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ABSTRACT
Microhabitat selection is a key component of amphibian breeding biology and can be
modulated in response to the features of breeding sites and the presence of predators.
Despite invasive alien species being among the major threats to amphibians, there is
limited information on the role of invasive species in shaping amphibians’ breeding
microhabitat choice. The invasive red swamp crayfish (Procambarus clarkii) is a major
predator of amphibians’ larvae, including those of the brown frogs Rana dalmatina and
Rana latastei. Although qualitative information about the spawning site preferences and
breeding microhabitat choice of brown frogs is available in the literature, only a few
studies performed quantitative analyses, and the relationship between microhabitat
choice and the presence of alien predators has not been investigated yet. The aims of
this study were: (1) to characterize the microhabitats selected for clutch deposition by
R. dalmatina and R. latastei and (2) to test if the position and the aggregation of egg
clutches differ in sites invaded or not invaded by P. clarkii. During spring 2017, we
surveyed multiple times 15 breeding sites of both brown frogs in Northern Italy; in
each site we assessed the features of the microhabitat where each egg clutch was laid,
considering its position (distance from the shore, depth of the water column) and the
degree of aggregation of clutches. In each site we also assessed the presence/absence of
the invasive crayfish and the relative abundance in the breeding period.We detected egg
clutches in all sites; the crayfish occurred in eight ponds. Our results showed substantial
differences between the spawning microhabitat features of the two brown frogs: Rana
latastei clutches showed a higher degree of aggregation and were associated with deeper
areas of the ponds , while Rana dalmatina deposited more spaced out clutches in areas
of the ponds that were less deep. For both species, spawning microhabitat features were
not significantly different between sites with and without P. clarkii. Although we did
not detect behavioural responses to P. clarkii in the choice of spawning microhabitat ,
additional studies are required to assess whether these frogsmodulate other behavioural
traits (e.g. during larval development) in response to the invasive predator.

Subjects Conservation Biology, Ecology, Zoology, Freshwater Biology
Keywords Alien, Amphibians, Predation, Breeding, Behaviour, Clutch, Egg, Crayfish

INTRODUCTION
Amphibians are among the taxa with the highest ratio of threatened and declining species,
and their global decline has been the focus of many studies to quantify and understand
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the causes of this phenomenon (Ficetola, 2015; Scheele et al., 2019). The increase of trade
and tourism all over the world, which directly or indirectly facilitates the spread of alien
animals and plants, is one of the strongest threats to native biodiversity (Davis, 2003),
and amphibians are particularly sensitive to the impact of alien species (Bellard, Cassey
& Blackburn, 2016). Invasive alien species (IAS) can have multiple impacts on native
amphibians. Predatory IAS can feed on both larvae and adults of many amphibian species,
spread diseases, and limit the trophic resources available (Fisher, Garner & Walker, 2009;
Hettyey et al., 2016; Kats & Ferrer, 2003), potentially leading to detrimental effects on the
whole ecosystem of the invaded sites (Jackson et al., 2016).

Adult amphibians are often able to detect the presence of predators and modulate their
breeding activity to limit predation on their offspring.On the one hand, parentsmay actively
select breeding sites with few predators, and this has been shown to increase offspring fitness
(Resetarits, 2005; Sadeh, Mangel & Blaustein, 2009; Segev et al., 2011; Winandy, Darnet &
Denoël, 2015). The selection of breeding sites with few predators can also frequent in
amphibians that stay in water for very short periods, and that can detect predators through
indirect cues (e.g., chemical cues) (Resetarits, 2005). On the other hand, breeding sites
without predators are not always available, and similarity of habitat preferences between
amphibians and their predators may force the former to breed in sites with predators.
However, wetlands can be very heterogeneous environments with a high number of
microhabitats. Within a given breeding wetland the density of predators and predation risk
can vary across microhabitats, thus females can select specific sites to increase the survival
of tadpoles (Ficetola, Valota & De Bernardi, 2006). However, up to now very few studies
have investigated whether amphibians change their patterns of microhabitat selection in
response to invasive predators.

