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ABSTRACT
Background. Oxidative-stress (OS) was causal in the development of cell dysfunction
and insulin resistance. Streptozotocin (STZ) was an alkylation agent that increased
reactive oxygen species (ROS) levels. Here we aimed to explore the oxidative-stress and
related RNAs in the liver of STZ-induced diabetic mice.
Methods. RNA-sequencing was performed using liver tissues from STZ induced
diabetic mice and controls. Pathway and Gene Ontology (GO) analyses were utilized to
annotate the target genes. The differentially expressed RNAs involved in the peroxisome
pathway were validated by qRT-PCR. The glucose metabolite and OS markers were
measured in the normal control (NC) and STZ-induced diabetic mellitus (DM) group.
Results. The levels of serum Fasting insulin, HbA1c, Malondialdehyde (MDA) and
8-iso-prostaglandin F2α (8-iso-PGF2α) were significant higher in DM groups than
NC group, while SOD activity decreased significantly in DM groups. We found 416
lncRNAs and 910 mRNAs were differentially expressed in the STZ-induced diabetic
mice compared to the control group. OS associated RNAs were differentially expressed
in the liver of STZ-induced diabetic mice.
Conclusion. This study confirmed that the OS was increased in the STZ-induced DM
mice as evidenced by the increase of lipid peroxidation productMDA and 8-iso-PGF2α,
identified aberrantly expressed lncRNAs and mRNAs in STZ-induced diabetic mice.

Subjects Genomics, Diabetes and Endocrinology, Public Health, Metabolic Sciences
Keywords Oxidative-stress, STZ, Differentially expressed RNAs, Metabolism, Liver

INTRODUCTION
Diabetes mellitus, characterized by a rise in plasma glucose levels, is one of the most
common chronic metabolic diseases in the world. The liver is an important insulin target
organ, regulating glucose and lipid metabolism, and is also a crucial place for insulin
resistance (DeFronzo, 2004; Tan & Cheah, 1990). The formation of reactive oxygen species
(ROS) is an inevitable byproduct of metabolism. Oxidative stress (OS) is induced by an
abundance of ROS or failure in the anti-oxidative machinery. OS played a key role in
pathological processes observed in T2DM (Fernandes et al., 2016; Henriksen, Diamond-
Stanic & Marchionne, 2011). Recent studies indicated that oxidative stress was also causal
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in the development of cell dysfunction and insulin resistance (Leahy, 2005; Nahdi, John &
Raza, 2017; Raza & John, 2012).

Streptozotocin (STZ) was an alkylation agent that increased ROS levels and damaged
the antioxidant system in the islet cells during the induction of experimental diabetes
model. The damaged antioxidant system resulted in the rupture of DNA chain and further
led to beta cell necrosis (Lao-ong et al., 2012; Papaccio et al., 1991). In the meantime, the
metabolism of STZ by the liver microsomal P450 enzyme system could produce toxic
electrophilic substances, such as acrolein, which can bind with proteins, nucleic acids and
lipids, and led to changes in the activity of important functional enzymes, thus causing
hepatic oxidative stress injury (Ahn, Yun & Oh, 2006). In addition to the direct chemical
damage, the OS caused by STZ also induced a rapid and transient global transcription
change. It has been verified in fibroblast cells that pausing of RNA polymerase II (PolII)
in both directions, at specific promoters occurred within 30 min of the OS. PolII pausing
could lead to the generation of thousands of long noncoding RNAs (lncRNAs) with
promoter-associated antisense lncRNAs transcripts (Giannakakis et al., 2015).

lncRNAs are larger than 200 nucleotides in length (Mattick & Makunin, 2006), and are
widely expressed across the genome. lncRNAs are master regulators in gene regulation and
cellular function as signals, molecular decoys, or scaffolds.

Recent studies demonstrated that lncRNAs were important players in diabetes and its
complications (Leung & Natarajan, 2018). In spite of the detail reports of lncRNAs changes
in the fibroblast cells upon OS, the whole transcription profile of lncRNAs in the liver
cells induced by the STZ was not completely understood. In our study, we sequenced the
whole transcription profiles in the STZ-induced DM mice liver cells, aimed to explore the
differentially expressed OS-related RNAs, assess their physiological effects and correlate
them to the altered hepatic physiology during diabetes.

