

1 **Construction-Expression of *Aspergillus niger* glucose oxidase-transgenic in *Pichia***
2 **pastoris and its antimicrobial activity against *Agrobacterium* and *Escherichia***

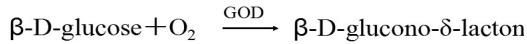
Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

3
4 Yonggang Wang^{1,2*}, Jiangqin Wang^{1,2}, Feifan Leng^{1,2}, Jianzhong Ma^{1,2*}, Alnoor Bagadi¹

5 *1 Key Laboratory of Drug Screening and Deep Processing for Traditional Chinese and Tibetan*
6 *Medicine of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, P. R. China*

7 *2 School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P.*
8 *R. China*


9 *Corresponding author. School of Life Science and Engineering, Lanzhou University of
10 Technology, Langongping Road 287, Qilihe District, Lanzhou City, Gansu Province, PR China.
11 E-mail address: 412316788@163.com (YG Wang); mazj@lut.cn (JZ Ma)

12
13 **Abstract** The gene encoding glucose oxidase from *Aspergillus niger* ZM-8 was cloned and
14 transferred to *Pichia pastoris* GS115, a transgenic strain *Pichia-P. pastoris* GS115-His-GOD
15 constructed. The growth rate of *Pichia-P. pastoris* GS115-His-GOD was similar to that of *Pichia*
16 *pastoris* GS115 under non-induced culture conditions. While under Under the induction conditions,
17 the growth rate of the GOD-transgenic strain was one-third of that of the wild-type *Pichia-P.*
18 *pastoris*. The activity of glucose oxidase in the supernatant of the fermentation medium, the
19 supernatant of the cell lysate, and the precipitation of cell lysate was 14.3 U/ml, 18.2 U/ml and
20 0.48 U/ml, respectively. The specific activity of glucose oxidase was 8.3 U/mg, 6.52 U/mg and
21 0.73 U/mg, respectively. The concentration of hydrogen peroxide formed by glucose oxidase from
22 supernatant of the fermentation medium, the supernatant of the cell lysate, and the precipitation of
23 cell lysate catalyzing 0.2 M glucose was 14.3 µg/ml, 18.2 µg/ml, 0.48 µg/ml, respectively. The
24 combination of different concentrations of glucose oxidase and glucose could significantly inhibit
25 the growth of *Agrobacterium* and *Escherichia coli* in logarithmic phase. The filter paper
26 containing supernatant of the fermentation medium, supernatant of the cell lysate, and
27 precipitation of cell lysate had no inhibitory effect on *Agrobacterium* and *Escherichia-E. coli*. The
28 minimum inhibitory concentration of hydrogen peroxide on the plate culture of *Agrobacterium*
29 and *Escherichia coli* was 5.6×10^3 µg/ml and 6.0×10^3 µg/ml, respectively.

30 **Keywords** *Aspergillus niger*; *Pichia pastoris*; Glucose oxidase; Transgenic; Antimicrobial
31 activity

32
33 **Introduction**

34 Glucose oxidase (β-D-glucose: oxygen oxidoreductase, GOD, EC 1.1.3.4) catalyzes the
35 oxidation of glucose to gluconic acid and hydrogen peroxide in the presence of molecular oxygen
36 according to the following reactions (Dobbenie *et al.*, 1995):

Spontaneously

1
2 GODs are produced by molds such as *Aspergillus niger* and *bacteria* such as *Penicillium* (Shaw *et*
3 *al.*, 1986). Its antibiotic activity was considered as notatin (penicillin A *at first*) (Birkinshaw *et al.*,
4 1943; Kocholaty 1942), penatin (Kocholaty 1942; Kocholaty 1943), and penicillin B (Harel and
5 Kanner 1985) by early researchers who isolated it from extracts of *Penicillium*. Many documents
6 reported that GOD could inhibit the growth of microbials-microbes in foods or food-prepared
7 media due to production of hydrogen peroxide (Tiina *et al.*, 1989; Yoo *et al.*, 1995). The
8 bacteriostatic effect of hydrogen peroxide is mainly attributed to the peroxidation of membrane
9 lipids (Piard *et al.*, 1991; Roberts *et al.*, 1943). In α -laboratory-scale testing, refrigerated shelf life
10 of GOD-treated fish was improved by 67% over untreated fish (Field *et al.*, 1986). Moreover,
11 GOD was able to inhibit growth of *Pseudomonas* spp. which are the main psychrotrophic spoilage
12 microorganisms of chilled poultry (Barnes *et al.*, 1968; Cox *et al.*, 1975)

Commented [F1]: *Penicillium* like *Aspergillus* is a mold.