The red swamp crayfish Procambarus clarkii is among the IAS with the strongest impact
both in Europe and on a global scale (Nentwig et al., 2018). This crayfish is a generalist
feeder (Alcorlo, Geiger & Otero, 2004; Whitledge & Rabeni, 1997), and its global spread
affects a growing number of freshwater communities worldwide (Cruz et al., 2008; Ficetola
et al., 2011b; Manenti et al., 2019b; Ramamonjisoa, Rakotonoely & Natuhara, 2018; Vilà et
al., 2010). P. clarkii preys on tadpoles of several amphibian species (Cruz et al., 2008);
in northern Italy crayfish predation is a major cause of local extinctions and tadpole
abundances reduction (Ficetola et al., 2011b). The strong predation of P. clarkii on frog
tadpoles may drive rapid behavioural or evolutionary responses in invaded communities
(Nunes et al., 2014a; Nunes et al., 2014b); on the other hand, when there is a lack of anti-
predatory response to this invasive crayfish, there is a high risk of extinction of amphibian
populations (Nunes et al., 2013). The negative relationship between P. clarkii and tadpole
abundance is particularly evident for some brown frog species, such as the agile frog (Rana
dalmatina) and the Italian agile frog (Rana latastei) (Ficetola et al., 2011b). Although these
two species of brown frogs often breed in sites invaded by P. clarkii, a study performed a few
years after the invasion showed that very few tadpoles reach metamorphosis in wetlands
with high crayfish density (Ficetola et al., 2011b). Rana dalmatina and R. latastei are species
of conservation concern, and their tadpoles can be the most abundant vertebrates in small
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wetlands, thus they likely allow a substantial exchange of biomass from woody parches to
the ponds in which they breed and vice-versa (Barzaghi et al., 2017; Gibbons et al., 2006).

To assess whether R. dalmatina and R. latastei can modulate microhabitat selection in
presence of invasive predators, we tested three hypotheses.

(1) Shelter hypothesis. Along the shore, riparian semi-aquatic vegetation, submerged
branches and hiding elements are more abundant and can offer shelter from aquatic
predators (Dodd, 2010; Ficetola, Valota & De Bernardi, 2006; Manenti et al., 2017).
Therefore, if the shelter hypothesis is correct, we expect that in invaded ponds, frogs
lay clutches closer to the pond edge.

(2) Deepness hypothesis. The crayfish is rarely active in the water column, thus laying
clutches in deep water can reduce predation rate on eggs and tadpoles (Cruz & Rebelo,
2005). Therefore, this hypothesis predicts that, in invaded sites, frogs lay clutches in deeper
water.

(3) Schooling hypothesis. When tadpoles hatch, they show high local density during
their most vulnerable stage; thus, by laying clutches nearby other clutches, frogs can form
large assemblages of clutches and tadpoles. This grouping strategy can provide advantages
under high predation risk (e.g., confusion, enhanced group vigilance, diluted predation
risk (Lima & Dill, 1990; Nicieza, 1999)). If the schooling hypothesis is right, we expect to
find less distance between clutches in invaded wetlands.

To achieve our aims we first characterized the features of the microhabitats selected
by the two frogs; the spawning habits and the microhabitat selection of these two species
have been described in the literature, but quantitative analyses remain limited (Ancona &
Capietti, 1996; Ficetola, Valota & De Bernardi, 2006). We then tested if there was significant
variation in spawning features between invaded and non-invaded sites.