MATERIAL AND METHODS
Animals
Specific pathogen-free male C57BL/6 mice weighing 20–22 g were purchased from the
Organ transplantation center, Tongji hospital affiliated with Tongji Medical College,
Huazhong University of Science and Technology. The Zhengzhou University Animal
Care and Use Committee approved all animal experiments (the approval number
2017051805), which were performed in accordance with ‘Animal Research: Reporting
In Vivo Experiments’ (ARRIVE) guidelines. After 12 h of fasting, mice received one
intra-peritoneal injection of 130mg/kg streptozotocin (STZ, Sigma, St. Louis, MO, USA)
solution in 0.05 M citrate buffer (pH 4.5) to induce diabetes (DM, n= 20) (Deeds et al.,
2011; Huang Xin & Cao, 2007; Mallek et al., 2018). Normal Control group were injected
with citrate buffer (NC, n= 10). Blood glucose (BG) was measured to confirm diabetes,
which was defined as glycemia higher than 16.7 mmol/L.

After injection, the mice continued to receive a high-fat diet for another 2 weeks.
During the 2 weeks, three animals in the DM group died. Blood glucose level of mice was
tested from the tip of the tail. Four weeks after the injection, the mice were euthanized by
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intraperitoneal injection of 250 mg/kg body weight pentobarbital (Sigma, P3761, under
sterile conditions) to harvest liver samples, and blood was collected from the orbital vein
to measure serum biochemical markers.

Biochemical marker measurement
Then fast plasma glucose and insulin level of diabetic mice (n= 17) and normal control
mice (n= 10) were tested and compared to each other. Serum glucose, insulin levels and
total SOD activity were tested by the Automatic biochemical analyzer (cobas 8000 series)
using Roche regents according to the manufacture instruction. MDA formed from the
breakdown of polyunsaturated fatty acids serves as a convenient index for the determination
of the extent of peroxidation reaction. MDA, a product of lipid peroxidation, reacts with
thiobarbituric acid to give a pink-colored product, having a maximum absorption at 535
nm (Nair & Nair, 2017). 8-iso-PGF2α was determined with a competitive enzyme-linked
immunosorbent assay (ELISA) (Stressgen Biotechnologies Inc., San Diego, CA, USA).
HbA1c was detected by High Performance Liquid Chromatography with Borate Affinity
Chromatography.

Total RNA extraction and purification
Total RNA from liver tissues of normal and diabetic mice was isolated using the NEB Next
Ultra Directional RNA LibraryPrep Kit for Illumina (NEB, Ispawich, USA) and quantified
using Agilent 2100 RNA Nano 6000 Assay Kit (Agilent Technologies, CA, USA). 3 µg of
total RNA was used for sequencing preparation using NEB Next Ultra Directional RNA
LibraryPrep Kit for Illumina (NEB, Ispawich, USA) kit along with Ribo-Zero Gold rRNA
(Illumina Inc., CA, USA) to remove rRNA according to the previous study (Zhang et al.,
2014). The resulting libraries were sequenced on a HiSeq 2000 (Illumina Inc., CA, USA)
instrument that generated paired-end reads of 100 nucleotides.

Illumina HiSeq2000 analysis
RNA extracted from the liver tissues of three control mice were pooled together for
sequencing. The sequencing reads were obtained from control pools and STZ-induced
diabetic mice (n= 3). Raw sequencing reads were further processed with Perl scripts to
exclude the adaptor-polluted reads, low-quality reads and reads with the number of N
bases accounting for more than 5%. Q30 statistics was performed to test the data quantity
and quality. And Clean Data were mapped to the reference genome (http://www.ensembl.
org/index.html) using HISAT2 (http://ccb.jhu.edu/software/hisat2/index.shtml) (Kim,
Langmead & Salzberg, 2015). The liver transcriptome was reconstructed from all of the
RNA-seq datasets using StringTie 1.3.2.d (http://ccb.jhu.edu/software/stringtie/). DESeq
(http://www.bioconductor.org/packages/release/bioc/html/DESeq. html) was used for
differential expression analysis between diabetic and normal mice liver transcriptomes.
Differentially expressed genes were identified based on threshold changes of ≥2-fold or
≤-2-fold and q values ≤ 0.05. The data were normalized and hierarchically clustered with
R software 3.1.1. The potential function of the differentially expressed genes was analyzed
by Gene ontology and Pathway analysis. The enriched genes in Kyoto Encyclopedia of
Genes and Genomes (KEGG) were calculated by hypergeometric distribution.
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Figure 1 Biochemical parameters in control mice and STZ-induced diabetic mice over 4 weeks. (A)
Plasma concentration of fasting blood glucose. (B) Body weight.