Commented [F2]: ?

13 GODs are also used in many medical applications. Sandholm and his co-workers suggested that
14 all mastitismastitis pathogens were sensitive to the glucose oxidase-lactoperoxidase system
15 (Sandholm *et al.*, 1988). GOD was also used as an antimicrobial agent in oral care (Szynol *et al.*,
16 2004). The effect of honey on clearing infections in a wide range of wounds, which often did not
17 respond to conventional therapy, was result of the antibacterial activity of hydrogen peroxide that is
18 produced by GOD in honey (Molan *et al.*, 2001; Molan *et al.*, 1992; Bang *et al.*, 2003)

19 GODs currently used in industry are prepared mainly from the fermentation of *Aspergillus*,
20 *Penicillium*, and transgenic *P. pastoris* (Fang *et al.*, 2015). Very little information is
21 available whether a glucose oxidase-secreting microbe could inhibit growth of its surrounding
22 living things. In this study, the GOD-encoding gene from *A. niger* ZM-8 was cloned and
23 transferred into *P. pastoris* GS115 of which can excrete GOD to medium by the way of methanol
24 induction. Its directly inhibitory effect on growth of bacteria was investigated and discussed.

Commented [F3]: Please rephrase this sentence.

Materials and Methods

Plasmid, Primers, and Strains

27 A 1749.0 bp GOD gene fragment was obtained by amplified from nuclear-genomic DNA of
28 *Aspergillus niger* ZM-8 that was extracted by the method of CTAB (Porebski *et al.*, 1997). Primers
29 for PCR were designed as sTable 1 based on conserved sequences of glucose oxidase gene (NO.
30 JO5242) from GenBank Database, and then cloned into plasmid pUC19 which was linearized by
31 *Sma* I to yield clone vector pUC19-His-GOD. And tThen inserted in frame with the *S. cerevisiae*
32 α -factor secretion signal sequence under the control of the *AOX*-I promoter in pPIC9K (Invitrogen)
33 resulting in an expression vector pPIC9K-His-GOD. The identified recombinant plasmid
34 pPIC9K-His-GOD was linearized by *Bgl*-II and transformed into *P. pastoris* GS115 cells by
35 electroporation. The electrocompetent *P. pastoris* GS115 cells were prepared using standard

Formatted: Font: Italic, Complex Script Font: Italic

Commented [F4]: Please rephrase this sentence.

1 methods (Manivasakam et al., 1993). The electroporation condition ~~were-was~~ 1.5 kV, 40.0 μ F, and
2 150.0 Ω using a Gene ~~pulser-Pulser~~ (Eppendorf) according to manufacturer's instruction.

3 **Screening of Clones and Determination of Biomass**

4 The recombinant yeast clones were selected on yeast extract peptone dextrose (YPD) (1% (w/v)
5 yeast extract, 2% (w/v) peptone, 2% (w/v) dextrose, 2% (w/v) agar) plus 1 M sorbitol (YPDS)
6 plates containing 100.0 μ g/ml G418 (Invitrogen) for 2.0 to 4.0 days. Potential high-level secretion
7 transformants were obtained from the YPDS agar plates containing a higher G418 concentration
8 (300.0 μ g/ml). All these potential high-level secretion clones were confirmed by PCR using
9 genomic DNA as the templates. The colonies with the highest expression level were selected
10 based upon on spectrophotometry, biomass in culture medium was determined by the cell density
11 express as optical absorbance (OD₆₀₀). Pick one single-clony from high copies selected plate
12 containing *P.pastoris* GS115-pPIC9k-His-GOD and *P.pastoris* GS115-pPIC9k that was negative
13 control inoculated in Buffered Glycerol-complex Medium (BMGY) (1%, w/v) yeast extract, 2%
14 (w/v) peptone, 100 mM Potassium Phosphate pH 6.0, 1.34% (w/v) YNB, 4 \times 10⁻⁵ D-Biotin, 1% (w/v)
15 glycerol 30.0 °C cultured until OD₆₀₀=0.60, then 1% inoculated into Buffered Methanol-complex
16 Medium (BMMY) (1% (w/v) yeast extract, 2% (w/v) peptone, 100 mM Potassium Phosphate pH
17 6.0, 1.34% (w/v) YNB, 4 \times 10⁻⁵ D-biotin, 0.5% (w/v) glycerol) 30.0 °C induced 51.0 hr and OD₆₀₀
18 were measured every 3.0 hours.