MATERIAL AND METHODS
In spring 2017, we surveyed 15 breeding sites in northern Italy for which previous surveys
confirmed the reproduction of at least one brown frog species (R. latastei or R. dalmatina).
All the wetlands were in the basin of two tributaries of the Po river, Lambro and Adda rivers,
north of Milan. Since the early 2000s, wetlands of the Po lowland have been invaded by
P. clarkii (Fea et al., 2006) that was first detected in our study area around 2005 (Manenti
et al., 2014). Since 2005, P. clarkii spread in the study area colonising approx. 65% of
the permanent, large ponds that generally constitute the breeding sites of these frogs
(Manenti et al., 2014; Manenti et al., 2020). The crayfish impact is heterogeneous across
sub-populations (Manenti et al., 2020; Siesa et al., 2011). Previous studies have shown
P. clarkii exerts a heavy predation pressure on the larvae of R. latastei and R. dalmatina,
strongly reducing their abundance, and that the impact of crayfish predation is stronger
than the effects of native predators such as dragonflies (Ficetola et al., 2012).

In both frog species, the deposition period begins in early spring and each female lays
only one clutch. The detectability of clutches is high and the two species can be identified
based on of their morphological characteristics (Ambrogio & Mezzadri, 2018). For each
site, we performed two surveys at the peak of frog breeding activity (March), one during
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daytime and one during the night. During daytime surveys, we assessed the features of
the microhabitat of deposition of each egg clutch of R. latastei and R. dalmatina. For each
clutch we measured three variables describing the position and the degree of aggregation
of clutches: distance from the pond shore, interclutch distance (distance from the closest
conspecific clutch), and depth of the water column. We measured the distance from the
pond shore as theminimumdistance between the clutch and the closest edge of the breeding
site. In the study ponds, aquatic vegetation was nearly absent, while semi-aquatic vegetation
and submerged branches were most abundant near the shoreline, thus distance from the
pond shore is a good proxy of the availability of shelters for tadpoles. To assess interclutch
distance, for each clutch we identified the closest conspecific clutch and measured the
distance between them. When two clutches were in contact, the distance was recorded
as zero. We measured depth of the water column as the total depth of the water column
at the spawning point, also if the clutch was underwater (as often occurs for R. latastei).
Moreover, we measured the maximum depth and the surface of each wetland to compare
pond features among invaded and not invaded sites. The total number of clutches per site
and surface was then used to calculate clutch density at each breeding site. A few clutches
were clearly laid several days before sampling, and, especially for the agile frog, drift could
have modified their position; for this reason, they were not considered for microhabitat
measurements.

To verify the occurrence of the red swamp crayfish and tomeasure the relative abundance
of crayfishes in ponds active during the breeding period, we performed one visual encounter
survey during night-time to maximize the detection probability of the crayfish. Recent
studies showed that during nocturnal surveys the per-visit detection probability is very
high (>95%; Manenti et al., 2019b). Surveys were performed using night lamps along the
whole perimeter of the ponds and lightening the inner sectors as much as possible.

Invasive species often have the strongest impacts on sites where they attain the highest
abundance (Leung et al., 2012). In this case, just measuring the presence/absence of
invasives can obscure patterns caused by variation of abundance. Therefore we estimated
relative abundance of crayfishes across sites during breeding period using CPUE (Catch
Per Unit Effort) index (Zimmerman & Palo, 2011) applying the following formula:

CPUE=
Ncrayfish

m× t×Nobs

where ‘‘Ncrayfish’’ is the number of individuals observed, ‘‘m’’ is the distance travelled
during the survey, ‘‘t ’’ the time spent in the survey and ‘‘Nobs’’ the number of observers
participating in the survey (Anderson, Paszkowski & Hood, 2015).

