environmental variables.
This mirrors findings from other studies in marine sponges that suggest that microbial
communities are shaped by host identity (Chambers et al., 2013; Naim et al., 2014; Souza et
al., 2016; Steinert et al., 2016). The sponge microbiome has been shown to be stable across
individuals taken from different sampling locations or depths (Pita et al., 2013; Reveillaud
et al., 2014) and can even withstand moderate pollution stress (Gantt, López-Legentil &
Erwin, 2017; Baquiran & Conaco, 2018).

Bacteria–bacteria interactions may play a role in structuring the sponge microbial
community. Some sponge-associated bacteria can inhibit the growth of other members
of the community through the production of various compounds and regulatory
signals (Esteves, Cullen & Thomas, 2017; Gutiérrez-Barranquero et al., 2017). For instance,
Bdellovibrio, which is enriched in Paratetilla sp., is an active predator of other
microorganisms and produces compounds that attack the cell walls of other bacteria
(Beck et al., 2004). Other sponge-associated prokaryotes are attracted to sponge host-
derived compounds, indicating an active role of the microbes in initiating species-specific
partnerships (Tout et al., 2017; Lurgi et al., 2019). This is supported by the predicted
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abundance of genes related to bacterial chemotaxis in both tetillid sponge species. On the
other hand, bacteria with reduced genomesmay exist in the community as ectosymbionts or
parasites, relying on the biosynthetic capabilities of the host-associatedmicrobiome (Nelson
& Stegen, 2015). An example of this is Parcubacteria, which was detected in Paratetilla sp.

Predicted functions of tetillid-associated prokaryotes
Sponge-associated prokaryotes fulfill functions that provide important benefits to the
host and can also influence ecosystem health and function (Taylor et al., 2007; Bell, 2008;
Thomas et al., 2010). In the present study, genes critical for metabolism, defense, and stress
response were predicted to be present in the microbiomes associated with Cinachyrella
sp. and Paratetilla sp.. Various differentially abundant ASVs in the tetillid sponges were
affiliated with taxa known to be involved in the nitrogen cycle. Nitrifying prokaryotes
that transform ammonia to nitrite, such as Nitrosopumilaceae (Li et al., 2014; Feng et al.,
2016), the AqS1 group of Nitrosococcaceae (Rua et al., 2015; Feng & Li, 2019), and the
SAR202 clade of phylum Chloroflexi (Morris et al., 2004;Mincer et al., 2007), were detected
in the tetillids. Members of Nitrospira, some of which are enriched in Paratetilla sp., may
contribute to the conversion of nitrite into nitrate (Hentschel et al., 2002; Daims & Wagner,
2018). Members of Proteobacteria and Bacteroidetes, which were also identified in the
tetillids, may play a role in denitrification, which removes excess nitrate from the sponge
tissues (Hoffman et al., 2009; Feng & Li, 2019). The potential co-existence of nitrification
and denitrification functions in the tetillid sponge microbiota suggests that affiliated
prokaryotes can adapt to shifts from aerobic to anaerobic conditions inside the sponge
(Schlappy et al., 2010). In addition to supplying the nitrogen requirements of the holobiont,
nitrogen metabolism by sponge-associated microbes may also benefit other biota, such as
macroalgae and other organisms, in the surrounding area (Davy et al., 2002).

Genes related to sulfur metabolism, including sulfur oxidation and sulfate reduction,
were predicted to be present in the tetillid microbiomes. These two processes may be
coupled, as has been demonstrated in the cold water sponge Geodia barretti (Jensen et
al., 2017). Sulfur oxidation is a potential mechanism for the removal of toxic metabolic
end-products, such as hydrogen sulfide, that are produced by the sponge host. The existence
of an anoxic micro-ecosystem in the tetillid sponges is further supported by the presence of
sulfate-reducing bacteria (SRB), such as members of Deltaproteobacteria and Dadabacteria
(Wasmund, Mußmann & Loy, 2017; Hug et al., 2015).