Full-size DOI: 10.7717/peerj.8983/fig-1

Quantitative real-time PCR (qRT-PCR) and statistical analysis
Total RNA was extracted using the RNeasy kit (Qiagen, Inc., Valencia, CA, USA) according
to the manufacturer’s instructions, and 2 µg purified RNA was reverse transcribed into
cDNA (37 ◦C for 15 min, followed by 85 ◦C for 5 s using RT kit; Fermentas; Thermo
Fisher Scientific, Inc.). Primers for qRT-PCR were designed based on the sequences from
ensembl (http://asia.ensembl.org/index.html). qRT-PCRwas performedusing theABI 7500
Real-Time PCR using a QuantiTect SYBR Green PCR kit (Qiagen, Inc.). The qRT-PCR
cycle was pre-denaturation at 95 ◦C for 3 min, followed by 35 cycles of denaturation at
95 ◦C for 5 s and annealing at 60 ◦C for 30 s, and a final analysis from 60−95 ◦C. qRT-PCR
results were quantified using the 2−11ct method. β-actin was chosen as a reference gene.
All the gene expression levels were normalized to β-actin measured in parallel.

qRT-PCR assays were performed in triplicate and the data represented the means of
three experiments. All data were represented as mean ± standard deviation. Comparison
between groups was performed using the independent sample Student t test with P < 0.05
as the criterion for statistical significance. All analyses were done using SPSS statistics
(version 17.0) and GraphPad Prism (version 7).

RESULTS
Biochemical parameters of two group mice after 4 weeks of injection
Four weeks after the injection, control mice were weighing 24.02 ± 4.35 g with blood
glucose levels 5.4 ± 0.82 mmol/L, and diabetic mice were weighing 18.02 ± 3.86 g with
blood glucose levels 17.4 ± 3.28 mmol/L (Fig. 1). Four weeks after STZ injection, the
distribution of biochemical parameters in serum of control and diabetic groups was shown
in Table 1. The levels of serum Fasting insulin, HbA1c, MDA and 8-iso-PGF2α were
significant higher in DM groups than NC group, while SOD activity decreased significantly
in DM groups. Fast insulin level and Body weight were significant lower in DM groups
compared to NC group.
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Table 1 Distribution of various biochemical parameters of control (n= 10) and diabetic groups (n=
17) four weeks after STZ injection (x± s).

Groups Diabetic groups Normal groups P

Weight (kg) 18.02± 3.86 20.4± 3.28 <0.001
Fast Blood Glucose (mmol/L) 24.02± 4.35 5.4± 0.82 <0.001
Fast Insulin level (mIU/L) 13.45± 8.25 31.45± 3.32 <0.001
MDA (nmol/L) 1.90± 0.78 0.90± 0.28 <0.001
Total SOD (U/ml) 0.80± 0.3 1.10± 0.2 <0.001
Cytochrome c((pmol/L) 3.2± 0.58 1.70± 0.6 0.004
8-iso-PGF2α (ng/ml) 2.57± 0.83 1.23± 0.48 <0.001

RNA sequence data generation and quality control
Weobserved that administration of streptozotocin caused a significant increase in plasmatic
glucose and a decrease in insulin levels. Whole transcriptome RNA sequencing of liver
tissue was performed to identify differentially expressed RNAs related to the OS. RNA
extracted from the liver tissues of three control mice were pooled together as control
group, while the RNA samples from liver tissues of three diabetic mice were sequenced
separately as diabetic group. We obtained a total of 6.0746 × 108 raw reads (Table S1,
Fig. S1A). The raw data is available at NCBI (accession number PRJNA562053). The Q30
Bases Rate was more than 95% by Q30 statistics (Fig. S1B). We found that a large fraction
(median percentage, 68.86%) of the sequence was overlapped by exon regions and that
only a small fraction (median percentage, 3.305%) was mapped to the intergenic region
(Fig. S1C). Interestingly, long intergenic non-coding RNAs (lincRNA) always located in
these areas.

Differential expression analysis of liver transcriptomes
The expression of genes was quantified as Fragments Per Kilobase of transcript per Million
mapped reads (FPKM) values (Figs. S1D and S1E). The distribution of the gene expression
pattern was similar between the diabetic and normal control mice, only a small fraction of
genes were differentially expressed. We identified a total of 2376 novel lncRNAs (Figs. 2A,
2B) and 1326 differentially expressed genes (Table S2). Of which there were 287 up
regulated mRNAs and 623 down regulated mRNAs, 161 up regulated lncRNAs and 255
down regulated lncRNAs in the STZ-induced diabetic mice compared to the normal
control mice (Table S2). The average percentages of SNP variations in the control and DM
group were 93% and 83% (Fig. 2C). The alternative splice statistics showed that the splice
occurred mainly in Transcription Start Site (TSS) and Transcription Terminal Site (TTS)
(Fig. 2D).