Total survey time was proportional to the surface of ponds and considered in the
calculation of the CPUE index. Particular attention was paid to the occurrence of small
young individuals. Additional surveys were performed in the same sites during the late
spring–middle summer of 2017 and 2019 and confirmed the absence of alien crayfish
detection in the sites considered as non-invaded during this study (Manenti et al., 2019b).
For only one pond we don’t have data of relative abundance of crayfish.
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Statistical analyses
Before running analyses, interclutch distance, clutch density, distance from the shore and
CPUE index were log-transformed, while water depth was square-root transformed
to improve normality. First, we used t -tests, assuming heterogeneous variance, to
assess whether pond features (pond surface, maximum depth and clutch density) were
significantly different between invaded and non-invaded ponds. Then, we used linear
mixed models (LMMs) to assess whether the study species select different microhabitat
features. We ran three separate LMMs with the different dependent variables (distance
from pond edge, interclutch distance and water depth) and with species identity as the
independent variable; the site was included as a random factor to take into account the
non-independence of clutches within the same site.

Finally, we tested whether spawning site selection is different between invaded and
non-invaded sites. Given that we generally found differences in microhabitat selection
between the two frog species (see ‘Results’), we analysed them separately. For each species,
we used LMMs to assess whether distance from the shore, interclutch distance and water
depth are significantly different between invaded and non-invaded sites. For the analysis
of water depth, we included the maximum water depth in each pond as a covariate; for
the analysis concerning distance from the shore and interclutch distance we included
clutch density as a covariate. In some cases, the variance of dependent variables showed
heteroscedasticity between groups (R. dalmatina vs. R. latastei clutches; invaded vs non-
invaded sites; see Supplemental Information for details). Therefore, we compared LMMs
assuming homogeneous variance with models assuming heterogeneous variance between
invaded and non-invaded sites. Models were fit using the VarIdent argument of the lmer
function in R (Pinheiro & Bates, 2000). We used a likelihood ratio test to assess if the
model assuming heterogeneous variance performed significantly better than the one with
homogeneous variance. The model with heterogeneous variance was then used since it
provided a significantly better fit. We used a likelihood ratio test to evaluate whether the
model with heterogeneous variance better fit the data. This analysis was also repeated for
each frog species using crayfish relative abundance (CPUE) instead of occurrence/absence
as an independent variable (we excluded one breeding site of R. dalmatina because we
didn’t have data of abundance of crayfish). This allowed us to test the robustness of our
conclusion to variation of crayfish abundance across ponds.

Analyses were performed in environment R using the packages ‘‘lme4’’ (Bates et al.,
2015) and ‘‘nlme’’ (Pinheiro et al., 2016; R Development, 2010).

RESULTS
Overall, we measured spawning site features for 498 clutches of the two frog species
(333 R. dalmatina and 165 R. latastei clutches) in the 15 surveyed sites. Ponds showed
an average (±SD) surface of 94.6 ± 87.1 m2, a maximum depth in average (±SD) of
48.9 ± 24.7 cm. We detected the red swamp crayfish in eight sites. Regarding Rana
dalmatina, we detected clutches in 13 sites, 6 uninvaded and 7 invaded by crayfish, with a
mean (±SD) number of clutches per site of 26 ± 7. For Rana latastei we detected clutches
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in 8 waterbodies, 6 uninvaded and 2 invaded (average: 21 ± 8 clutches per site). Ponds
invaded and non-invaded by P. clarkii showed similar environmental variables. There were
no significant differences for pond surface (t9.2= 2.05, P = 0.07), max depth (t11=−1.46,
P = 0.17), or for clutch density of the two frog species (R. latastei: t6.20=−0.75, P = 0.48,
R. dalmatina: t12.4 =−1.05, P = 0.31). The CPUE index (abundance) of P. clarkii was
generally low with a mean of 0.02 ± 0.03 (N crayfish/meters * minutes * N observers) for
R. dalmatina breeding sites and 0.008 ± 0.02 for R. latastei breeding sites.