19 **Expression of GOD in Transgenic *P.pastoris* GS115**

20 100 ml inoculum cultures were prepared by cultivating producing *Pichia* strains in BMGY at
21 30.0 °C for ~24.0 h in 1 L shake flasks until the desired cell density was reached. After ~~an~~-initial
22 glycerol as ~~a~~ carbon source phase, biomass was generated. Finally, to induce AOX I - depend
23 protein expression, the methanol fed phase started with methanol feed rate of 0.5 ml/12.0 h.
24 cell-free supernatant, the supernatant of cell lysate, and the precipitate of cell lysate from pellet
25 which was disrupted by ultrasonic were collected and filter sterilized, the ultrasonic condition was
26 15.0 s, 25.0 s, 380.0 w, 99 times, stored at 4 °C (Cereghino & Cregg 2000).

27 **Analysis of Glucose Oxidase Activity**

28 *Pichia pastoris* GS115-His-GOD-01 and *Pichia pastoris*-pPIC9k ~~was-were~~ fed by 0.5 %
29 methanol per 12 h, 30 °C introduction for 51 h. Activities of glucose oxidase from cell-free liquid,
30 cell lysate supernatant and precipitation were determined by spectrophotometric that absorbance
31 was measured at a wavelength of 615.0 nm of which in the condition of pH 5.2 (0.20 M Acetic
32 acid-Sodium acetate) and heating for 13 min, hydrogen peroxide that producted by GOD catalyzed
33 glucose (0.20 M) be able to discolor Indigo Carmine (1.0 \times 10⁻³ M) and reaction rate in a certain
34 range is proportional to the concentration of hydrogen peroxide (Gemba et al., 1971). Glucose
35 oxidase activity was defined as follows: at 37.0 °C, glucose as substrate, within 1min catalytic
36 reaction 1 μ g hydrogen peroxide (H₂O₂) as the amount of enzyme required 1U. ~~Formula-The~~
37 ~~formula~~ for enzyme activity as follows:

$$1 \quad X_0 = [(A - A_0) \times K + C_0] \times 25 \times 10^{-3} \times 10^3 \times (4/1) \times (1/2) / 10$$

2 A: Absorbance value of trichloroacetic instead of glucose as the control; A₀: Absorbance value of
3 the sample solution; K: Slope of the standard curve; C₀: Intercept of the standard curve; 25: The
4 reaction solution was diluted 25-fold; 10³: Milliliters converted to liters; 10³: Milligrams
5 converted to micrograms; 4/1: Draw 1 ml for spectrophotometric from 4 ml reaction mixture; 1/2:
6 2.0 ml of enzyme dilution used for the determination; 10: Reaction time, min.

7 **The specific activity of GOD**

8 Protein concentrations of cell-free liquid, cell lysate supernatant and precipitation from *P.*
9 *pastoris* GS115-His-GOD-01 and *P. pastoris* GS115-pPIC9K were determined by the method of
10 Bradford (Hammond *et al.*, 1988), measured absorbances at 615nm wavelength and specific
11 activity of GOD was the value of activity divided by the value of protein concentrations.