Genes in key biosynthetic pathways were predicted to be present in both tetillid sponge
microbiomes. The microbiome of Paratetilla sp., in particular, was enriched for genes in
the carbon fixation pathway, pentose phosphate pathway, galactose metabolism, glycolysis,
and citrate cycle. Translocation of fixed carbon to the sponge would provide a valuable
source of alternative nutrition for the host, analogous to photosynthates from autotrophic
microbes (e.g., Cyanobacteria) (Kandler et al., 2018).

The Cinachyrella sp. microbiome was enriched for fatty acid metabolism genes. This
suggests that this species may produce a diverse array of fatty acids (Rod’kina, 2005), which
could serve as a potential energy store or as building blocks for bioactive compounds.
The enrichment of the terpenoid biosynthesis pathway in the Cinachyrella sp. microbiome

Baquiran et al. (2020), PeerJ, DOI 10.7717/peerj.9017 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.9017


further suggests an active involvement in secondary metabolite production, as has been
reported for other species of sponges (Cleary, Polónia & De Voogd, 2018; Steinert et al.,
2019). Secretion of secondary metabolites, including terpenoids, may have allelopathic
effects on other organisms and may contribute to the differential distribution of the two
sponge species. However, a detailed assessment of the secondary metabolites produced by
each tetillid sponge remains to be conducted.

Genes related to antibiotic production and glutathione synthesis were also predicted to
be present in the Cinachyrella sp. and Paratetilla sp. microbiomes. Endozoicomonas, which
is abundant in Paratetilla sp., can produce quorum sensing metabolites and demonstrates
antimicrobial properties against potentially harmful microbes (Esteves, Cullen & Thomas,
2017; Mohamed et al., 2008; Morrow et al., 2015; Rua et al., 2014). We hypothesize that
the abundance of protective genes in the tetillid sponge-associated symbionts may be an
adaptation to stressful conditions, such as high temperatures, high sedimentation rates,
and eutrophic waters, that are frequently encountered in the reef lagoon.

Although the microbial community composition of the two tetillids were distinct
from each other, it is interesting to note that the predicted functions represented in
the microbiomes were similar. This observation supports the concept of functional
equivalence, wherein the microbiomes of phylogenetically divergent hosts that occupy
similar functional niches may convergently evolve to perform similar core functions, likely
through the process of horizontal gene transfer (Fan et al., 2012). Functional convergence
of the microbial communities in tetillid sponges indicates the presence of core functions
that may be critical for their health and survival on the reef, and may partly explain the
stability of the sponge populations on the bommies. Differentially enriched functions, on
the other hand, may indicate species-specific adaptations influenced by host metabolism
or chemistry (Cleary et al., 2015; Steinert et al., 2019).

CONCLUSION
In this study we identified two tetillid species, Cinachyrella sp. and Paratetilla sp., that
are found in abundance on coral bommies within a reef lagoon. The density and size
frequency of the sponge populations remained relatively stable over the course of the
monitoring period of approximately four years, although Cinachyrella sp. was dominant
on more bommies. The sponges host distinct microbial communities, supporting the idea
of species-specificity of the sponge microbiome. However, predicted functions represented
within the microbiota of the two species present a large overlap, indicating functional
equivalence of the communities driven by prevailing environmental conditions at the
site. Nevertheless, certain functions could be distinguished as differentially enriched
between species, particularly pathways related to carbon, sulfur, fatty acid, and amino acid
metabolism, cellular defense, and stress response. These likely indicatemicrobiome-specific
adaptations to host metabolism and may influence the interactions of the sponges with
other biota on the bommies. Further validation of the functional profiles of the tetillid
sponge-associated microbiota using metagenome or metatranscriptome approaches are
warranted in order to verify the genes that are present and expressed, as well as themicrobial
players contributing to functions of interest.
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