Spawning microhabitat differences between R. dalmatina and
R. latastei
Rana latastei clutches were more grouped than the R. dalmatina ones. The average
interclutch distance (± SD) was 24.7 ± 34.1 cm for R. latastei, and 98.3 ± 122.3 cm
for R. dalmatina (F1,482= 29.1; P < 0.001; Fig. 1A). Furthermore, R. latastei clutches were
laid in deeper sectors of ponds than R. dalmatina (F1,482 = 5.33; P = 0.02; Fig. 1B); the
mean depth (± SD) of water column was 22.8± 7.8 cm for R. latastei clutches while it was
18. 5± 6.8 cm for R. dalmatina clutches. R. latastei also laid clutches more distant from the
shore of the pond than R. dalmatina (F1,482= 4.16 ; P = 0.04; Fig. 1C); the mean (±SD)
distance between the shore and R. latastei egg-clutches was 164.6 ± 201.6 cm, while it was
131.4 ± 101.8 cm for R. dalmatina clutches.

Clutch microhabitat features in invaded and non-invaded sites
For both frog species, the spawning microhabitat features were similar between invaded
and non-invaded ponds (Table 1). We did not detect any significant relationship between
crayfish occurrence and microhabitat neither regarding the distance between the clutches,
nor the depth of the water column, nor the distance from the pond edge. Results were
identical when we consider the variation of crayfish abundance, as we did not detect
any significant relationship between crayfish CPUE and spawning microhabitat features
(Table 2).

DISCUSSION
The differences observed between Rana latastei and R. dalmatina highlight the importance
of microhabitat selection for these frog species that adopt different strategies and select
different spawning sites. Nevertheless, we did not detect any relationship between the
spawning microhabitat choice and the occurrence of the alien predator Procambarus
clarkii. Our results did not conform with the predictions of either the shelter, the deepness
or the schooling hypothesis, suggesting that the choice of the spawning position by adults
is not modulated to minimize predation risk of eggs and tadpoles by the alien crayfish.

There are many reported cases of dramatic effects of alien species introduction on native
species, which range from behavioural shifts of native species (Tiberti & Von Hardenberg,
2012; Winandy & Denoël, 2013) to cascading effects on entire ecosystems, and can lead to
the extirpation of entire species or communities (Arribas, Díaz-Paniagua & Gomez-Mestre,
2014; Bonelli, Manenti & Scaccini, 2017). Semi-aquatic organisms like amphibians can
play important roles for nutrient exchanges between aquatic and terrestrial habitats
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Figure 1 Differences between species. Partial regression plots of models showing differences in clutch
microhabitat features between Rana latastei and R. dalmatina. (A) Interclutch distance (residuals). (B)
Depth of the water column (residuals). (C) Distance from the shore (residuals).

Full-size DOI: 10.7717/peerj.8985/fig-1

(Barzaghi et al., 2017; Gibbons et al., 2006), thus invasive crayfish is expected to deeply
affect the biotic community of both lentic and lotic environments (Ficetola et al., 2012;
Ficetola et al., 2011b; Gherardi & Acquistapace, 2007; Manenti et al., 2019b; Shin-ichiro et
al., 2009). If the breeding microhabitat selected by adult amphibians is important for their
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Table 1 Clutch microhabitat features in invaded and non-invaded sites for each species. Mean values for each microhabitat features are ex-
pressed in cm± SD.

Dependent Independent Rana latastei

Without crayfish With crayfish df F P
Mean Mean

Interclutch distance 10.0± 9.04 (cm) 13.38± 36.15 (cm)
P.clarkii 1, 5 0.23 0.65
Clutch density 2.9± 0.2 0.4± 0.02 1, 5 0.43 0.54

Water depth 21.7± 14.8 (cm) 17.2± 9.2 (cm)
P. clarkii 1, 5 0.06 0.81
Max. pond depth 60 64.19± 1.9 1, 5 0.43 0.54

Distance from the shore 95.1± 125.4 (cm) 95.4± 128.7 (cm)
P. clarkii 1, 5 0.01 0.91
Clutch density 2.9± 0.2 0.4± 0.02 1, 5 0.77 0.42

Dependent Independent Rana dalmatina

Without crayfish With crayfish df F P
Mean Mean

Interclutch distance 87.0± 62.3 (cm) 26.0± 48.9 (cm)
P.clarkii 1, 10 1.51 0.25
Clutch density 0.7± 0.01 0.6± 0.06 1, 10 0.79 0.21