To understand the biological pathways and functions altered in STZ-induced diabetic
mouse liver, gene ontology and pathway enrichment analysis were utilized to annotate
the target genes. GO analyses found that the dysregulated lncRNAs associated with
diabetes mellitus were associated with regulation of apoptotic signaling pathway, negative
regulation of transcription from RNA polymerase II promoter, fatty acid catabolic and
oxidation process, protein modification and localization (Fig. 3).

Guo et al. (2020), PeerJ, DOI 10.7717/peerj.8983 5/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.8983#supp-2
http://dx.doi.org/10.7717/peerj.8983#supp-1
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA562053
http://dx.doi.org/10.7717/peerj.8983#supp-1
http://dx.doi.org/10.7717/peerj.8983#supp-1
http://dx.doi.org/10.7717/peerj.8983#supp-1
http://dx.doi.org/10.7717/peerj.8983#supp-1
http://dx.doi.org/10.7717/peerj.8983#supp-3
http://dx.doi.org/10.7717/peerj.8983#supp-3
http://dx.doi.org/10.7717/peerj.8983


Figure 2 Characteristic of RNA-sequence data. (A) Venn diagram of Novel lncRNAs identified by 4
methods, (B) Differentially expressed lncRNAs, (C) Variation statistics, (D) Alternative splice statistics,
SKIP, Skipped Exon; SKIP, Multi-exon SKIP; IR, Intron Retention; MIR, Multi-IR; AE, Alternative Exon
Ends; TSS, Transcription Start Site; TTS, Transcription Terminal Site; XSKIP, Approximate SKIP; XM-
SKIP, Multi-exon SKIP; XIR, Approximate IR; XMIR, Approximate MIR; XAE, Approximate AE.

Full-size DOI: 10.7717/peerj.8983/fig-2

KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/) pathway
analysis showed the dysregulated lncRNAs mainly involved in four categories (Fig. 4,
Table 2). The first category is inflammation, such as hepatitis B, epstein-Barr virus infection,
protein processing in endoplasmic reticulum, lysosome and Toll-like receptor signaling
pathway. The other one is peroxisome, which is closely related to OS. Another category
is cell cycle and cell apoptosis, including eurotrophin signaling pathway, TNF signaling
pathway and ubiquitin mediated proteolysis. The fourth category is insulin signaling
pathway.

Heat shock proteins (Hsp) were increased under various environment stimulus. In
this study, we found the expressions of Hsp1, Hspb2 Hsp25-ps1 and Hsp1-like mRNA
were significantly upregulated in the diabetic group as compared to the control group.
Meanwhile, other inflammation related genes including Interferon regulatory factor
7 (Irf7), cyclin-dependent kinase 1 (Cdk1), cyclin D1. proto-oncogene protein c-fos
(FOS), interleukin 1 beta (IL1B), interleukin 1 receptor, type I (IL1r1), monocyte
differentiation antigen (CD14), cathepsin K (CTSK), phosphoinositide-3-kinase regulatory
subunit 5 (Pik3r5), histocompatibility 2, Q region locus 1 (H2-Q1) were down-regulated.
Inflammation is closely associated cell apoptosis, some of these genes were also enriched
in cell cycle and apoptosis pathway, such as IL1B.

Peroxisomes are essential organelles exerting key functions in fatty acid metabolism such
as the degradation of very long-chain fatty acids. Our results showed that two genes involved
in lipid metabolism were significantly up-regulated. Acyl-CoA synthetase long-chain
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Figure 3 Representation Go terms of differentially expressed genes in the STZ-induced DMmice liver.
The vertical ordinate represents Go term, the horizontal ordinate represents sample name. The differ-
ent color represents the enrichment degree. (A) Biological process enrichment of dysregulated lncRNAs.
(B) Molecular function enrichment of dysregulated lncRNAs.

Full-size DOI: 10.7717/peerj.8983/fig-3

Figure 4 Representation pathway terms of differentially expressed genes in the STZ-induced DM
mice liver. The vertical ordinate represents the KEGG Go term, the horizontal ordinate represents sample
name. The different color represents the enrichment degree.

Full-size DOI: 10.7717/peerj.8983/fig-4
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Table 2 Effects of STZ on hepatic gene expression.