12 **Antibacterial effects of Glucose and Glucose Oxidase System on Growth of Agrobacterium 13 and Escherichia coli in Liquid Medium**

14 Glucose oxidase and glucose were used in three dilution-set combinations. The concentrations
15 for added glucose were: 1.0, 2.5, 5.0 mg/ml. The GOD was from fermentation supernatant of
16 transgenic *P. pastoris* GS115-His-GOD-01 that was induced by methanol and fermentation
17 supernatant from *P. pastoris* GS115-pPIC9K as control and concentrations for GOD were 1.0, 5.0,
18 10.0 U/mL. The GOD and glucose solutions were added in the medium of YEP or LB and
19 arranged in a Latin-square design to study the effects of substrates and enzyme on growth of
20 *Agrobacterium* LBA4404 and *Escherichia coli* DH5 α by measuring optical density in 600 nm.

21 **GOD Antibacterial Activity to Agrobacterium and Escherichia coli on Agar Plates**

22 Antibacterial activity of Glucose oxidase that produced by *P. pastoris* GS115-His-GOD-01 to *A.*
23 *tumefaciens* LBA4404 and *E. coli* DH5 α (Stored in Lamzhou University of Technology, Dr.
24 Jianzhong Ma laboratory) were cultured until OD₆₀₀=1.0, plated 200 μ L on YPE (1% (w/v) yeast
25 extract, 1% (w/v) peptone, 0.5% (w/v) NaCl, 1.5% (w/v) agar) or LB (1% (w/v) yeast extract, 2%
26 (w/v) peptone, 2% (w/v) NaCl, 1.5% (w/v) agar), after methanol introduced for 51 h, cell-free
27 liquid, pellet ultrasonic disruption supernatant, and precipitation that resuspended in ice bath were
28 collected and immersed on sterile filter paper and directly placed to surface of the 0.20 M glucose
29 plates that were plated by *A. tumefaciens* LBA4404 or *E. coli* DH5 α cultured until OD₆₀₀=1.0 and
30 the antibacterial effect was observed.

31 **Antibacterial Activity of Hydrogen Peroxide Solution to Agrobacterium and Escherichia coli 32 on Agar Plates**

33 To detect the inhibitory effect and the lowest hydrogen peroxide concentration be able to inhibit
34 the growth of bacteria. *A. tumefaciens* LBA4404 shaking cultured at 28 °C until OD₆₀₀=1.0,
35 plated 200 μ L on YPE medium and then placed the filter paper ~~which~~ containing different
36 concentrations of hydrogen peroxide solution, 28 °C stationary culture for 14 hr and the inhibitory
37 effect were observed. *E. coli* DH5 α shaking cultured at 37°C until OD₆₀₀=1.5, plated 200 μ L on
38 LB medium and then placed the filter paper which containing 10 μ L different concentrations of

1 hydrogen peroxide solution, 37 °C stationary culture for 14 hr and the inhibitory effect were
2 observed. *Agrobacterium* and *Escherichia coli*.

3 **Results**

4 **Vector construction and Screening of transgenic *P. pastoris* Clones**

5 *Pichia pastoris* strain GS115 was transformed using linearized pPIC9K-His-GOD as described in
6 materials and methods to yield *P. pastoris* GS115-His-GOD (sFig. 1). Twelve clones were
7 obtained and confirmed by PCR-testing for the gene integration. These clones were then screened
8 on YPDS plates with different concentrations of Geneticin (G418), i.e. 100 mM, 200 mM, and 300
9 mM, respectively. A positive transgenic clone, designated as *P. pastoris* GS115-His-GOD 01, can
10 be grown on the YPDS plate with a high Geneticin concentration and was chosen for subsequent
11 experiments.