Water depth 19.7± 7.8 (cm) 20.9± 9.4 (cm)
P. clarkii 1, 10 0.25 0.63
Max. pond depth 61.6± 0.8 59.5± 2.1 1, 10 3.52 0.09

Distance from the shore 168.7± 171.2 (cm) 117.1± 189.5 (cm)
P. clarkii 1, 10 0.25 0.63
Clutch density 0.7± 0.01 0.6± 0.06 1, 10 1.71 0.22

breeding success, we expect a modulation of habitat choice in response to the presence of
IAS. Evolutionary and plastic changes in invaded communities can arise at different levels
and might be difficult to detect (Nunes et al., 2014a). In our study area, previous research
detected brown frogs breeding in sites with red swamp crayfish (Ficetola et al., 2011b).
Given the high tadpole mortality in invaded wetlands, a plastic selection of breeding
habitats and microhabitats could limit predation on eggs or tadpoles. However, adult
brown frogs have continued to breed for several years in these ponds, selecting the same
microhabitat features as in non-invaded waterbodies. This suggests that, contrary to what
happens in urodeles (Cabrera-Guzman, Diaz-Paniagua & Gomez-Mestre, 2019; Winandy,
Legrand & Denoël, 2017), predation pressure of the alien crayfish does not lead to rapid
shifts or responses in adult brown frogs spawning behaviour.

The ability of native prey to assess risk and adopt appropriate behavioural responses
depends on different factors such as the experience accumulated during the lifespan,
their learning ability and also their evolutionary history and ecology (Kovacs et al., 2012).
Several factors can explain the lack of microhabitat shifts in brown frogs. First, contrary
to urodeles that invest considerable time in courtship and eggs laying, brown frogs invest
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Table 2 Clutch microhabitat features and abundance of crayfish. Clutch microhabitat features and effects of the relative abundance of crayfish
for each species. Mean values for each microhabitat features are expressed in cm± SD.

Dependent Independent Rana latastei

Without crayfish With crayfish df F P
Mean Mean

Interclutch distance 10.0± 9.04 (cm) 13.38± 36.1 (cm)
CPUE 1, 5 3.40 0.12
Clutch density 2.9± 0.2 0.4± 0.02 1, 5 1.21 0.32

Water depth 21.7± 14.8 (cm) 17.2± 9.2 (cm)
CPUE 1, 5 0.05 0.82
Max. pond depth 60 64.19± 1.9 1, 5 0.18 0.68

Distance from the shore 95.1± 128.7 (cm) 95.4± 125.4 (cm)
CPUE 1, 5 1.10 0.34
Clutch density 2.9± 0.2 0.4± 0.02 1, 5 1.42 0.28

Dependent Independent Rana dalmatina

Without crayfish With crayfish df F P
Mean Mean

Interclutch distance 87.0± 62.3 (cm) 22.5± 42.8 (cm)
CPUE 1, 9 3.10 0.11
Clutch density 0.7± 0.01 0.6± 0.06 1, 9 0.04 0.83

Water depth 19.7± 7.8 (cm) 21.3± 9.3 (cm)
CPUE 1, 9 1.05 0.31
Max. pond depth 61.6± 0.8 59.5± 2.1 1, 9 1.15 0.27