KEGG pathway/Gene Gene name Type Fold
change

Toll-like receptor signaling pathway
ENSMUSG00000025498|K09447 Irf7 Interferon regulatory factor 7 mRNA 2.58
ENSMUSG00000085667|K00922 Gm12992 PREDICTED: phosphatidyli-

nositol 4,5-bisphosphate 3-
kinase catalytic subunit beta
isoform isoform X2 [Mus
musculus]

processed_transcript 2.03

ENSMUSG00000021250|K04379 FOS Proto-oncogene protein c-fos mRNA 0.54
ENSMUSG00000027398|K04519 IL1B Interleukin 1 beta mRNA 0.48
ENSMUSG00000051439|K04391 CD14 Monocyte differentiation

antigen
mRNA 0.49

ENSMUSG00000020901|K02649 PIK3R1_2_3 Phosphoinositide-3-kinase
regulatory subunit alpha/be-
ta/delta

mRNA 2.19

ENSMUSG00000028111|K01371 CTSK Cathepsin K 0.46
ENSMUSG00000112163|K04427 MAP3K7, TAK1 Processed_pseudogene Processed_pseudogene 0.16
Epstein-Barr virus infection
ENSMUSG00000085995|K10591|K09391 Gm2788 Predicted gene 2788 ncRNA 2.57
ENSMUSG00000105987|K10591 AI506816 Expressed sequence AI506816 ncRNA 2.37
ENSMUSG00000004951|K04455 Hspb1 Heat shock protein 1 mRNA 2.01
ENSMUSG00000019942|K02087 Cdk1 Cyclin-dependent kinase 1 mRNA 3.04
ENSMUSG00000073406|K06751 H2-Bl Histocompatibility 2 mRNA 4.29
ENSMUSG00000085667|K00922 Gm12992 Predicted gene 12992 ncRNA 2.64
ENSMUSG00000112879|K03020 AC158802.2 Processed_pseudogene 4.41
ENSMUSG00000030724|K06465 Cd19 CD19 antigen mRNA 2.25
ENSMUSG00000038086|K09543 Hspb2 Heat shock protein 2 mRNA 5.11
ENSMUSG00000113137|K03016 AC157515.2 Processed_pseudogene 5.39
ENSMUSG00000078915|K04455 Hsp25-ps1 Heat shock protein beta-1 mRNA 2.15
ENSMUSG00000020901|K02649 Pik3r5 Phosphoinositide-3-kinase

regulatory subunit 5
mRNA 0.41

ENSMUSG00000079507|K06751 H2-Q1 Histocompatibility 2, Q re-
gion locus 1

mRNA 0.48

ENSMUSG00000112163|K04427 AC158606.2 Processed_pseudogene 0.25
ENSMUSG00000092243|K06751 Gm7030 Predicted gene 7030 ncRNA 0.18
ENSMUSG00000073405|K06751 H2-T-ps Unprocessed_pseudogene 0.47
ENSMUSG00000075042|K11838 4930431P03Rik RIKEN cDNA 4930431P03

gene
Processed_transcript 0.09

Hepatitis B
ENSMUSG00000025498|K09447 Irf7 Interferon regulatory factor 7 mRNA 2.58
ENSMUSG00000070348|K04503 Ccnd1 Cyclin D1 mRNA 2.74
ENSMUSG00000018983|K09389 E2f2 E2F transcription factor 2 mRNA 2.09
ENSMUSG00000081158|K02089 Gm13521 Processed_pseudogene 7.02

(continued on next page)
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Table 2 (continued)

KEGG pathway/Gene Gene name Type Fold
change

ENSMUSG00000097327|K02091 E030030I06Rik RIKEN cDNA E030030I06
gene

mRNA 2.43

ENSMUSG00000081121|K04364 Gm12791 Processed_pseudogene 8.38
ENSMUSG00000085667|K00922 Gm12992 Predicted gene 12992 ncRNA 2.64
ENSMUSG00000021250|K04379 Fos FBJ osteosarcoma oncogene mRNA 0.23
ENSMUSG00000020901|K02649 Pik3r5 Phosphoinositide-3-kinase

regulatory subunit 5
mRNA 0.41

Apoptosis
ENSMUSG00000085667|K00922 Gm12992 Predicted gene 12992 ncRNA 2.64
ENSMUSG00000026072|K04386 Il1r1 Interleukin 1 receptor, type I mRNA 0.50
ENSMUSG00000027398|K04519 Il1b Interleukin 1 beta mRNA 0.31
ENSMUSG00000020901|K02649 Pik3r5 Phosphoinositide-3-kinase

regulatory subunit 5
mRNA 0.41

ENSMUSG00000002997|K04739 Prkar2b Protein kinase, cAMP depen-
dent regulatory, type II beta

mRNA 0.48

Protein processing in endoplasmic reticulum
ENSMUSG00000057789|K14021 Bak1 BCL2-antagonist/killer 1 mRNA 2.12
ENSMUSG00000083261|K09502 Gm7816 Processed_pseudogene 2.10
ENSMUSG00000007033|K03283 Hspa1l Heat shock protein 1-like mRNA 2.55
ENSMUSG00000100615|K04079 Gm5511 Processed_pseudogene 7.36
ENSMUSG00000009092|K13989 Derl3 Der1-like domain family,