12 **Expression of the GOD Affecting the Growth of the GOD-transgenic Strain**

13 Since H₂O₂, one of the products by GOD, injures living cells, growths of the GOD-transgenic
14 strain, *P. pastoris* GS115-His-GOD 01, were firstly determined if they were inhibited by the
15 transgenic GOD. Compared to *P. pastoris* GS115-pPIC9K, the growth of *P. pastoris*
16 GS115-His-GOD 01 was slightly decreased during most time of the 51-hour incubation if the
17 GOD was not induced (Fig. 1a). Its optical density at 600 nm was 0.95-fold of that of *P. pastoris*
18 GS115-pPIC9K at the time point of 51.0 h. However, the growth of *P. pastoris* GS115-His-GOD
19 01 was significantly lowered if the GOD was induced by methanol (Fig. 1b). During the growth of
20 51.0 h, the optical densities of *P. pastoris* GS115-His-GOD 01 were 0.54-fold of that of *P. pastoris*
21 GS115-pPIC9K at 18.0h, 0.43-fold at 36 h, and 0.37-fold at 51.0 h, respectively. The inhibited
22 growth of the GOD-transgenic *P. pastoris* could be attributed to the expression of the foreign
23 GOD and, hereafter, accumulation of H₂O₂.

24 **Activities of the Glucose Oxidase**

25 After 51 hour-induced incubation, the cultures were processed into three parts of which were
26 the cell-free supernatant, the supernatant and the precipitation of the cell lysates. The activities of
27 the GOD preparations from *P. pastoris* GS115-His-GOD 01 were 14.27 U/ml in the cell-free
28 supernatant, 18.2 U/ml in the supernatant of the cell lysate, and 0.48 U/ml in the precipitation
29 (Fig.2a). As a control, the activities of the three GOD preparations from *P. pastoris*
30 GS115-pPIC9K were 3.22 U/ml, 1.76 U/ml and 0.41 U/ml, respectively (Fig. 2a). The specific
31 activities of the three GOD preparations from *P. pastoris* GS115-His-GOD 01 were 8.30 U/mg in
32 the cell-free supernatant, 6.52 U/mg in the supernatant of the cell lysate, and 0.73 U/mg in the
33 precipitation, respectively (Fig. 2b). The specific activities of the three preparations from *P.*
34 *pastoris* GS115-pPIC9K were 0.859 U/mg, 1.483 U/mg, and 0.529 U/mg, respectively (Fig. 2b).
35 According to the specific activities, the cell-free supernatant of *P. pastoris* GS115-His-GOD 01
36 had the highest value, but the supernatant of the cell lysate of *P. pastoris* GS115-pPIC9K gave the
37 highest specific activity. These results suggested that the native GOD of *P. pastoris* GS115 was
38 mainly an intracellular enzyme. In the GOD-transgenic *P. pastoris* GS115, the enzyme was mainly

1 secreted. This is in accordance with that the recombinant GOD was directed to an extra-cellular
2 fraction by a signal peptide, α -mating factor.

3 **Concentration** **The concentration** of Hydrogen Peroxide from GOD Catalyzed Glucose

4 The concentration of hydrogen peroxide produced by GOD from *P. pastoris* GS115-His-GOD-01
5 catalytic glucose in cell-free supernatant, the supernatant of cell lysate, and the precipitate of cell
6 lysate was 14.3 μ g/ml, 18.2 μ g/ml and 0.48 μ g/ml, respectively as shown in Fig. 3(a, b).

7 **Inhibition of the GOD preparations on the Growth of *A. tumefaciens* LBA4404 and *E. coli* in**

8 **Liquid Medium**

9 The combination of 1.0, 2.5 or 5 mg/ml glucose and 1.0, 5.0 or 10 U/ml glucose oxidase were
10 added to the medium of *A. tumefaciens* LBA4404 and *E. coli* DH5a. The GOD was contained in
11 fermentation supernatant of *P. pastoris* GS115-His-GOD 01 and in Fig. 4a showed a marked
12 inhibition to the growth of *A. tumefaciens* LBA4404 12 hours later compared with the control that
13 was added with equal volume of *P. pastoris* GS115-pPIC9K fermentation supernatant, and the
14 impact increased with substrate concentration. Conclusions were drawn from Fig. 4b, it showed
15 these combinations did not completely inhibit growth of *E. coli* DH5a but influenced the time at
16 which growth was initiated. Delay of growth initiation was greatest with the enzyme concentration,
17 5.0 U/mL, and the impact increased also with substrate concentration.