Distance from the shore 168.7± 171.2 (cm) 117.7± 191.5 (cm)
CPUE 1, 9 0.77 0.40
Clutch density 0.7± 0.01 0.6± 0.06 1, 9 2.28 0.16

relatively little time in egg-laying, and frogs remain in breeding wetlands from few hours
to at maximum one day (Ambrogio & Mezzadri, 2018). Such a period can be too short to
allow them to acquire enough experience on the risk determined by the red swamp crayfish
occurrence. Nevertheless, it is important to remark that multiple studies evidenced that
amphibians can detect predator chemical cues in water, and can modulate the breeding
habitat selection even when they use breeding sites for few hours (Resetarits, 2005; Sadeh,
Mangel & Blaustein, 2009). Second, brown frogs breed at the end of winter, when water
temperatures are low. The activity of the red swamp crayfish is generally high during
warm periods (Holdich et al., 2009); thus, the individuals may not be particularly active
when adult frogs are in the water, with limited consumptive effects. The worst effect of the
crayfish probably happens only later in the season when temperatures rise, and the crayfish
mostly impacts the tadpoles. Third, it is possible that the time since the arrival of the red
swamp crayfish was not enough for frog populations to develop appropriate antipredator
adaptations. Recent studies show that even if the ability to recognise invasive predators may
evolve quickly, agile frog populations can be vulnerable to alien fish due to their inability
to recognize them as a threat (Hettyey et al., 2016).
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The lack of response in our target species can thus be explained by naïveté towards
a novel predator (Sih et al., 2010). The first detection of the red swamp crayfish in the
study area dates back to 2005 (Manenti et al., 2014), indicating that frogs coexisted with
the crayfish for approx. 3–4 generations (Guarino et al., 2003; Racca, 2003; Weddeling et
al., 2005). Rapid local adaptations of brown frogs when selective pressure is strong are
known (Ficetola et al., 2011a; Skelly & Freidenburg, 2000), still amphibians responses to
invasive species are mostly known to occur at the tadpole stage (Hettyey et al., 2016; Nunes
et al., 2014b; Nunes et al., 2013). Future studies are required to investigate if behavioural
responses may occur in the larval stages of the study species. We should also underline that,
especially for R. latastei, the number of uninvaded ponds was low, because the crayfish has
already invaded most breeding sites of this frog. To confirm the generality of our results it
would be thus interesting to increase the number of uninvaded breeding sites, for instance
in regions where P. clarkii is less widespread.

CONCLUSION
Our study characterized the spawning microhabitat of the agile frog and the Italian
agile frog, considering also sites in which they are syntopic and quantifying differences
in spawning microhabitat between these two species. Italian agile frog females lay eggs
in significantly deeper areas of the ponds, and with a strongly aggregated pattern. The
clustering of Italian agile frog clutches has been repeatedly described in the herpetological
literature, and it is known that dozens of females can attach their egg-clutches to the same
submerged woods (Ambrogio & Mezzadri, 2018; Pozzi, 1980). However, there are few data
on the causes of microhabitat selection. First, differences in microhabitat could reduce the
frequency of interactions with heterospecific males, which in turn can reduce the fertility
of clutches (Ficetola & Bernardi, 2005; Hettyey & Pearman, 2003; Hettyey et al., 2014).
Second, tadpoles could exploit different microhabitats within the wetlands, for instance
because they have different thermal optima (Balogová & Gvoždík, 2015). Nevertheless, very
limited information exists so far on differences in microhabitat use between tadpoles,
and future studies are required to understand the factors allowing the syntopy between
these frog species, and the relative effect of micro and macro-ecological determinants. A
better knowledge of behaviour of these species is an important starting point for a better
understanding of the strategies of these animals in response to biological invasions.

The invasive crayfish is widespread in the study area (Manenti et al., 2020;Manenti et al.,
2019b) and is likely to attain high density, making eradication programs almost impossible.
Under these circumstances, it is essential to identify the processes that can allow long-term
persistence of native species, such as behavioural changes or the selection of specific
microhabitats. However, such processes can be complex and can occur at multiple levels,
and this can make their identification challenging. On the one hand, it will be important
to integrate analysis performed on the microhabitat-scale with research performed on the
landscape level, with long term analysis including the metapopulation-scale (Manenti et al.,
2020). On the other hand, additional studies are required to assess whether native frogs can
modulate other behavioural traits when interactions with the crayfish are more frequent,
such as during larval development.
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