member 3
mRNA 0.42

ENSMUSG00000090197|K09502 Dnaja1-ps Processed_pseudogene 0.22
Peroxisome
ENSMUSG00000031278|K01897 Acsl4 acyl-CoA synthetase long-

chain family member 4
mRNA 2.90

ENSMUSG00000020333|K01897 Acsl6 acyl-CoA synthetase long-
chain family member 6

mRNA 3.57

ENSMUSG00000007908|K01640 Hmgcll1 3-hydroxymethyl-3-
methylglutaryl-Coenzyme A
lyase-like 1

mRNA 2.12

ENSMUSG00000055782|K05676 Abcd2 ATP-binding cassette, sub-
family D (ALD), member 2

mRNA 0.09

ENSMUSG00000027870|K11517 Hao2 Hydroxyacid oxidase 2 mRNA 0.02
ENSMUSG00000021416|K13239 Eci3 Enoyl-Coenzyme A delta iso-

merase 3
mRNA 0.27

ENSMUSG00000027674|K13342 Pex5l Peroxisomal biogenesis factor
5-like

mRNA 0.15

ENSMUSG00000063428|K00272 Ddo D-aspartate oxidase, isoform
CRA_a, partial [Mus muscu-
lus]

mRNA 2.35

(continued on next page)
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Table 2 (continued)

KEGG pathway/Gene Gene name Type Fold
change

ENSMUSG00000026272|K00830 Agxt Serine–pyruvate aminotrans-
ferase, mitochondrial isoform
1 precursor [Mus musculus]

mRNA 0.45

ENSMUSG00000027261|K11517 Hao1 Hydroxyacid oxidase 1 [Mus
musculus]

mRNA 2.43

ENSMUSG00000046840 Hnf4aos Hepatic nuclear factor 4 al-
pha, opposite strand

ncRNA 2.19

ENSMUSG00000048482|K04355 Bdnf brain derived neurotrophic
factor

mRNA 1.26

ENSMUSG00000085667|K00922 Gm12992 predicted gene 12992 mRNA 2.04
ENSMUSG00000020901|K02649 Pik3r5 phosphoinositide-3-kinase

regulatory subunit 5
mRNA 0.41

ENSMUSG00000023809|K04373 Rps6ka2 ribosomal protein S6 kinase,
polypeptide 2

mRNA 0.47

ENSMUSG00000004933|K08888 Matk megakaryocyte-associated ty-
rosine kinase

mRNA 0.08

TNF signaling pathway
ENSMUSG00000085667|K00922 Gm12992 Predicted gene 12992 ncRNA 2.64
ENSMUSG00000021367|K16366 Edn1 Endothelin 1 mRNA 2.16
ENSMUSG00000035385|K14624 Ccl2 Chemokine (C-C motif) lig-

and 2
mRNA 2.41

ENSMUSG00000034394|K05419 Lif Leukemia inhibitory factor mRNA 3.06
ENSMUSG00000029380|K05505 Cxcl1 Chemokine (C-X-C motif)

ligand 1
mRNA 0.20

ENSMUSG00000053113|K04696 Socs3 Suppressor of cytokine signal-
ing 3

mRNA 0.37

ENSMUSG00000021250|K04379 Fos FBJ osteosarcoma oncogene mRNA 0.23
ENSMUSG00000027398|K04519 Il1b Interleukin 1 beta mRNA 0.31
ENSMUSG00000020901|K02649 Pik3r5 Phosphoinositide-3-kinase

regulatory subunit 5
mRNA 0.41

ENSMUSG00000058427|K05505 Cxcl2 Chemokine (C-X-C motif)
ligand 2

mRNA 0.04

ENSMUSG00000032487|K11987 Ptgs2 Prostaglandin-endoperoxide
synthase 2

mRNA 0.05

Ubiquitin mediated proteolysis
ENSMUSG00000085995|K10591| K09391 Gm2788 Predicted gene 2788 2.01
ENSMUSG00000105987|K10591 AI506816 Expressed sequence AI506816 ncRNA 2.08
ENSMUSG00000006398|K03363 Cdc20 Cell division cycle 20 mRNA 2.53
ENSMUSG00000053113|K04696 Socs3 Suppressor of cytokine signal-

ing 3
mRNA 0.37

ENSMUSG00000052981|K10582 Ube2ql1 Ubiquitin-conjugating en-
zyme E2Q family-like 1