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

18 **Antibacterial effects of Glucose and Glucose Oxidase on Growth of *A. tumefaciens* and *E.coli* 19 on Agar Plates**

20 Analysis of the antibacterial activity of hydrogen peroxide (H_2O_2) produced by GOD catalyzed
21 substrates glucose. *A. tumefaciens* LBA4404 (Fig. 5a) and *E.coli* DH5a (Fig. 5b) were plated on
22 YEP or LB which were contained 0.2 M glucose. Filter papers were soaked by cell-free
23 supernatant, the supernatant of cell lysate, and the precipitate of cell lysate from *P. pastoris*
24 GS115-His-GOD 01, cell-free supernatant of *P. pastoris* GS115-pPIC9K as the negative control. It
25 showed that the H_2O_2 from GOD catalyzed substrates glucose were completely effected the
26 growth of neither *A. tumefaciens* LBA4404 nor *E.coli* DH5a.

Commented [F5]: Please rephrase this sentence.

27 **Antibacterial Activity of Hydrogen Peroxide Solution to *A. tumefaciens* LBA4404 and *E.coli* 28 DH5a**

29 To detect the minimum concentration of hydrogen peroxide solution inhibit the growth of *A.*
30 *tumefaciens* LBA4404 and *E.coli* DH5a, the sterile filter papers were soaked with a volume of 10
31 μ l hydrogen peroxide that were-was diluted to different concentrations. Different concentrations of
32 hydrogen peroxide solution effect on *A. tumefaciens* LBA4404 were showed-shown in Fig. 6a and
33 the diameters of inhibition zone were showed-shown in Fig. 6c, it showed that the minimum
34 concentration of hydrogen peroxide solution inhibits the growth of *A. tumefaciens* LBA4404 was
35 5.6×10^3 μ g/ml; Different concentrations of hydrogen peroxide solution effect on *E.coli* DH5a
36 were showed-shown in Fig. 6b and the diameters of inhibition zone were showed-shown in Fig. 6d,
37 it showed that the minimum concentration of hydrogen peroxide solution inhibits the growth of *A.*
38 *tumefaciens* LBA4404 was 6.0×10^3 μ g/ml.

1 **Discussion**

2 Glucose oxidase acts as a bacteriostatic agent by catalyzing hydrogen peroxide production via
3 glucose oxidation (Wong *et al.*, 2008). Compared with glucose oxidase as an antibacterial agent
4 applied in food preservation, direct uses of the GOD-transgenic strains or their fermented
5 supernatants are easily and widely available, and inexpensive. However, little information is
6 available whether a glucose oxidase-secreting microbe could inhibit the growth of its surrounding
7 living things. In this paper, the GOD-encoding gene from *A. niger* ZM-8 was cloned and
8 transferred into *P. pastoris* GS115 to yield a transgenic strain, ~~ef~~ which can excrete GOD to
9 medium by the way of methanol induction. Although the growth of *P. pastoris* GS115-His-GOD
10 was found to be seriously inhibited during the period of methanol induction, its fermented
11 supernatants containing the GOD activity can really reduce the growth of *E. coli* and *A.*
12 *tumefaciens* in liquid culture (Fig. 5). But, in contrast, the GOD-soaked filter papers didn't exhibit
13 any inhibition to the growth of *A. tumefaciens* and *E. coli* on the solid medium (Fig. 6). At present,
14 it was not sure that it ~~was~~ resulted from no enough oxygen or no enough GOD. As shown in Fig. 7,
15 hydrogen peroxide can inhibit growth of *A. tumefaciens* and *E. coli* on solid medium, but, with the
16 concentrations of at least 5.6×10^3 $\mu\text{g}/\text{ml}$ and 6.0×10^3 $\mu\text{g}/\text{ml}$, respectively. To reach the
17 concentration of hydrogen peroxide, the activity of the GOD produced from the transgenic strain
18 should be increased at least 300-fold.