mRNA 0.08

ENSMUSG00000111626|K03357 APC10, DOC1 Anaphase-promoting com-
plex subunit 10

mRNA 0.20
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family member 4 (Acsl4) and acyl-CoA synthetase long-chain family member 6 (Acsl6)
were isozyme of the long-chain fatty-acid-coenzyme A ligase family. Although differing in
substrate specificity, subcellular localization, and tissue distribution, all isozymes of this
family converted free long-chain fatty acids into fatty acyl-CoA esters, and thereby played
a key role in lipid biosynthesis and fatty acid degradation. ACSL4 has a unique substrate
specificity for arachidonic acid and modified membrane lipid composition in a manner
favourable to lipid peroxidation. Hepatic ACSL4 is coregulated with the phospholipid
(PL)-remodeling enzyme lysophosphatidylcholine (LPC) acyltransferase 3 to modulate
the plasma triglyceride (TG) metabolism. Liver-specific knockdown of ACSL4 revealed a
substantial decrease in circulating VLDL-TG levels and lipid peroxidation in mice fed a
high-fat diet (Singh et al., 2019).

We also found one lipid metabolism related gene was significantly down-regulated.
ATP-binding cassette, sub-family D (ALD), member 2 (ABCD2) is a member of the ALD
subfamily, which is involved in peroxisomal import of fatty acids and/or fatty acyl-CoAs in
the organelle. ABCD2 plays a role in the degradation of long-chain saturated and omega 9-
monounsaturated fatty acids and in the synthesis of docosahexanoic acid (DHA) (Fourcade
et al., 2009). The absence of ABCD2 altered expression of gene clusters associated with
lipid metabolism, including PPARα signaling (Liu et al., 2014). Overexpression of ABCD2
alone prevented oxidative lesions to proteins in a mouse X-linked Adrenoleukodystrophy
model (Fourcade et al., 2010) .

Our results showed that the expression of several genes involved in the glucose
metabolism were significantly changed (Table S3). Insulin interacts with the insulin
receptor, and the activated receptor promotes activity of the phosphoinositide-3 kinase
(PI3K) enzyme. The function of differentially expressed lncRNAswere not fully understood,
but their predicted target genes such as acetyl-CoA carboxylase beta (Acacb) and fructose
bisphosphatase 2 (Fbp2) were involved in the glucose metabolisms.

qRT-PCR validation of the differentially expressed genes
Since OS is of significance in hepatic metabolism, a detailed inspection of genes involved
in peroxosome pathway was chosen for qRT-PCR analysis to validation the RNA-seq
data. qRT-PCR primers were designed based on the lncRNA sequences from mapview
(https://www.ncbi.nlm.nih.gov/mapview/) (Table S4). The represented DE genes included
three mRNAs, D-aspartate oxidase (Ddo), Alanine-glyoxylate aminotransferase (Agxt) and
Hydroxyacid oxidase 1(Hao1), and one lncRNA Hnf4aos. qRT-PCR results were shown in
Fig. 5. We found the qRT-PCR results were nearly perfect concordance with the RNA-seq
results. These findings confirmed the accuracy of microarray data obtained from RNA-seq
results.

DISCUSSION
Diabetes mellitus is characterized by glucose metabolism disorders. More recent studies
have found that diabetes also related to OS and ROS intervention (Ceriello & Motz, 2004;
Song et al., 2007). Diabetes is known to increase oxidative stress. Previous experimental and
clinical data suggests that the generation of ROS increased with diabetes and that the onset
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Figure 5 qRT-PCR validations of differentially expressed RNAs.
Full-size DOI: 10.7717/peerj.8983/fig-5

of diabetes and its comorbidities and complications are closely associated with oxidative
stress (Johansen et al., 2005). High glucose has also been shown to increase oxidative stress
(Yildirim et al., 2019), OS parameters were increased and antioxidative parameters were
decreased during the oral glucose tolerance test (OGTT). OGTT caused a significantly
increase level of SOD and lipid hydroperoxide in the body.

This study confirmed that in the STZ-inducedDMmice, the content of lipid peroxidation
product MDA and 8-iso-PGF2α increased significantly, while the SOD activity decreased
significantly. Currently, the best accepted biomarker of oxidative stress is the lipid oxidation
product 8-iso-PGF2α (Van’t Erve et al., 2016; Van’t Erve et al., 2018). 8-iso-PGF2α is
formed by a non-enzymatic attack by free radicals on arachidonic acid (a component of
lipid cell membranes). The changes in these OS biomarkers concentration indicated that
the OS increased in the STZ-induced DM mice. In vitro study has demonstrated that the
increase in OS was associated with increased apoptosis of HepG2 cells (Raza & John, 2012).