19 According to our results, the GOD-transgenic *P. pastoris* has to produce more enzyme
20 molecules or higher active enzymes in order to inhibit microbes. Recently, Gu *et al.* reported that a
21 yield of GOD reached 21.81 g/L, with an activity of 1972.9 U/mL, in *P. pastoris* S17 of which is a
22 genetically modified strain by manipulating genes involved in protein folding machinery and
23 abnormal folding stress responses (Gu *et al.*, 2015). Kovačević *et al.* (2014) cloned several
24 mutated glucose oxidase genes from *A. niger* M12 and expressed them in *P. pastoris* KM71H. The
25 highest activity of the GOD came up to 17.5 U/mL of fermentation media. To achieve directly
26 antibacterial applications by GOD-transgenic *P. pastoris*, there will be more studies to be done in
27 enzyme activity improvement and oxygen-offering system.

28 **Compliance with ethical standards**

29 **Conflict of Interest**

30 No conflict of interest declared.

31 **Acknowledgement**

32 This study was financially supported by Chinese National Natural Science Foundation (No.
33 31760028, 31460032), and ~~The-the~~ Fundamental Research Funds for Key Laboratory of Drug
34 Screening and Deep Processing for Traditional Chinese and Tibetan Medicine of Gansu Province
35 (No. KZZY20180605), and Sci-Tech Department of Gansu Province (No. 1504WKCA020).

36

References

2 **Birkinshaw, J. H., Raistrick, H.** 1943. Notatin: an antibacterial glucose aero-dehydrogenase
3 from *penicillium**Penicillium notatum* *westlingWestling*. *Nature*, **39**, 459-460.

4 **Barnes, E. M., Impey, C. S.** 1968. Psychrophilic spoilage bacteria of poultry. *J. Appl. Microbiol.*,
5 **31**, 97-107.

6 **Bang, L. M., Bunting, C., Molan, P.** 2003. The effect of dilution on the rate of hydrogen
7 peroxide production in honey and its implications for wound healing. *J. Altern Complement. Med.*, **9**,
8 267-273.

9 **Coulthard, C. E., Michaelis, R., Short, W. F., Sykes, G.** 1945. Notatin: an anti-bacterial
10 glucose-aerodehydrogenase from *penicillium**Penicillium notatum* *westlingWestling* and
11 *penicillium**Penicillium resticulosum* sp. nov. *Biochem. J.* **39**, 24-36.

12 **Cox, N. A., Juven, B. J., Thomson, J. E., Mercuri, A. J., Chew, V.** 1975. Spoilage odors in
13 poultry meat produced by pigmented and nonpigmented *pseudomonas**Pseudomonas*. *Poultry Sci.*,
14 **54**, 2001-2006.

15 **Cereghino, J. L., Cregg, J. M.** 2000. Heterologous protein expression in the methylotrophic yeast
16 *pichia**Pichia pastoris*. *Fems Microbiol. Rev.*, **24**, 45-66.

17 **Dobbenie, D., Uyttendaele, M., Debevere, J.** 1995. Antibacterial activity of the glucose
18 oxidase/glucose system in liquid whole egg. *J. Food. Protect.*, **58**, 273-279.

19 **Field, C. E., Pivarnik, L. F., Barnett, S. M., Jr, A. G. R.** 1986. Utilization of glucose oxidase for
20 extending the shelf-life of fish. *J. Food. Sci.*, **51**, 66 - 70.

21 **Fang, J., You, R., Song, C., Guo, R. F.**, 2015. Production of *Glucose-glucose Oxidase-oxidase*
22 and its application in feed industry. *Feed Rev.*, **10**, 1-7.

23 **Gemba, T., Hara, F.** 1971. A new automated enzymatic method for determination of blood
24 glucose by coupling of cupric histamine system. *Ikagaku Shinpojumu*, **1**, 106-108.

25 **Gu, L., Zhang, J., Du, G., Chen, J.** 2015. Multivariate modular engineering of the protein
26 secretory pathway for production of heterologous glucose oxidase in *pichia**Pichia pastoris*.
27 *Enzyme Microb. Tech.*, **68**, 33-42.

28 **Harel, S., Kanner, J.**, 1985. Hydrogen peroxide generation in ground muscle tissues. *J. Agr.*
29 *Food Chem.*, **33**, 629-636.

30 **Hammond, J. B. W., Kruger, N. J.** 1988. The Bradford method for protein quantization. *Methods*
31 *Mol Biol.*, **32**, 9-15.