Adaptation to stress is an essential cellular process. Stress signals trigger a common
intracellular signaling cascade, which leads to the activation of the stress-activated protein
kinases. In the present study, we identified a series of differentially expressed genes in
the livers of STZ-induced diabetic mice upon oxidative stress by RNA sequencing. In
total, we found 416 differentially expressed lncRNAs and 910 mRNAs in STZ-diabetic
mice compared to control mice. Consistent with previous study (Giannakakis et al., 2015),
we also found that dysregulated lncRNAs were associated with negative regulation of
transcription from RNA polymerase II promoter in STZ-induced diabetic liver cells.
Cellular process enrichment analysis showed the differentially expressed lncRNAs were
associated with fatty acid catabolic and oxidation process, protein modification and
localization, indicating the potential regulation role of these dysregulated lncRNA in the
balance of oxidation and anti-oxidation. Pathway and GO analysis showed that a great
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number of differentially expressed genes were involved in the inflammation, cell cycle and
cell apoptosis, OS and insulin signaling pathway.

The induction of HSP mRNAs indicated the enhanced repair or degradation of proteins
damaged by glycoxidation (West, 2000). CTSK is a widely expressed cysteine protease that
had enzymatic and non-enzymatic functions in Toll-like receptor signaling pathway. Toll-
like receptors sense pathogen-associated molecular patterns and trigger gene-expression
changes that ultimately eradicate the invading signaling pathway, such as inflammation,
immune regulation, survival and cell proliferation (Lim & Staudt, 2013). IL-1β modulates
smooth muscle cell phenotype to a distinct inflammatory state via NF- κB-dependent
mechanisms (Alexander et al., 2012). IL-1β antibody treatment induced amarked reduction
in SMC and collagen content in ApoE-/- mice (Gomez et al., 2018). Down-regulation of
IL-1β and IL-1R1 may reduce the inflammation reaction in liver vessel.

Lipid metabolism related genes changed in a manner favourable to lipid peroxidation.
Previous study showed knockdown of ACSL4 decreased circulating VLDL-TG levels
and lipid peroxidation in mice fed a high-fat diet. In our study, ACSL4 and ACSL6
were significantly up-regulated in STZ-induced DM mice. ABCD2 plays a role in the
degradation of long-chain saturated and omega 9-monounsaturated fatty acids and in the
synthesis of docosahexanoic acid. In this study, ABCD2 was significantly down-regulated
in STZ-induced DMmice. The expression changes were in accordance with the increase of
the content of lipid peroxidation product MDA and 8-iso-PGF2α.

Mitochondria and peroxisomes are small ubiquitous organelles. They both play major
roles in cell metabolism, especially in terms of fatty acid metabolism, ROS production,
and ROS scavenging, and it is now clear that they metabolically interact with each other
(Demarquoy & Le Borgne, 2015). Mitochondria are thought to be the primary target
of oxidative damage, as ROS was generated mainly as byproducts of mitochondrial
respiration. Impaired mitochondrial oxidative phosphorylation was the primary source of
ROS (Lucchesi et al., 2013). The ROS further exacerbated lipid peroxidation in the hepatic
cell, which eventually led to serious hepatic cell apoptosis and liver damage (Shrilatha &
Muralidhara, 2007).

The liver is the main organ of glucose and lipid metabolism, and also is an important
place for insulin resistance (Rui, 2014). A single large dose of STZ is used for experiments
attempting to cause severe T1DM by direct toxicity to β cells. Large doses can cause near
total destruction of β cells and little insulin production. The oxidative liver damage and
apoptosis further affect the binding of insulin to insulin receptor on the liver cell surface,
and the insulin signal transduction. Glucose transport and metabolism were regulated
by insulin through its signal transduction pathway (Petersen, Vatner & Shulman, 2017).
Abnormal insulin signaling pathway can lead to the imbalance of blood glucose (Hatting
et al., 2018).

There are some limitations in this study. Firstly, the underlying mechanisms of the
dysregulated lncRNAs in pathological of diabetes mellitus were unclear. Secondly, the
function and the interaction of these lncRNAs were also unknown. Further studies in how
these differentially expressed lncRNAs are involved in the development and progression of
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diabetic, as well as development of methods to target dysregulated lncRNAs, or evaluate
them as biomarkers of early detection of organ dysfunction will be highly needed.

CONCLUSIONS
This study confirmed that the OS was increased in the STZ-induced DMmice as evidenced
by the increase of lipid peroxidation product MDA and 8-iso-PGF2α. A great number
of differentially expressed genes were involved in the inflammation, cell cycle and cell
apoptosis, OS and insulin signaling pathway. Although the roles of these RNAs in
the metabolism were not fully demonstrated here, these alterations could be used as a
foundation for the development of a future investigation of the present RNAs in diabetes.
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lncRNAs Long noncoding RNAs
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
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FPKM Fragments Per Kilobase of transcript per Million mapped reads
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