32 **Kocholaty, W.** 1942. Cultural Characteristics of *Penicillium notatum**Notatum* in *Relation**relation*
33 to the *Production**production* of *Antibacterial**antibacterial* *Substance**substance*: Indication of the
34 *Dual**dual* *Nature**nature* of the *Antibacterial**antibacterial* *Substance**substance*. *J. Bacteriol.*, **44**,
35 469-77.

36 **Kocholaty, W.** 1943. Purification and *Properties**properties* of *Penatin**penatin*. The *Second**second*
37 *Antibacterial**antibacterial* *Substance**substance* produced by *Penicillium notatum**notatum*
38 *Westling*. *Science*, **97**, 186-187.

1 **Kovačević, G., Blažić, M., Draganić, B., Ostafe, R., Jankulović, M.G., Fischer, R.** 2014.
2 Cloning, heterologous expression, purification and characterization of M12 mutant of *Aspergillus*
3 *niger* glucose oxidase in yeast *Pichia pastoris* KM71H. *Mol. Biotechnol.*, **56**, 305-311.

4 **Molan, P. C.**, 1992. The antibacterial activity of honey. 1. The nature of the antibacterial activity.
5 *Bee World*, **73**, 378-380.

6 **Manivasakam, Schiestl, R. H.** 1993. High efficiency transformation of *saccharomyces*
7 *Saccharomyces cerevisiae* by electroporation. *Nucleic Acids Res.*, **21**, 4414-4415.

8 **Molan, P. C.** 2001. Potential of honey in the treatment of wounds and burns. *Am. J. Clin.*
9 *Dermatol.*, **2**, 13-19.

10 **Porebski, S., Bailey, L. G., Baum, B. R.** 1997. Modification of a CTAB DNA extraction protocol
11 for plants containing high polysaccharide and polyphenol components. *Plant Mol. Biol. Rep.*, **15**,
12 8-15.

13 **Roberts, E. C., Cain, C. K., Muir, R. D., Reithel, F. J., Gaby, W. L., Van Bruggen, J. T.** 1943.
14 Penicillin b, an antibacterial substance from *penicillium-Penicillium notatum*. *J. Biol Chem*, **147**,
15 47-58.

16 **Piard, J. C., and Desmazeaud, M. J.** 1991. Inhibiting factors produced by lactic acid bacteria.
17 part **II**. oxygen metabolites and catabolism end-products. *Dairy Sci. Technol.*, **71**, 525-541.

18 **Shaw, S. J., Bligh, E. G., Woyewoda, A. D.** 1986. Spoilage pattern of *atlantic-Atlantic* cod fillets
19 treated with glucose oxidase/gluconic acid. *Can. Inst. Food Sci. Tech. J.*, **19**, 3-6.

20 **Sandholm, M., Ali-Vehmas, T., Kaartinen, L., Junnila, M.** 1988. Glucose oxidase (god) as a
21 source of hydrogen peroxide for the lactoperoxidase (lpo) system in milk: antibacterial effect of
22 the god-lpo system against mastitis pathogens. *Zoonoses Public Health*, **35**, 346-352.

23 **Szynol, A., de Soet, J. J., Sieben-Van, T. E., Bos, J. W., Frenken, L. G.** 2004. Bactericidal
24 effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral
25 bacteria. *Antimicrob. Agents Ch.*, **48**, 3390.

26 **Tiina, M., and Sandholm, M.** 1989. Antibacterial effect of the glucose oxidase-glucose system
27 on food-poisoning organisms. *Int. J Food Microbiol.*, **8**, 165-74.

28 **Wong, C. M., Wong, K. H., Chen, X. D.** 2008. Glucose oxidase: natural occurrence, function,
29 properties and industrial applications. *Appl. Microbiol. Biot.*, **78**, 927-38.

30 **Yoo, W., and Rand, A. G.** 1995. Antibacterial effect of glucose oxidase on growth of
31 *Pseudomonas fragi*, as **Related-related** to pH. *J. Food Sci.*, **60**, 868-871.

32
33
34
35
36
37

Formatted: Font: Italic, Complex Script Font: Italic